default search action
Ugo Rosolia
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j22]Mohamadreza Ahmadi, Ugo Rosolia, Michel D. Ingham, Richard M. Murray, Aaron D. Ames:
Risk-Averse Decision Making Under Uncertainty. IEEE Trans. Autom. Control. 69(1): 55-68 (2024) - [i41]Devansh R. Agrawal, Hardik Parwana, Ryan K. Cosner, Ugo Rosolia, Aaron D. Ames, Dimitra Panagou:
A Constructive Method for Designing Safe Multirate Controllers for Differentially-Flat Systems. CoRR abs/2403.18015 (2024) - 2023
- [j21]Ugo Rosolia, Dario C. Guastella, Giovanni Muscato, Francesco Borrelli:
Model Predictive Control in Partially Observable Multi-Modal Discrete Environments. IEEE Control. Syst. Lett. 7: 2161-2166 (2023) - [j20]Ugo Rosolia, Ying Zhao Lian, Emilio Tanowe Maddalena, Giancarlo Ferrari-Trecate, Colin N. Jones:
On the Optimality and Convergence Properties of the Iterative Learning Model Predictive Controller. IEEE Trans. Autom. Control. 68(1): 556-563 (2023) - [j19]Ugo Rosolia, Yuxiao Chen, Shreyansh Daftry, Masahiro Ono, Yisong Yue, Aaron D. Ames:
The Mixed-Observable Constrained Linear Quadratic Regulator Problem: The Exact Solution and Practical Algorithms. IEEE Trans. Autom. Control. 68(7): 4435-4442 (2023) - [c20]Kasper Johansson, Ugo Rosolia, Wyatt Ubellacker, Andrew Singletary, Aaron D. Ames:
Mixed Observable RRT: Multi-Agent Mission-Planning in Partially Observable Environments. ICRA 2023: 1386-1392 - [i40]Konstantinos Benidis, Ugo Rosolia, Syama Rangapuram, George Iosifidis, Georgios S. Paschos:
Solving Recurrent MIPs with Semi-supervised Graph Neural Networks. CoRR abs/2302.11992 (2023) - [i39]Tomás Nagy, Ahmad Amine, Truong X. Nghiem, Ugo Rosolia, Zirui Zang, Rahul Mangharam:
Ensemble Gaussian Processes for Adaptive Autonomous Driving on Multi-friction Surfaces. CoRR abs/2303.13694 (2023) - 2022
- [j18]Monimoy Bujarbaruah, Ugo Rosolia, Yvonne R. Stürz, Xiaojing Zhang, Francesco Borrelli:
Robust MPC for LPV systems via a novel optimization-based constraint tightening. Autom. 143: 110459 (2022) - [j17]Monimoy Bujarbaruah, Ugo Rosolia, Yvonne R. Stürz, Xiaojing Zhang, Francesco Borrelli:
Corrigendum to "Robust MPC for LPV Systems via a Novel Optimization-Based Constraint Tightening" [Automatica 143C (2022) 110459]. Autom. 146: 110546 (2022) - [j16]Kunal Garg, Ryan K. Cosner, Ugo Rosolia, Aaron D. Ames, Dimitra Panagou:
Multi-Rate Control Design Under Input Constraints via Fixed-Time Barrier Functions. IEEE Control. Syst. Lett. 6: 608-613 (2022) - [j15]Ugo Rosolia, Aaron D. Ames:
Iterative Model Predictive Control for Piecewise Systems. IEEE Control. Syst. Lett. 6: 842-847 (2022) - [j14]Devansh Agrawal, Hardik Parwana, Ryan K. Cosner, Ugo Rosolia, Aaron D. Ames, Dimitra Panagou:
A Constructive Method for Designing Safe Multirate Controllers for Differentially-Flat Systems. IEEE Control. Syst. Lett. 6: 2138-2143 (2022) - [j13]Yuxiao Chen, Ugo Rosolia, Wyatt Ubellacker, Noel Csomay-Shanklin, Aaron D. Ames:
Interactive Multi-Modal Motion Planning With Branch Model Predictive Control. IEEE Robotics Autom. Lett. 7(2): 5365-5372 (2022) - [j12]Shreyansh Daftry, Neil Abcouwer, Tyler del Sesto, Siddarth Venkatraman, Jialin Song, Lucas Igel, Amos Byon, Ugo Rosolia, Yisong Yue, Masahiro Ono:
MLNav: Learning to Safely Navigate on Martian Terrains. IEEE Robotics Autom. Lett. 7(2): 5461-5468 (2022) - [j11]Abhishek Pandala, Randall T. Fawcett, Ugo Rosolia, Aaron D. Ames, Kaveh Akbari Hamed:
Robust Predictive Control for Quadrupedal Locomotion: Learning to Close the Gap Between Reduced- and Full-Order Models. IEEE Robotics Autom. Lett. 7(3): 6622-6629 (2022) - [j10]Ugo Rosolia, Xiaojing Zhang, Francesco Borrelli:
Robust Learning Model-Predictive Control for Linear Systems Performing Iterative Tasks. IEEE Trans. Autom. Control. 67(2): 856-869 (2022) - [j9]Ugo Rosolia, Andrew Singletary, Aaron D. Ames:
Unified Multirate Control: From Low-Level Actuation to High-Level Planning. IEEE Trans. Autom. Control. 67(12): 6627-6640 (2022) - [c19]Noel Csomay-Shanklin, Andrew J. Taylor, Ugo Rosolia, Aaron D. Ames:
Multi-Rate Planning and Control of Uncertain Nonlinear Systems: Model Predictive Control and Control Lyapunov Functions. CDC 2022: 3732-3739 - [i38]Johannes Betz, Hongrui Zheng, Alexander Liniger, Ugo Rosolia, Phillip Karle, Madhur Behl, Venkat Krovi, Rahul Mangharam:
Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle Racing. CoRR abs/2202.07008 (2022) - [i37]Shreyansh Daftry, Neil Abcouwer, Tyler del Sesto, Siddarth Venkatraman, Jialin Song, Lucas Igel, Amos Byon, Ugo Rosolia, Yisong Yue, Masahiro Ono:
MLNav: Learning to Safely Navigate on Martian Terrains. CoRR abs/2203.04563 (2022) - [i36]Noel Csomay-Shanklin, Andrew J. Taylor, Ugo Rosolia, Aaron D. Ames:
Multi-Rate Planning and Control of Uncertain Nonlinear Systems: Model Predictive Control and Control Lyapunov Functions. CoRR abs/2204.00152 (2022) - 2021
- [j8]Ivo Batkovic, Ugo Rosolia, Mario Zanon, Paolo Falcone:
A Robust Scenario MPC Approach for Uncertain Multi-Modal Obstacles. IEEE Control. Syst. Lett. 5(3): 947-952 (2021) - [j7]Ugo Rosolia, Aaron D. Ames:
Multi-Rate Control Design Leveraging Control Barrier Functions and Model Predictive Control Policies. IEEE Control. Syst. Lett. 5(3): 1007-1012 (2021) - [j6]Yuxiao Chen, Ugo Rosolia, Aaron D. Ames:
Decentralized Task and Path Planning for Multi-Robot Systems. IEEE Robotics Autom. Lett. 6(3): 4337-4344 (2021) - [c18]Mohamadreza Ahmadi, Ugo Rosolia, Michel D. Ingham, Richard M. Murray, Aaron D. Ames:
Constrained Risk-Averse Markov Decision Processes. AAAI 2021: 11718-11725 - [c17]Monimoy Bujarbaruah, Ugo Rosolia, Yvonne R. Stürz, Francesco Borrelli:
A Simple Robust MPC for Linear Systems with Parametric and Additive Uncertainty. ACC 2021: 2108-2113 - [c16]Ugo Rosolia, Mohamadreza Ahmadi, Richard M. Murray, Aaron D. Ames:
Time-Optimal Navigation in Uncertain Environments with High-Level Specifications. CDC 2021: 4287-4294 - [c15]Ivan D. Jimenez Rodriguez, Ugo Rosolia, Aaron D. Ames, Yisong Yue:
Learning to Control an Unstable System with One Minute of Data: Leveraging Gaussian Process Differentiation in Predictive Control. IROS 2021: 3896-3903 - [c14]Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Joseph E. Gonzalez, Aaron D. Ames, Ken Goldberg:
ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic Nonlinear Dynamical Systems with Adjustable Boundary Conditions. WAFR 2021: 1-17 - [i35]Ugo Rosolia, Mohamadreza Ahmadi, Richard M. Murray, Aaron D. Ames:
Time-Optimal Navigation in Uncertain Environments with High-Level Specifications. CoRR abs/2103.01476 (2021) - [i34]Kunal Garg, Ryan K. Cosner, Ugo Rosolia, Aaron D. Ames, Dimitra Panagou:
Multi-rate Control Design under Input Constraints via Fixed-Time Barrier Functions. CoRR abs/2103.03695 (2021) - [i33]Ivan D. Jimenez Rodriguez, Ugo Rosolia, Aaron D. Ames, Yisong Yue:
Learning Unstable Dynamics with One Minute of Data: A Differentiation-based Gaussian Process Approach. CoRR abs/2103.04548 (2021) - [i32]Monimoy Bujarbaruah, Ugo Rosolia, Yvonne R. Stürz, Francesco Borrelli:
A Simple Robust MPC for Linear Systems with Parametric and Additive Uncertainty. CoRR abs/2103.12351 (2021) - [i31]Ugo Rosolia, Aaron D. Ames:
Iterative Model Predictive Control for Piecewise Systems. CoRR abs/2104.08267 (2021) - [i30]Prithvi Akella, Ugo Rosolia, Aaron D. Ames:
Learning Performance Bounds for Safety-Critical Systems. CoRR abs/2109.04026 (2021) - [i29]Mohamadreza Ahmadi, Ugo Rosolia, Michel D. Ingham, Richard M. Murray, Aaron D. Ames:
Risk-Averse Decision Making Under Uncertainty. CoRR abs/2109.04082 (2021) - [i28]Yuxiao Chen, Ugo Rosolia, Wyatt Ubellacker, Noel Csomay-Shanklin, Aaron D. Ames:
Interactive multi-modal motion planning with Branch Model Predictive Control. CoRR abs/2109.05128 (2021) - [i27]Kasper Johansson, Ugo Rosolia, Wyatt Ubellacker, Andrew Singletary, Aaron D. Ames:
Mixed Observable RRT: Multi-Agent Mission-Planning in Partially Observable Environments. CoRR abs/2110.01002 (2021) - [i26]Kevin Huang, Sahin Lale, Ugo Rosolia, Yuanyuan Shi, Anima Anandkumar:
CEM-GD: Cross-Entropy Method with Gradient Descent Planner for Model-Based Reinforcement Learning. CoRR abs/2112.07746 (2021) - 2020
- [j5]Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Felix Li, Rowan McAllister, Joseph E. Gonzalez, Sergey Levine, Francesco Borrelli, Ken Goldberg:
Safety Augmented Value Estimation From Demonstrations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks. IEEE Robotics Autom. Lett. 5(2): 3612-3619 (2020) - [j4]Ugo Rosolia, Francesco Borrelli:
Learning How to Autonomously Race a Car: A Predictive Control Approach. IEEE Trans. Control. Syst. Technol. 28(6): 2713-2719 (2020) - [c13]Dimitris Papadimitriou, Ugo Rosolia, Francesco Borrelli:
Control of Unknown Nonlinear Systems with Linear Time-Varying MPC. CDC 2020: 2258-2263 - [c12]Yvonne R. Stürz, Edward L. Zhu, Ugo Rosolia, Karl Henrik Johansson, Francesco Borrelli:
Distributed Learning Model Predictive Control for Linear Systems. CDC 2020: 4366-4373 - [c11]Edward L. Zhu, Yvonne R. Stürz, Ugo Rosolia, Francesco Borrelli:
Trajectory Optimization for Nonlinear Multi-Agent Systems using Decentralized Learning Model Predictive Control. CDC 2020: 6198-6203 - [c10]Yuxiao Chen, Ugo Rosolia, Chuchu Fan, Aaron D. Ames, Richard M. Murray:
Reactive motion planning with probabilisticsafety guarantees. CoRL 2020: 1958-1970 - [c9]Nicola Scianca, Ugo Rosolia, Francesco Borrelli:
Learning Model Predictive Control for Periodic Repetitive Tasks. ECC 2020: 29-34 - [i25]Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Joseph E. Gonzalez, Aaron D. Ames, Ken Goldberg:
ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic Nonlinear Dynamical Systems with Adjustable Boundary Conditions. CoRR abs/2003.01410 (2020) - [i24]Edward L. Zhu, Yvonne R. Stürz, Ugo Rosolia, Francesco Borrelli:
Trajectory Optimization for Nonlinear Multi-Agent Systems using Decentralized Learning Model Predictive Control. CoRR abs/2004.01298 (2020) - [i23]Ugo Rosolia, Aaron D. Ames:
Multi-Rate Control Design Leveraging Control Barrier Functions and Model Predictive Control Policies. CoRR abs/2004.01761 (2020) - [i22]Dimitris Papadimitriou, Ugo Rosolia, Francesco Borrelli:
Control of Unknown Nonlinear Systems with Linear Time-Varying MPC. CoRR abs/2004.03041 (2020) - [i21]Siddharth H. Nair, Ugo Rosolia, Francesco Borrelli:
Output-Lifted Learning Model Predictive Control for Flat Systems. CoRR abs/2004.05173 (2020) - [i20]Yvonne R. Stürz, Edward L. Zhu, Ugo Rosolia, Karl Henrik Johansson, Francesco Borrelli:
Distributed Learning Model Predictive Control for Linear Systems. CoRR abs/2006.13406 (2020) - [i19]Monimoy Bujarbaruah, Ugo Rosolia, Yvonne R. Stürz, Xiaojing Zhang, Francesco Borrelli:
Robust MPC for LTI Systems with Parametric and Additive Uncertainty: A Novel Constraint Tightening Approach. CoRR abs/2007.00930 (2020) - [i18]Prithvi Akella, Ugo Rosolia, Andrew Singletary, Aaron D. Ames:
Formal Verification of Safety Critical Autonomous Systems via Bayesian Optimization. CoRR abs/2009.12909 (2020) - [i17]Ugo Rosolia, Ying Zhao Lian, Emilio Tanowe Maddalena, Giancarlo Ferrari-Trecate, Colin N. Jones:
On the Optimality and Convergence Properties of the Learning Model Predictive Controller. CoRR abs/2010.15153 (2020) - [i16]Yuxiao Chen, Ugo Rosolia, Chuchu Fan, Aaron D. Ames, Richard M. Murray:
Reactive motion planning with probabilistic safety guarantees. CoRR abs/2011.03590 (2020) - [i15]Yuxiao Chen, Ugo Rosolia, Aaron D. Ames:
Decentralized Task and Path Planning for Multi-Robot Systems. CoRR abs/2011.10034 (2020) - [i14]Mohamadreza Ahmadi, Ugo Rosolia, Michel D. Ingham, Richard M. Murray, Aaron D. Ames:
Constrained Risk-Averse Markov Decision Processes. CoRR abs/2012.02423 (2020) - [i13]Ugo Rosolia, Andrew Singletary, Aaron D. Ames:
Unified Multi-Rate Control: from Low Level Actuation to High Level Planning. CoRR abs/2012.06558 (2020)
2010 – 2019
- 2019
- [c8]Ugo Rosolia, Xiaojing Zhang, Francesco Borrelli:
Simple Policy Evaluation for Data-Rich Iterative Tasks. ACC 2019: 2855-2860 - [c7]Ugo Rosolia, Francesco Borrelli:
Sample-Based Learning Model Predictive Control for Linear Uncertain Systems. CDC 2019: 2702-2707 - [i12]Ugo Rosolia, Francesco Borrelli:
Learning How to Autonomously Race a Car: a Predictive Control Approach. CoRR abs/1901.08184 (2019) - [i11]Ugo Rosolia, Francesco Borrelli:
Sample-Based Learning Model Predictive Control for Linear Uncertain Systems. CoRR abs/1904.06432 (2019) - [i10]Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Felix Li, Rowan McAllister, Joseph E. Gonzalez, Sergey Levine, Francesco Borrelli, Ken Goldberg:
Extending Deep Model Predictive Control with Safety Augmented Value Estimation from Demonstrations. CoRR abs/1905.13402 (2019) - [i9]Nicola Scianca, Ugo Rosolia, Francesco Borrelli:
Learning Model Predictive Control for Periodic Repetitive Tasks. CoRR abs/1911.07535 (2019) - [i8]Ugo Rosolia, Xiaojing Zhang, Francesco Borrelli:
Robust Learning Model Predictive Control for Linear Systems. CoRR abs/1911.09234 (2019) - [i7]Ugo Rosolia, Francesco Borrelli:
Minimum Time Learning Model Predictive Control. CoRR abs/1911.09239 (2019) - 2018
- [j3]Ugo Rosolia, Xiaojing Zhang, Francesco Borrelli:
Data-Driven Predictive Control for Autonomous Systems. Annu. Rev. Control. Robotics Auton. Syst. 1: 259-286 (2018) - [j2]Ugo Rosolia, Francesco Borrelli:
Learning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework. IEEE Trans. Autom. Control. 63(7): 1883-1896 (2018) - [c6]Ugo Rosolia, Xiaojing Zhang, Francesco Borrelli:
A Stochastic MPC Approach with Application to Iterative Learning. CDC 2018: 5152-5157 - [c5]Monimoy Bujarbaruah, Xiaojing Zhang, Ugo Rosolia, Francesco Borrelli:
Adaptive MPC for Iterative Tasks. CDC 2018: 6322-6327 - [i6]Monimoy Bujarbaruah, Xiaojing Zhang, Ugo Rosolia, Francesco Borrelli:
Adaptive MPC for Iterative Tasks. CoRR abs/1804.09831 (2018) - [i5]Ugo Rosolia, Xiaojing Zhang, Francesco Borrelli:
Simple Policy Evaluation for Data-Rich Iterative Tasks. CoRR abs/1810.06764 (2018) - 2017
- [j1]Ugo Rosolia, Stijn De Bruyne, Andrew G. Alleyne:
Autonomous Vehicle Control: A Nonconvex Approach for Obstacle Avoidance. IEEE Trans. Control. Syst. Technol. 25(2): 469-484 (2017) - [c4]Ugo Rosolia, Francesco Braghin, Andrew G. Alleyne, Stijn De Bruyne, Edoardo Sabbioni:
A decentralized algorithm for control of autonomous agents coupled by feasibility constraints. ACC 2017: 3367-3372 - [c3]Ugo Rosolia, Ashwin Carvalho, Francesco Borrelli:
Autonomous racing using learning Model Predictive Control. ACC 2017: 5115-5120 - [c2]Ugo Rosolia, Xiaojing Zhang, Francesco Borrelli:
Robust learning model predictive control for iterative tasks: Learning from experience. CDC 2017: 1157-1162 - [c1]Maximilian Brunner, Ugo Rosolia, Jon Gonzales, Francesco Borrelli:
Repetitive learning model predictive control: An autonomous racing example. CDC 2017: 2545-2550 - [i4]Ugo Rosolia, Francesco Borrelli:
Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System. CoRR abs/1702.07064 (2017) - [i3]Ugo Rosolia, Francesco Braghin, Andrew G. Alleyne, Stijn De Bruyne, Edoardo Sabbioni:
A decentralized algorithm for control of autonomous agents coupled by feasibility constraints. CoRR abs/1702.07934 (2017) - 2016
- [i2]Ugo Rosolia, Francesco Borrelli:
Learning Model Predictive Control for Iterative Tasks. CoRR abs/1609.01387 (2016) - [i1]Ugo Rosolia, Ashwin Carvalho, Francesco Borrelli:
Autonomous Racing using Learning Model Predictive Control. CoRR abs/1610.06534 (2016)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-01 21:44 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint