default search action
Andreas Krause 0001
Person information
- affiliation: ETH Zurich, Switzerland
- affiliation: California Institute of Technology, Pasadena, CA, USA
- affiliation: Carnegie Mellon University, Pittsburgh, PA, USA
- affiliation: Technical University of Munich, Germany
Other persons with the same name
- Andreas Krause — disambiguation page
- Andreas Krause 0002 — University of Bath, School of Management, UK
- Andreas Krause 0003 — European Research Center for Information Systems, Münster, Germany
- Andreas Krause 0004 — Immanuel Hospital Berlin, Germany (and 1 more)
- Andreas Krause 0005 — IPH Hannover, Germany
- Andreas Krause 0006 — Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland (and 4 more)
- Andreas Krause 0007 — Philips Semiconductors, Hamburg, Germany
- Andreas Krause 0008 — University of Göttingen, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j45]Yunke Ao, Hooman Esfandiari, Fabio Carrillo, Christoph J. Laux, Yarden As, Ruixuan Li, Kaat Van Assche, Ayoob Davoodi, Nicola Alessandro Cavalcanti, Mazda Farshad, Benjamin F. Grewe, Emmanuel B. Vander Poorten, Andreas Krause, Philipp Fürnstahl:
SafeRPlan: Safe deep reinforcement learning for intraoperative planning of pedicle screw placement. Medical Image Anal. 99: 103345 (2025) - 2024
- [j44]Puck van Gerwen, Ksenia R. Briling, Charlotte Bunne, Vignesh Ram Somnath, Rubén Laplaza, Andreas Krause, Clémence Corminboeuf:
3DReact: Geometric Deep Learning for Chemical Reactions. J. Chem. Inf. Model. 64(15): 5771-5785 (2024) - [j43]Zalán Borsos, Mojmír Mutný, Marco Tagliasacchi, Andreas Krause:
Data Summarization via Bilevel Optimization. J. Mach. Learn. Res. 25: 73:1-73:53 (2024) - [j42]Ilnura Usmanova, Yarden As, Maryam Kamgarpour, Andreas Krause:
Log Barriers for Safe Black-box Optimization with Application to Safe Reinforcement Learning. J. Mach. Learn. Res. 25: 171:1-171:54 (2024) - [j41]Arjun Bhardwaj, Jonas Rothfuss, Bhavya Sukhija, Yarden As, Marco Hutter, Stelian Coros, Andreas Krause:
Data-Efficient Task Generalization via Probabilistic Model-Based Meta Reinforcement Learning. IEEE Robotics Autom. Lett. 9(4): 3918-3925 (2024) - [c288]Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, Ilija Bogunovic:
Distributionally Robust Model-based Reinforcement Learning with Large State Spaces. AISTATS 2024: 100-108 - [c287]Daniel Robert-Nicoud, Andreas Krause, Viacheslav Borovitskiy:
Intrinsic Gaussian Vector Fields on Manifolds. AISTATS 2024: 1306-1314 - [c286]Lars Lorch, Andreas Krause, Bernhard Schölkopf:
Causal Modeling with Stationary Diffusions. AISTATS 2024: 1927-1935 - [c285]David Lindner, Xin Chen, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause:
Learning Safety Constraints from Demonstrations with Unknown Rewards. AISTATS 2024: 2386-2394 - [c284]Mohammad Reza Karimi, Ya-Ping Hsieh, Andreas Krause:
Sinkhorn Flow as Mirror Flow: A Continuous-Time Framework for Generalizing the Sinkhorn Algorithm. AISTATS 2024: 4186-4194 - [c283]Pragnya Alatur, Giorgia Ramponi, Niao He, Andreas Krause:
Provably Learning Nash Policies in Constrained Markov Potential Games. AAMAS 2024: 31-39 - [c282]Matej Jusup, Barna Pásztor, Tadeusz Janik, Kenan Zhang, Francesco Corman, Andreas Krause, Ilija Bogunovic:
Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning. AAMAS 2024: 973-982 - [c281]Manish Prajapat, Mojmir Mutny, Melanie N. Zeilinger, Andreas Krause:
Submodular Reinforcement Learning. ICLR 2024 - [c280]Scott Sussex, Pier Giuseppe Sessa, Anastasia Makarova, Andreas Krause:
Adversarial Causal Bayesian Optimization. ICLR 2024 - [c279]Jiawei Huang, Niao He, Andreas Krause:
Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL. ICML 2024 - [c278]Riccardo De Santi, Federico Arangath Joseph, Noah Liniger, Mirco Mutti, Andreas Krause:
Geometric Active Exploration in Markov Decision Processes: the Benefit of Abstraction. ICML 2024 - [c277]Riccardo De Santi, Manish Prajapat, Andreas Krause:
Global Reinforcement Learning : Beyond Linear and Convex Rewards via Submodular Semi-gradient Methods. ICML 2024 - [c276]Jonas Rothfuss, Bhavya Sukhija, Lenart Treven, Florian Dörfler, Stelian Coros, Andreas Krause:
Bridging the Sim-to-Real Gap with Bayesian Inference. IROS 2024: 10784-10791 - [i240]Jiawei Huang, Niao He, Andreas Krause:
Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL. CoRR abs/2402.05724 (2024) - [i239]Manish Prajapat, Johannes Köhler, Matteo Turchetta, Andreas Krause, Melanie N. Zeilinger:
Safe Guaranteed Exploration for Non-linear Systems. CoRR abs/2402.06562 (2024) - [i238]Jose Pablo Folch, Calvin Tsay, Robert M. Lee, Behrang Shafei, Weronika Ormaniec, Andreas Krause, Mark van der Wilk, Ruth Misener, Mojmír Mutný:
Transition Constrained Bayesian Optimization via Markov Decision Processes. CoRR abs/2402.08406 (2024) - [i237]Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, Andreas Krause:
Active Few-Shot Fine-Tuning. CoRR abs/2402.15441 (2024) - [i236]Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, Andreas Krause:
Information-based Transductive Active Learning. CoRR abs/2402.15898 (2024) - [i235]Jonas Rothfuss, Bhavya Sukhija, Lenart Treven, Florian Dörfler, Stelian Coros, Andreas Krause:
Bridging the Sim-to-Real Gap with Bayesian Inference. CoRR abs/2403.16644 (2024) - [i234]Yarden As, Bhavya Sukhija, Andreas Krause:
Safe Exploration Using Bayesian World Models and Log-Barrier Optimization. CoRR abs/2405.05890 (2024) - [i233]Lenart Treven, Bhavya Sukhija, Yarden As, Florian Dörfler, Andreas Krause:
When to Sense and Control? A Time-adaptive Approach for Continuous-Time RL. CoRR abs/2406.01163 (2024) - [i232]Bhavya Sukhija, Lenart Treven, Florian Dörfler, Stelian Coros, Andreas Krause:
NeoRL: Efficient Exploration for Nonepisodic RL. CoRR abs/2406.01175 (2024) - [i231]Vinzenz Thoma, Barna Pásztor, Andreas Krause, Giorgia Ramponi, Yifan Hu:
Stochastic Bilevel Optimization with Lower-Level Contextual Markov Decision Processes. CoRR abs/2406.01575 (2024) - [i230]Omar G. Younis, Luca Corinzia, Ioannis N. Athanasiadis, Andreas Krause, Joachim M. Buhmann, Matteo Turchetta:
Breeding Programs Optimization with Reinforcement Learning. CoRR abs/2406.03932 (2024) - [i229]Weronika Ormaniec, Scott Sussex, Lars Lorch, Bernhard Schölkopf, Andreas Krause:
Standardizing Structural Causal Models. CoRR abs/2406.11601 (2024) - [i228]Barna Pásztor, Parnian Kassraie, Andreas Krause:
Bandits with Preference Feedback: A Stackelberg Game Perspective. CoRR abs/2406.16745 (2024) - [i227]Riccardo De Santi, Manish Prajapat, Andreas Krause:
Global Reinforcement Learning: Beyond Linear and Convex Rewards via Submodular Semi-gradient Methods. CoRR abs/2407.09905 (2024) - [i226]Riccardo De Santi, Federico Arangath Joseph, Noah Liniger, Mirco Mutti, Andreas Krause:
Geometric Active Exploration in Markov Decision Processes: the Benefit of Abstraction. CoRR abs/2407.13364 (2024) - [i225]Marco Bagatella, Andreas Krause, Georg Martius:
Directed Exploration in Reinforcement Learning from Linear Temporal Logic. CoRR abs/2408.09495 (2024) - [i224]Manish Prajapat, Amon Lahr, Johannes Köhler, Andreas Krause, Melanie N. Zeilinger:
Towards safe and tractable Gaussian process-based MPC: Efficient sampling within a sequential quadratic programming framework. CoRR abs/2409.08616 (2024) - [i223]Melis Ilayda Bal, Pier Giuseppe Sessa, Mojmir Mutny, Andreas Krause:
Optimistic Games for Combinatorial Bayesian Optimization with Application to Protein Design. CoRR abs/2409.18582 (2024) - [i222]Marco Bagatella, Jonas Hübotter, Georg Martius, Andreas Krause:
Active Fine-Tuning of Generalist Policies. CoRR abs/2410.05026 (2024) - [i221]Ali Gorji, Andisheh Amrollahi, Andreas Krause:
Amortized SHAP values via sparse Fourier function approximation. CoRR abs/2410.06300 (2024) - [i220]Jonas Hübotter, Sascha Bongni, Ido Hakimi, Andreas Krause:
Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs. CoRR abs/2410.08020 (2024) - [i219]Yarden As, Bhavya Sukhija, Lenart Treven, Carmelo Sferrazza, Stelian Coros, Andreas Krause:
ActSafe: Active Exploration with Safety Constraints for Reinforcement Learning. CoRR abs/2410.09486 (2024) - [i218]Patrik Okanovic, Andreas Kirsch, Jannes Kasper, Torsten Hoefler, Andreas Krause, Nezihe Merve Gürel:
All models are wrong, some are useful: Model Selection with Limited Labels. CoRR abs/2410.13609 (2024) - [i217]Kacper Wyrwal, Andreas Krause, Viacheslav Borovitskiy:
Residual Deep Gaussian Processes on Manifolds. CoRR abs/2411.00161 (2024) - [i216]Nora Schneider, Lars Lorch, Niki Kilbertus, Bernhard Schölkopf, Andreas Krause:
Generative Intervention Models for Causal Perturbation Modeling. CoRR abs/2411.14003 (2024) - [i215]Yoshua Bengio, Sören Mindermann, Daniel Privitera, Tamay Besiroglu, Rishi Bommasani, Stephen Casper, Yejin Choi, Danielle Goldfarb, Hoda Heidari, Leila Khalatbari, Shayne Longpre, Vasilios Mavroudis, Mantas Mazeika, Kwan Yee Ng, Chinasa T. Okolo, Deborah Raji, Theodora Skeadas, Florian Tramèr, Bayo Adekanmbi, Paul F. Christiano, David Dalrymple, Thomas G. Dietterich, Edward W. Felten, Pascale Fung, Pierre-Olivier Gourinchas, Nick R. Jennings, Andreas Krause, Percy Liang, Teresa Ludermir, Vidushi Marda, Helen Margetts, John A. McDermid, Arvind Narayanan, Alondra Nelson, Alice Oh, Gopal Ramchurn, Stuart Russell, Marietje Schaake, Dawn Song, Alvaro Soto, Lee Tiedrich, Gaël Varoquaux, Andrew Yao, Ya-Qin Zhang:
International Scientific Report on the Safety of Advanced AI (Interim Report). CoRR abs/2412.05282 (2024) - 2023
- [j40]Bhavya Sukhija, Matteo Turchetta, David Lindner, Andreas Krause, Sebastian Trimpe, Dominik Baumann:
GoSafeOpt: Scalable safe exploration for global optimization of dynamical systems. Artif. Intell. 320: 103922 (2023) - [j39]Omar G. Younis, Matteo Turchetta, Daniel Ariza Suarez, Steven Yates, Bruno Studer, Ioannis N. Athanasiadis, Andreas Krause, Joachim M. Buhmann, Luca Corinzia:
ChromaX: a fast and scalable breeding program simulator. Bioinform. 39(12) (2023) - [j38]Johannes Kirschner, Tor Lattimore, Andreas Krause:
Linear Partial Monitoring for Sequential Decision Making: Algorithms, Regret Bounds and Applications. J. Mach. Learn. Res. 24: 346:1-346:45 (2023) - [j37]Songyan Hou, Parnian Kassraie, Anastasis Kratsios, Andreas Krause, Jonas Rothfuss:
Instance-Dependent Generalization Bounds via Optimal Transport. J. Mach. Learn. Res. 24: 349:1-349:51 (2023) - [j36]Jonas Rothfuss, Martin Josifoski, Vincent Fortuin, Andreas Krause:
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice. J. Mach. Learn. Res. 24: 386:1-386:62 (2023) - [j35]Jens Witkowski, Rupert Freeman, Jennifer Wortman Vaughan, David M. Pennock, Andreas Krause:
Incentive-Compatible Forecasting Competitions. Manag. Sci. 69(3): 1354-1374 (2023) - [j34]Felix Berkenkamp, Andreas Krause, Angela P. Schoellig:
Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics. Mach. Learn. 112(10): 3713-3747 (2023) - [j33]Christopher König, Miks Ozols, Anastasia Makarova, Efe C. Balta, Andreas Krause, Alisa Rupenyan:
Safe Risk-Averse Bayesian Optimization for Controller Tuning. IEEE Robotics Autom. Lett. 8(12): 8208-8215 (2023) - [j32]Jonas Gehring, Deepak Gopinath, Jungdam Won, Andreas Krause, Gabriel Synnaeve, Nicolas Usunier:
Leveraging Demonstrations with Latent Space Priors. Trans. Mach. Learn. Res. 2023 (2023) - [j31]Barna Pásztor, Andreas Krause, Ilija Bogunovic:
Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning. Trans. Mach. Learn. Res. 2023 (2023) - [c275]Alexander Hägele, Jonas Rothfuss, Lars Lorch, Vignesh Ram Somnath, Bernhard Schölkopf, Andreas Krause:
BaCaDI: Bayesian Causal Discovery with Unknown Interventions. AISTATS 2023: 1411-1436 - [c274]Viacheslav Borovitskiy, Mohammad Reza Karimi, Vignesh Ram Somnath, Andreas Krause:
Isotropic Gaussian Processes on Finite Spaces of Graphs. AISTATS 2023: 4556-4574 - [c273]Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, Andreas Krause:
The Schrödinger Bridge between Gaussian Measures has a Closed Form. AISTATS 2023: 5802-5833 - [c272]Mojmir Mutny, Tadeusz Janik, Andreas Krause:
Active Exploration via Experiment Design in Markov Chains. AISTATS 2023: 7349-7374 - [c271]Daniel Widmer, Dongho Kang, Bhavya Sukhija, Jonas Hübotter, Andreas Krause, Stelian Coros:
Tuning Legged Locomotion Controllers via Safe Bayesian Optimization. CoRL 2023: 2444-2464 - [c270]Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, Grigoris Velegkas:
Replicable Bandits. ICLR 2023 - [c269]Xiang Li, Viraj Mehta, Johannes Kirschner, Ian Char, Willie Neiswanger, Jeff Schneider, Andreas Krause, Ilija Bogunovic:
Near-optimal Policy Identification in Active Reinforcement Learning. ICLR 2023 - [c268]Krunoslav Lehman Pavasovic, Jonas Rothfuss, Andreas Krause:
MARS: Meta-learning as Score Matching in the Function Space. ICLR 2023 - [c267]Scott Sussex, Anastasia Makarova, Andreas Krause:
Model-based Causal Bayesian Optimization. ICLR 2023 - [c266]Bhavya Sukhija, Nathanael Köhler, Miguel Zamora, Simon Zimmermann, Sebastian Curi, Andreas Krause, Stelian Coros:
Gradient-Based Trajectory Optimization With Learned Dynamics. ICRA 2023: 1011-1018 - [c265]Nicolas Emmenegger, Mojmir Mutny, Andreas Krause:
Likelihood Ratio Confidence Sets for Sequential Decision Making. NeurIPS 2023 - [c264]Bernardo Fichera, Slava Borovitskiy, Andreas Krause, Aude Gemma Billard:
Implicit Manifold Gaussian Process Regression. NeurIPS 2023 - [c263]Ya-Ping Hsieh, Mohammad Reza Karimi Jaghargh, Andreas Krause, Panayotis Mertikopoulos:
Riemannian stochastic optimization methods avoid strict saddle points. NeurIPS 2023 - [c262]Yifan Hu, Jie Wang, Yao Xie, Andreas Krause, Daniel Kuhn:
Contextual Stochastic Bilevel Optimization. NeurIPS 2023 - [c261]Mohammad Reza Karimi Jaghargh, Ya-Ping Hsieh, Andreas Krause:
A Dynamical System View of Langevin-Based Non-Convex Sampling. NeurIPS 2023 - [c260]Mohammad Reza Karimi Jaghargh, Ya-Ping Hsieh, Andreas Krause:
Stochastic Approximation Algorithms for Systems of Interacting Particles. NeurIPS 2023 - [c259]Parnian Kassraie, Nicolas Emmenegger, Andreas Krause, Aldo Pacchiano:
Anytime Model Selection in Linear Bandits. NeurIPS 2023 - [c258]Max B. Paulus, Andreas Krause:
Learning To Dive In Branch And Bound. NeurIPS 2023 - [c257]Pier Giuseppe Sessa, Pierre Laforgue, Nicolò Cesa-Bianchi, Andreas Krause:
Multitask Learning with No Regret: from Improved Confidence Bounds to Active Learning. NeurIPS 2023 - [c256]Bhavya Sukhija, Lenart Treven, Cansu Sancaktar, Sebastian Blaes, Stelian Coros, Andreas Krause:
Optimistic Active Exploration of Dynamical Systems. NeurIPS 2023 - [c255]Lenart Treven, Jonas Hübotter, Bhavya Sukhija, Florian Dörfler, Andreas Krause:
Efficient Exploration in Continuous-time Model-based Reinforcement Learning. NeurIPS 2023 - [c254]Ali Gorji, Andisheh Amrollahi, Andreas Krause:
A scalable Walsh-Hadamard regularizer to overcome the low-degree spectral bias of neural networks. UAI 2023: 723-733 - [c253]Jonas Rothfuss, Bhavya Sukhija, Tobias Birchler, Parnian Kassraie, Andreas Krause:
Hallucinated adversarial control for conservative offline policy evaluation. UAI 2023: 1774-1784 - [c252]Felix Schur, Parnian Kassraie, Jonas Rothfuss, Andreas Krause:
Lifelong bandit optimization: no prior and no regret. UAI 2023: 1847-1857 - [c251]Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, María Rodríguez Martínez, Andreas Krause, Charlotte Bunne:
Aligned Diffusion Schrödinger Bridges. UAI 2023: 1985-1995 - [e2]Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, Jonathan Scarlett:
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA. Proceedings of Machine Learning Research 202, PMLR 2023 [contents] - [i214]Max B. Paulus, Andreas Krause:
Learning To Dive In Branch And Bound. CoRR abs/2301.09943 (2023) - [i213]Johannes Kirschner, Tor Lattimore, Andreas Krause:
Linear Partial Monitoring for Sequential Decision-Making: Algorithms, Regret Bounds and Applications. CoRR abs/2302.03683 (2023) - [i212]Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, María Rodríguez Martínez, Andreas Krause, Charlotte Bunne:
Aligned Diffusion Schrödinger Bridges. CoRR abs/2302.11419 (2023) - [i211]Jonas Rothfuss, Bhavya Sukhija, Tobias Birchler, Parnian Kassraie, Andreas Krause:
Hallucinated Adversarial Control for Conservative Offline Policy Evaluation. CoRR abs/2303.01076 (2023) - [i210]Yunke Ao, Hooman Esfandiari, Fabio Carrillo, Yarden As, Mazda Farshad, Benjamin F. Grewe, Andreas Krause, Philipp Fürnstahl:
Safe Deep RL for Intraoperative Planning of Pedicle Screw Placement. CoRR abs/2305.05354 (2023) - [i209]Ali Gorji, Andisheh Amrollahi, Andreas Krause:
A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree Spectral Bias of Neural Networks. CoRR abs/2305.09779 (2023) - [i208]David Lindner, Xin Chen, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause:
Learning Safety Constraints from Demonstrations with Unknown Rewards. CoRR abs/2305.16147 (2023) - [i207]Daniel Widmer, Dongho Kang, Bhavya Sukhija, Jonas Hübotter, Andreas Krause, Stelian Coros:
Tuning Legged Locomotion Controllers via Safe Bayesian Optimization. CoRR abs/2306.07092 (2023) - [i206]Pragnya Alatur, Giorgia Ramponi, Niao He, Andreas Krause:
Provably Learning Nash Policies in Constrained Markov Potential Games. CoRR abs/2306.07749 (2023) - [i205]Matteo Pariset, Ya-Ping Hsieh, Charlotte Bunne, Andreas Krause, Valentin De Bortoli:
Unbalanced Diffusion Schrödinger Bridge. CoRR abs/2306.09099 (2023) - [i204]Bhavya Sukhija, Lenart Treven, Cansu Sancaktar, Sebastian Blaes, Stelian Coros, Andreas Krause:
Optimistic Active Exploration of Dynamical Systems. CoRR abs/2306.12371 (2023) - [i203]Christopher König, Miks Ozols, Anastasia Makarova, Efe C. Balta, Andreas Krause, Alisa Rupenyan:
Safe Risk-averse Bayesian Optimization for Controller Tuning. CoRR abs/2306.13479 (2023) - [i202]Matej Jusup, Barna Pásztor, Tadeusz Janik, Kenan Zhang, Francesco Corman, Andreas Krause, Ilija Bogunovic:
Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning. CoRR abs/2306.17052 (2023) - [i201]Parnian Kassraie, Aldo Pacchiano, Nicolas Emmenegger, Andreas Krause:
Anytime Model Selection in Linear Bandits. CoRR abs/2307.12897 (2023) - [i200]Manish Prajapat, Mojmír Mutný, Melanie N. Zeilinger, Andreas Krause:
Submodular Reinforcement Learning. CoRR abs/2307.13372 (2023) - [i199]Scott Sussex, Pier Giuseppe Sessa, Anastasiia Makarova, Andreas Krause:
Model-based Causal Bayesian Optimization. CoRR abs/2307.16625 (2023) - [i198]Pier Giuseppe Sessa, Pierre Laforgue, Nicolò Cesa-Bianchi, Andreas Krause:
Multitask Learning with No Regret: from Improved Confidence Bounds to Active Learning. CoRR abs/2308.01744 (2023) - [i197]Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, Ilija Bogunovic:
Distributionally Robust Model-based Reinforcement Learning with Large State Spaces. CoRR abs/2309.02236 (2023) - [i196]Vignesh Ram Somnath, Pier Giuseppe Sessa, María Rodríguez Martínez, Andreas Krause:
DockGame: Cooperative Games for Multimeric Rigid Protein Docking. CoRR abs/2310.06177 (2023) - [i195]Lars Lorch, Andreas Krause, Bernhard Schölkopf:
Causal Modeling with Stationary Diffusions. CoRR abs/2310.17405 (2023) - [i194]Yifan Hu, Jie Wang, Yao Xie, Andreas Krause, Daniel Kuhn:
Contextual Stochastic Bilevel Optimization. CoRR abs/2310.18535 (2023) - [i193]Daniel Robert-Nicoud, Andreas Krause, Viacheslav Borovitskiy:
Intrinsic Gaussian Vector Fields on Manifolds. CoRR abs/2310.18824 (2023) - [i192]Bernardo Fichera, Viacheslav Borovitskiy, Andreas Krause, Aude Billard:
Implicit Manifold Gaussian Process Regression. CoRR abs/2310.19390 (2023) - [i191]Lenart Treven, Jonas Hübotter, Bhavya Sukhija, Florian Dörfler, Andreas Krause:
Efficient Exploration in Continuous-time Model-based Reinforcement Learning. CoRR abs/2310.19848 (2023) - [i190]Ya-Ping Hsieh, Mohammad Reza Karimi, Andreas Krause, Panayotis Mertikopoulos:
Riemannian stochastic optimization methods avoid strict saddle points. CoRR abs/2311.02374 (2023) - [i189]Nicolas Emmenegger, Mojmír Mutný, Andreas Krause:
Likelihood Ratio Confidence Sets for Sequential Decision Making. CoRR abs/2311.04402 (2023) - [i188]Arjun Bhardwaj, Jonas Rothfuss, Bhavya Sukhija, Yarden As, Marco Hutter, Stelian Coros, Andreas Krause:
Data-Efficient Task Generalization via Probabilistic Model-based Meta Reinforcement Learning. CoRR abs/2311.07558 (2023) - [i187]Mohammad Reza Karimi, Ya-Ping Hsieh, Andreas Krause:
Sinkhorn Flow: A Continuous-Time Framework for Understanding and Generalizing the Sinkhorn Algorithm. CoRR abs/2311.16706 (2023) - [i186]Puck van Gerwen, Ksenia R. Briling, Charlotte Bunne, Vignesh Ram Somnath, Rubén Laplaza, Andreas Krause, Clémence Corminboeuf:
EquiReact: An equivariant neural network for chemical reactions. CoRR abs/2312.08307 (2023) - 2022
- [c250]Parnian Kassraie, Andreas Krause:
Neural Contextual Bandits without Regret. AISTATS 2022: 240-278 - [c249]Charlotte Bunne, Laetitia Papaxanthos, Andreas Krause, Marco Cuturi:
Proximal Optimal Transport Modeling of Population Dynamics. AISTATS 2022: 6511-6528 - [c248]Mojmir Mutny, Andreas Krause:
Sensing Cox Processes via Posterior Sampling and Positive Bases. AISTATS 2022: 6968-6989 - [c247]Elvis Nava, Mojmir Mutny, Andreas Krause:
Diversified Sampling for Batched Bayesian Optimization with Determinantal Point Processes. AISTATS 2022: 7031-7054 - [c246]Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas Krause, Matthias W. Seeger, Cédric Archambeau:
Automatic Termination for Hyperparameter Optimization. AutoML 2022: 7/1-21 - [c245]Sebastian Curi, Armin Lederer, Sandra Hirche, Andreas Krause:
Safe Reinforcement Learning via Confidence-Based Filters. CDC 2022: 3409-3415 - [c244]Mohammad Reza Karimi, Ya-Ping Hsieh, Panayotis Mertikopoulos, Andreas Krause:
The Dynamics of Riemannian Robbins-Monro Algorithms. COLT 2022: 3503 - [c243]Jonas Rothfuss, Christopher König, Alisa Rupenyan, Andreas Krause:
Meta-Learning Priors for Safe Bayesian Optimization. CoRL 2022: 237-265 - [c242]Yarden As, Ilnura Usmanova, Sebastian Curi, Andreas Krause:
Constrained Policy Optimization via Bayesian World Models. ICLR 2022 - [c241]Yatao Bian, Yu Rong, Tingyang Xu, Jiaxiang Wu, Andreas Krause, Junzhou Huang:
Energy-Based Learning for Cooperative Games, with Applications to Valuation Problems in Machine Learning. ICLR 2022 - [c240]Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi S. Jaakkola, Andreas Krause:
Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking. ICLR 2022 - [c239]Edoardo Caldarelli, Philippe Wenk, Stefan Bauer, Andreas Krause:
Adaptive Gaussian Process Change Point Detection. ICML 2022: 2542-2571 - [c238]Parnian Kassraie, Jonas Rothfuss, Andreas Krause:
Meta-Learning Hypothesis Spaces for Sequential Decision-making. ICML 2022: 10802-10824 - [c237]David Lindner, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause:
Interactively Learning Preference Constraints in Linear Bandits. ICML 2022: 13505-13527 - [c236]Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, Chris J. Maddison:
Learning to Cut by Looking Ahead: Cutting Plane Selection via Imitation Learning. ICML 2022: 17584-17600 - [c235]Pier Giuseppe Sessa, Maryam Kamgarpour, Andreas Krause:
Efficient Model-based Multi-agent Reinforcement Learning via Optimistic Equilibrium Computation. ICML 2022: 19580-19597 - [c234]Ilija Bogunovic, Zihan Li, Andreas Krause, Jonathan Scarlett:
A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits. NeurIPS 2022 - [c233]Charlotte Bunne, Andreas Krause, Marco Cuturi:
Supervised Training of Conditional Monge Maps. NeurIPS 2022 - [c232]Parnian Kassraie, Andreas Krause, Ilija Bogunovic:
Graph Neural Network Bandits. NeurIPS 2022 - [c231]David Lindner, Andreas Krause, Giorgia Ramponi:
Active Exploration for Inverse Reinforcement Learning. NeurIPS 2022 - [c230]Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, Bernhard Schölkopf:
Amortized Inference for Causal Structure Learning. NeurIPS 2022 - [c229]Mojmir Mutny, Andreas Krause:
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces. NeurIPS 2022 - [c228]Manish Prajapat, Matteo Turchetta, Melanie N. Zeilinger, Andreas Krause:
Near-Optimal Multi-Agent Learning for Safe Coverage Control. NeurIPS 2022 - [c227]Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Andreas Krause, Ilija Bogunovic:
Movement Penalized Bayesian Optimization with Application to Wind Energy Systems. NeurIPS 2022 - [c226]Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius von Kügelgen:
Active Bayesian Causal Inference. NeurIPS 2022 - [c225]Matteo Turchetta, Luca Corinzia, Scott Sussex, Amanda Burton, Juan Herrera, Ioannis Athanasiadis, Joachim M. Buhmann, Andreas Krause:
Learning Long-Term Crop Management Strategies with CyclesGym. NeurIPS 2022 - [i185]Bhavya Sukhija, Matteo Turchetta, David Lindner, Andreas Krause, Sebastian Trimpe, Dominik Baumann:
Scalable Safe Exploration for Global Optimization of Dynamical Systems. CoRR abs/2201.09562 (2022) - [i184]Yarden As, Ilnura Usmanova, Sebastian Curi, Andreas Krause:
Constrained Policy Optimization via Bayesian World Models. CoRR abs/2201.09802 (2022) - [i183]Parnian Kassraie, Jonas Rothfuss, Andreas Krause:
Meta-Learning Hypothesis Spaces for Sequential Decision-making. CoRR abs/2202.00602 (2022) - [i182]Ilija Bogunovic, Zihan Li, Andreas Krause, Jonathan Scarlett:
A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits. CoRR abs/2202.01850 (2022) - [i181]Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, Andreas Krause:
Recovering Stochastic Dynamics via Gaussian Schrödinger Bridges. CoRR abs/2202.05722 (2022) - [i180]Pier Giuseppe Sessa, Maryam Kamgarpour, Andreas Krause:
Efficient Model-based Multi-agent Reinforcement Learning via Optimistic Equilibrium Computation. CoRR abs/2203.07322 (2022) - [i179]Johannes Kirschner, Mojmír Mutný, Andreas Krause, Jaime Coello de Portugal, Nicole Hiller, Jochem Snuverink:
Tuning Particle Accelerators with Safety Constraints using Bayesian Optimization. CoRR abs/2203.13968 (2022) - [i178]Vignesh Ram Somnath, Charlotte Bunne, Andreas Krause:
Multi-Scale Representation Learning on Proteins. CoRR abs/2204.02337 (2022) - [i177]Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, Bernhard Schölkopf:
Amortized Inference for Causal Structure Learning. CoRR abs/2205.12934 (2022) - [i176]Mojmír Mutný, Andreas Krause:
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces. CoRR abs/2205.13627 (2022) - [i175]Alexander Hägele, Jonas Rothfuss, Lars Lorch, Vignesh Ram Somnath, Bernhard Schölkopf, Andreas Krause:
BaCaDI: Bayesian Causal Discovery with Unknown Interventions. CoRR abs/2206.01665 (2022) - [i174]Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius von Kügelgen:
Active Bayesian Causal Inference. CoRR abs/2206.02063 (2022) - [i173]David Lindner, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause:
Interactively Learning Preference Constraints in Linear Bandits. CoRR abs/2206.05255 (2022) - [i172]Mohammad Reza Karimi, Ya-Ping Hsieh, Panayotis Mertikopoulos, Andreas Krause:
The Dynamics of Riemannian Robbins-Monro Algorithms. CoRR abs/2206.06795 (2022) - [i171]Mathieu Chevalley, Charlotte Bunne, Andreas Krause, Stefan Bauer:
Invariant Causal Mechanisms through Distribution Matching. CoRR abs/2206.11646 (2022) - [i170]Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, Chris J. Maddison:
Learning To Cut By Looking Ahead: Cutting Plane Selection via Imitation Learning. CoRR abs/2206.13414 (2022) - [i169]Charlotte Bunne, Andreas Krause, Marco Cuturi:
Supervised Training of Conditional Monge Maps. CoRR abs/2206.14262 (2022) - [i168]Mojmír Mutný, Tadeusz Janik, Andreas Krause:
Active Exploration via Experiment Design in Markov Chains. CoRR abs/2206.14332 (2022) - [i167]Sebastian Curi, Armin Lederer, Sandra Hirche, Andreas Krause:
Safe Reinforcement Learning via Confidence-Based Filters. CoRR abs/2207.01337 (2022) - [i166]Parnian Kassraie, Andreas Krause, Ilija Bogunovic:
Graph Neural Network Bandits. CoRR abs/2207.06456 (2022) - [i165]David Lindner, Andreas Krause, Giorgia Ramponi:
Active Exploration for Inverse Reinforcement Learning. CoRR abs/2207.08645 (2022) - [i164]Ilnura Usmanova, Yarden As, Maryam Kamgarpour, Andreas Krause:
Log Barriers for Safe Black-box Optimization with Application to Safe Reinforcement Learning. CoRR abs/2207.10415 (2022) - [i163]Jonas Rothfuss, Christopher König, Alisa Rupenyan, Andreas Krause:
Meta-Learning Priors for Safe Bayesian Optimization. CoRR abs/2210.00762 (2022) - [i162]Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, Grigoris Velegkas:
Reproducible Bandits. CoRR abs/2210.01898 (2022) - [i161]Manish Prajapat, Matteo Turchetta, Melanie N. Zeilinger, Andreas Krause:
Near-Optimal Multi-Agent Learning for Safe Coverage Control. CoRR abs/2210.06380 (2022) - [i160]Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Andreas Krause, Ilija Bogunovic:
Movement Penalized Bayesian Optimization with Application to Wind Energy Systems. CoRR abs/2210.08087 (2022) - [i159]Krunoslav Lehman Pavasovic, Jonas Rothfuss, Andreas Krause:
MARS: Meta-Learning as Score Matching in the Function Space. CoRR abs/2210.13319 (2022) - [i158]Mohammad Reza Karimi, Ya-Ping Hsieh, Andreas Krause:
A Dynamical System View of Langevin-Based Non-Convex Sampling. CoRR abs/2210.13867 (2022) - [i157]Jonas Gehring, Deepak Gopinath, Jungdam Won, Andreas Krause, Gabriel Synnaeve, Nicolas Usunier:
Leveraging Demonstrations with Latent Space Priors. CoRR abs/2210.14685 (2022) - [i156]Felix Schur, Parnian Kassraie, Jonas Rothfuss, Andreas Krause:
Lifelong Bandit Optimization: No Prior and No Regret. CoRR abs/2210.15513 (2022) - [i155]Songyan Hou, Parnian Kassraie, Anastasis Kratsios, Jonas Rothfuss, Andreas Krause:
Instance-Dependent Generalization Bounds via Optimal Transport. CoRR abs/2211.01258 (2022) - [i154]Viacheslav Borovitskiy, Mohammad Reza Karimi, Vignesh Ram Somnath, Andreas Krause:
Isotropic Gaussian Processes on Finite Spaces of Graphs. CoRR abs/2211.01689 (2022) - [i153]Jonas Rothfuss, Martin Josifoski, Vincent Fortuin, Andreas Krause:
PAC-Bayesian Meta-Learning: From Theory to Practice. CoRR abs/2211.07206 (2022) - [i152]Scott Sussex, Anastasiia Makarova, Andreas Krause:
Model-based Causal Bayesian Optimization. CoRR abs/2211.10257 (2022) - [i151]Xiang Li, Viraj Mehta, Johannes Kirschner, Ian Char, Willie Neiswanger, Jeff Schneider, Andreas Krause, Ilija Bogunovic:
Near-optimal Policy Identification in Active Reinforcement Learning. CoRR abs/2212.09510 (2022) - 2021
- [c224]Chris Wendler, Andisheh Amrollahi, Bastian Seifert, Andreas Krause, Markus Püschel:
Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases. AAAI 2021: 10283-10292 - [c223]Mohammad Yaghini, Andreas Krause, Hoda Heidari:
A Human-in-the-loop Framework to Construct Context-aware Mathematical Notions of Outcome Fairness. AIES 2021: 1023-1033 - [c222]Mohammad Reza Karimi, Nezihe Merve Gürel, Bojan Karlas, Johannes Rausch, Ce Zhang, Andreas Krause:
Online Active Model Selection for Pre-trained Classifiers. AISTATS 2021: 307-315 - [c221]Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett:
Stochastic Linear Bandits Robust to Adversarial Attacks. AISTATS 2021: 991-999 - [c220]Joan Bas-Serrano, Sebastian Curi, Andreas Krause, Gergely Neu:
Logistic Q-Learning. AISTATS 2021: 3610-3618 - [c219]Marc Jourdan, Mojmír Mutný, Johannes Kirschner, Andreas Krause:
Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit Feedback. ALT 2021: 805-849 - [c218]Zalán Borsos, Marco Tagliasacchi, Andreas Krause:
Semi-Supervised Batch Active Learning Via Bilevel Optimization. ICASSP 2021: 3495-3499 - [c217]Mikhail Usvyatsov, Anastasia Makarova, Rafael Ballester-Ripoll, Maxim V. Rakhuba, Andreas Krause, Konrad Schindler:
Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data via Differentiable Cross-Approximation. ICCV 2021: 11406-11415 - [c216]Max B. Paulus, Chris J. Maddison, Andreas Krause:
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator. ICLR 2021 - [c215]Núria Armengol Urpí, Sebastian Curi, Andreas Krause:
Risk-Averse Offline Reinforcement Learning. ICLR 2021 - [c214]Sebastian Curi, Ilija Bogunovic, Andreas Krause:
Combining Pessimism with Optimism for Robust and Efficient Model-Based Deep Reinforcement Learning. ICML 2021: 2254-2264 - [c213]Johannes Kirschner, Andreas Krause:
Bias-Robust Bayesian Optimization via Dueling Bandits. ICML 2021: 5595-5605 - [c212]Mojmir Mutny, Andreas Krause:
No-regret Algorithms for Capturing Events in Poisson Point Processes. ICML 2021: 7894-7904 - [c211]Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, Andreas Krause:
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees. ICML 2021: 9116-9126 - [c210]Pier Giuseppe Sessa, Ilija Bogunovic, Andreas Krause, Maryam Kamgarpour:
Online Submodular Resource Allocation with Applications to Rebalancing Shared Mobility Systems. ICML 2021: 9455-9464 - [c209]Carl-Johann Simon-Gabriel, Noman Ahmed Sheikh, Andreas Krause:
PopSkipJump: Decision-Based Attack for Probabilistic Classifiers. ICML 2021: 9712-9721 - [c208]Ilnura Usmanova, Maryam Kamgarpour, Andreas Krause, Kfir Y. Levy:
Fast Projection Onto Convex Smooth Constraints. ICML 2021: 10476-10486 - [c207]Christopher König, Matteo Turchetta, John Lygeros, Alisa Rupenyan, Andreas Krause:
Safe and Efficient Model-free Adaptive Control via Bayesian Optimization. ICRA 2021: 9782-9788 - [c206]David Lindner, Hoda Heidari, Andreas Krause:
Addressing the Long-term Impact of ML Decisions via Policy Regret. IJCAI 2021: 537-544 - [c205]Lenart Treven, Sebastian Curi, Mojmír Mutný, Andreas Krause:
Learning Stabilizing Controllers for Unstable Linear Quadratic Regulators from a Single Trajectory. L4DC 2021: 664-676 - [c204]Jonas Rothfuss, Dominique Heyn, Jinfan Chen, Andreas Krause:
Meta-Learning Reliable Priors in the Function Space. NeurIPS 2021: 280-293 - [c203]Scott Sussex, Caroline Uhler, Andreas Krause:
Near-Optimal Multi-Perturbation Experimental Design for Causal Structure Learning. NeurIPS 2021: 777-788 - [c202]Ilija Bogunovic, Andreas Krause:
Misspecified Gaussian Process Bandit Optimization. NeurIPS 2021: 3004-3015 - [c201]David Lindner, Matteo Turchetta, Sebastian Tschiatschek, Kamil Ciosek, Andreas Krause:
Information Directed Reward Learning for Reinforcement Learning. NeurIPS 2021: 3850-3862 - [c200]Manuel Wüthrich, Bernhard Schölkopf, Andreas Krause:
Regret Bounds for Gaussian-Process Optimization in Large Domains. NeurIPS 2021: 7385-7396 - [c199]Vignesh Ram Somnath, Charlotte Bunne, Connor W. Coley, Andreas Krause, Regina Barzilay:
Learning Graph Models for Retrosynthesis Prediction. NeurIPS 2021: 9405-9415 - [c198]Jonas Gehring, Gabriel Synnaeve, Andreas Krause, Nicolas Usunier:
Hierarchical Skills for Efficient Exploration. NeurIPS 2021: 11553-11564 - [c197]Andreas Schlaginhaufen, Philippe Wenk, Andreas Krause, Florian Dörfler:
Learning Stable Deep Dynamics Models for Partially Observed or Delayed Dynamical Systems. NeurIPS 2021: 11870-11882 - [c196]Anastasia Makarova, Ilnura Usmanova, Ilija Bogunovic, Andreas Krause:
Risk-averse Heteroscedastic Bayesian Optimization. NeurIPS 2021: 17235-17245 - [c195]Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, Andreas Krause:
DiBS: Differentiable Bayesian Structure Learning. NeurIPS 2021: 24111-24123 - [c194]Vignesh Ram Somnath, Charlotte Bunne, Andreas Krause:
Multi-Scale Representation Learning on Proteins. NeurIPS 2021: 25244-25255 - [c193]Tobias Sutter, Andreas Krause, Daniel Kuhn:
Robust Generalization despite Distribution Shift via Minimum Discriminating Information. NeurIPS 2021: 29754-29767 - [c192]Lenart Treven, Philippe Wenk, Florian Dörfler, Andreas Krause:
Distributional Gradient Matching for Learning Uncertain Neural Dynamics Models. NeurIPS 2021: 29780-29793 - [i150]Jens Witkowski, Rupert Freeman, Jennifer Wortman Vaughan, David M. Pennock, Andreas Krause:
Incentive-Compatible Forecasting Competitions. CoRR abs/2101.01816 (2021) - [i149]Christopher König, Matteo Turchetta, John Lygeros, Alisa Rupenyan, Andreas Krause:
Safe and Efficient Model-free Adaptive Control via Bayesian Optimization. CoRR abs/2101.07825 (2021) - [i148]Marc Jourdan, Mojmír Mutný, Johannes Kirschner, Andreas Krause:
Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit Feedback. CoRR abs/2101.08534 (2021) - [i147]Núria Armengol Urpi, Sebastian Curi, Andreas Krause:
Risk-Averse Offline Reinforcement Learning. CoRR abs/2102.05371 (2021) - [i146]David Lindner, Matteo Turchetta, Sebastian Tschiatschek, Kamil Ciosek, Andreas Krause:
Information Directed Reward Learning for Reinforcement Learning. CoRR abs/2102.12466 (2021) - [i145]Sebastian Curi, Ilija Bogunovic, Andreas Krause:
Combining Pessimism with Optimism for Robust and Efficient Model-Based Deep Reinforcement Learning. CoRR abs/2103.10369 (2021) - [i144]Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas Krause, Matthias W. Seeger, Cédric Archambeau:
Overfitting in Bayesian Optimization: an empirical study and early-stopping solution. CoRR abs/2104.08166 (2021) - [i143]Manuel Wüthrich, Bernhard Schölkopf, Andreas Krause:
Regret Bounds for Gaussian-Process Optimization in Large Domains. CoRR abs/2104.14113 (2021) - [i142]Johannes Kirschner, Andreas Krause:
Bias-Robust Bayesian Optimization via Dueling Bandit. CoRR abs/2105.11802 (2021) - [i141]Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, Andreas Krause:
DiBS: Differentiable Bayesian Structure Learning. CoRR abs/2105.11839 (2021) - [i140]Scott Sussex, Andreas Krause, Caroline Uhler:
Near-Optimal Multi-Perturbation Experimental Design for Causal Structure Learning. CoRR abs/2105.14024 (2021) - [i139]Mikhail Usvyatsov, Anastasia Makarova, Rafael Ballester-Ripoll, Maxim V. Rakhuba, Andreas Krause, Konrad Schindler:
Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data via Differentiable Cross-Approximation. CoRR abs/2105.14250 (2021) - [i138]David Lindner, Hoda Heidari, Andreas Krause:
Addressing the Long-term Impact of ML Decisions via Policy Regret. CoRR abs/2106.01325 (2021) - [i137]Yatao Bian, Yu Rong, Tingyang Xu, Jiaxiang Wu, Andreas Krause, Junzhou Huang:
Energy-Based Learning for Cooperative Games, with Applications to Feature/Data/Model Valuations. CoRR abs/2106.02938 (2021) - [i136]Jonas Rothfuss, Dominique Heyn, Jinfan Chen, Andreas Krause:
Meta-Learning Reliable Priors in the Function Space. CoRR abs/2106.03195 (2021) - [i135]Tobias Sutter, Andreas Krause, Daniel Kuhn:
Robust Generalization despite Distribution Shift via Minimum Discriminating Information. CoRR abs/2106.04443 (2021) - [i134]Charlotte Bunne, Laetitia Meng-Papaxanthos, Andreas Krause, Marco Cuturi:
JKOnet: Proximal Optimal Transport Modeling of Population Dynamics. CoRR abs/2106.06345 (2021) - [i133]Carl-Johann Simon-Gabriel, Noman Ahmed Sheikh, Andreas Krause:
PopSkipJump: Decision-Based Attack for Probabilistic Classifiers. CoRR abs/2106.07445 (2021) - [i132]Lenart Treven, Philippe Wenk, Florian Dörfler, Andreas Krause:
Distributional Gradient Matching for Learning Uncertain Neural Dynamics Models. CoRR abs/2106.11609 (2021) - [i131]Parnian Kassraie, Andreas Krause:
Neural Contextual Bandits without Regret. CoRR abs/2107.03144 (2021) - [i130]Barna Pásztor, Ilija Bogunovic, Andreas Krause:
Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning. CoRR abs/2107.04050 (2021) - [i129]Pier Giuseppe Sessa, Ilija Bogunovic, Andreas Krause, Maryam Kamgarpour:
Contextual Games: Multi-Agent Learning with Side Information. CoRR abs/2107.06327 (2021) - [i128]Zalán Borsos, Mojmír Mutný, Marco Tagliasacchi, Andreas Krause:
Data Summarization via Bilevel Optimization. CoRR abs/2109.12534 (2021) - [i127]Jonas Gehring, Gabriel Synnaeve, Andreas Krause, Nicolas Usunier:
Hierarchical Skills for Efficient Exploration. CoRR abs/2110.10809 (2021) - [i126]Mojmír Mutný, Andreas Krause:
Sensing Cox Processes via Posterior Sampling and Positive Bases. CoRR abs/2110.11181 (2021) - [i125]Elvis Nava, Mojmír Mutný, Andreas Krause:
Diversified Sampling for Batched Bayesian Optimization with Determinantal Point Processes. CoRR abs/2110.11665 (2021) - [i124]Andreas Schlaginhaufen, Philippe Wenk, Andreas Krause, Florian Dörfler:
Learning Stable Deep Dynamics Models for Partially Observed or Delayed Dynamical Systems. CoRR abs/2110.14296 (2021) - [i123]Anastasia Makarova, Ilnura Usmanova, Ilija Bogunovic, Andreas Krause:
Risk-averse Heteroscedastic Bayesian Optimization. CoRR abs/2111.03637 (2021) - [i122]Ilija Bogunovic, Andreas Krause:
Misspecified Gaussian Process Bandit Optimization. CoRR abs/2111.05008 (2021) - [i121]Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi S. Jaakkola, Andreas Krause:
Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking. CoRR abs/2111.07786 (2021) - 2020
- [j30]Pragnya Alatur, Kfir Y. Levy, Andreas Krause:
Multi-Player Bandits: The Adversarial Case. J. Mach. Learn. Res. 21: 77:1-77:23 (2020) - [c191]Philippe Wenk, Gabriele Abbati, Michael A. Osborne, Bernhard Schölkopf, Andreas Krause, Stefan Bauer:
ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems. AAAI 2020: 6364-6371 - [c190]Mojmir Mutny, Johannes Kirschner, Andreas Krause:
Experimental Design for Optimization of Orthogonal Projection Pursuit Models. AAAI 2020: 10235-10242 - [c189]Ilija Bogunovic, Andreas Krause, Jonathan Scarlett:
Corruption-Tolerant Gaussian Process Bandit Optimization. AISTATS 2020: 1071-1081 - [c188]Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, Andreas Krause:
Distributionally Robust Bayesian Optimization. AISTATS 2020: 2174-2184 - [c187]Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause:
Mixed Strategies for Robust Optimization of Unknown Objectives. AISTATS 2020: 2970-2980 - [c186]Mojmir Mutny, Michal Derezinski, Andreas Krause:
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling. AISTATS 2020: 3110-3120 - [c185]Johannes Kirschner, Tor Lattimore, Andreas Krause:
Information Directed Sampling for Linear Partial Monitoring. COLT 2020: 2328-2369 - [c184]Ankit Dhall, Anastasia Makarova, Octavian Ganea, Dario Pavllo, Michael Greeff, Andreas Krause:
Hierarchical Image Classification using Entailment Cone Embeddings. CVPR Workshops 2020: 3649-3658 - [c183]Aytunc Sahin, Yatao Bian, Joachim M. Buhmann, Andreas Krause:
From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models. ICML 2020: 8388-8397 - [c182]Diego Agudelo-España, Andrii Zadaianchuk, Philippe Wenk, Aditya Garg, Joel Akpo, Felix Grimminger, Julian Viereck, Maximilien Naveau, Ludovic Righetti, Georg Martius, Andreas Krause, Bernhard Schölkopf, Stefan Bauer, Manuel Wüthrich:
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models. ICRA 2020: 8151-8157 - [c181]Matteo Turchetta, Andreas Krause, Sebastian Trimpe:
Robust Model-free Reinforcement Learning with Multi-objective Bayesian Optimization. ICRA 2020: 10702-10708 - [c180]Erik A. Daxberger, Anastasia Makarova, Matteo Turchetta, Andreas Krause:
Mixed-Variable Bayesian Optimization. IJCAI 2020: 2633-2639 - [c179]Sebastian Curi, Silvan Melchior, Felix Berkenkamp, Andreas Krause:
Structured Variational Inference in Partially Observable UnstableGaussian Process State Space Models. L4DC 2020: 147-157 - [c178]Ilnura Usmanova, Andreas Krause, Maryam Kamgarpour:
Safe non-smooth black-box optimization with application to policy search. L4DC 2020: 980-989 - [c177]Zalán Borsos, Mojmir Mutny, Andreas Krause:
Coresets via Bilevel Optimization for Continual Learning and Streaming. NeurIPS 2020 - [c176]Sebastian Curi, Felix Berkenkamp, Andreas Krause:
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning. NeurIPS 2020 - [c175]Sebastian Curi, Kfir Y. Levy, Stefanie Jegelka, Andreas Krause:
Adaptive Sampling for Stochastic Risk-Averse Learning. NeurIPS 2020 - [c174]Max B. Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, Chris J. Maddison:
Gradient Estimation with Stochastic Softmax Tricks. NeurIPS 2020 - [c173]Pier Giuseppe Sessa, Ilija Bogunovic, Andreas Krause, Maryam Kamgarpour:
Contextual Games: Multi-Agent Learning with Side Information. NeurIPS 2020 - [c172]Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause:
Learning to Play Sequential Games versus Unknown Opponents. NeurIPS 2020 - [c171]Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, Alekh Agarwal:
Safe Reinforcement Learning via Curriculum Induction. NeurIPS 2020 - [i120]Jonas Rothfuss, Vincent Fortuin, Andreas Krause:
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees. CoRR abs/2002.05551 (2020) - [i119]Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, Andreas Krause:
Distributionally Robust Bayesian Optimization. CoRR abs/2002.09038 (2020) - [i118]Johannes Kirschner, Tor Lattimore, Andreas Krause:
Information Directed Sampling for Linear Partial Monitoring. CoRR abs/2002.11182 (2020) - [i117]Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause:
Mixed Strategies for Robust Optimization of Unknown Objectives. CoRR abs/2002.12613 (2020) - [i116]Ilija Bogunovic, Andreas Krause, Jonathan Scarlett:
Corruption-Tolerant Gaussian Process Bandit Optimization. CoRR abs/2003.01971 (2020) - [i115]Emmanouil Angelis, Philippe Wenk, Bernhard Schölkopf, Stefan Bauer, Andreas Krause:
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives. CoRR abs/2003.02658 (2020) - [i114]Ankit Dhall, Anastasia Makarova, Octavian Ganea, Dario Pavllo, Michael Greeff, Andreas Krause:
Hierarchical Image Classification using Entailment Cone Embeddings. CoRR abs/2004.03459 (2020) - [i113]Aytunc Sahin, Yatao Bian, Joachim M. Buhmann, Andreas Krause:
From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models. CoRR abs/2006.01293 (2020) - [i112]Zalán Borsos, Mojmír Mutný, Andreas Krause:
Coresets via Bilevel Optimization for Continual Learning and Streaming. CoRR abs/2006.03875 (2020) - [i111]Vignesh Ram Somnath, Charlotte Bunne, Connor W. Coley, Andreas Krause, Regina Barzilay:
Learning Graph Models for Template-Free Retrosynthesis. CoRR abs/2006.07038 (2020) - [i110]Max B. Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, Chris J. Maddison:
Gradient Estimation with Stochastic Softmax Tricks. CoRR abs/2006.08063 (2020) - [i109]Sebastian Curi, Felix Berkenkamp, Andreas Krause:
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning. CoRR abs/2006.08684 (2020) - [i108]Lenart Treven, Sebastian Curi, Mojmir Mutny, Andreas Krause:
Learning Controllers for Unstable Linear Quadratic Regulators from a Single Trajectory. CoRR abs/2006.11022 (2020) - [i107]Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, Alekh Agarwal:
Safe Reinforcement Learning via Curriculum Induction. CoRR abs/2006.12136 (2020) - [i106]Yatao Bian, Joachim M. Buhmann, Andreas Krause:
Continuous Submodular Function Maximization. CoRR abs/2006.13474 (2020) - [i105]Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett:
Stochastic Linear Bandits Robust to Adversarial Attacks. CoRR abs/2007.03285 (2020) - [i104]Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause:
Learning to Play Sequential Games versus Unknown Opponents. CoRR abs/2007.05271 (2020) - [i103]Chris Wendler, Andisheh Amrollahi, Bastian Seifert, Andreas Krause, Markus Püschel:
Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases. CoRR abs/2010.00439 (2020) - [i102]Max B. Paulus, Chris J. Maddison, Andreas Krause:
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator. CoRR abs/2010.04838 (2020) - [i101]Zalán Borsos, Marco Tagliasacchi, Andreas Krause:
Semi-supervised Batch Active Learning via Bilevel Optimization. CoRR abs/2010.09654 (2020) - [i100]Mohammad Reza Karimi, Nezihe Merve Gürel, Bojan Karlas, Johannes Rausch, Ce Zhang, Andreas Krause:
Online Active Model Selection for Pre-trained Classifiers. CoRR abs/2010.09818 (2020) - [i99]Joan Bas-Serrano, Sebastian Curi, Andreas Krause, Gergely Neu:
Logistic $Q$-Learning. CoRR abs/2010.11151 (2020)
2010 – 2019
- 2019
- [j29]Veselin Raychev, Martin T. Vechev, Andreas Krause:
Predicting program properties from 'big code'. Commun. ACM 62(3): 99-107 (2019) - [j28]Felix Berkenkamp, Angela P. Schoellig, Andreas Krause:
No-Regret Bayesian Optimization with Unknown Hyperparameters. J. Mach. Learn. Res. 20: 50:1-50:24 (2019) - [c170]Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico S. Gorbach, Andreas Krause, Joachim M. Buhmann:
Fast Gaussian process based gradient matching for parameter identification in systems of nonlinear ODEs. AISTATS 2019: 1351-1360 - [c169]Kfir Y. Levy, Andreas Krause:
Projection Free Online Learning over Smooth Sets. AISTATS 2019: 1458-1466 - [c168]Pier Giuseppe Sessa, Maryam Kamgarpour, Andreas Krause:
Bounding Inefficiency of Equilibria in Continuous Actions Games using Submodularity and Curvature. AISTATS 2019: 2017-2027 - [c167]Ilnura Usmanova, Andreas Krause, Maryam Kamgarpour:
Safe Convex Learning under Uncertain Constraints. AISTATS 2019: 2106-2114 - [c166]Mohammad Reza Karimi Jaghargh, Andreas Krause, Silvio Lattanzi, Sergei Vassilvitskii:
Consistent Online Optimization: Convex and Submodular. AISTATS 2019: 2241-2250 - [c165]Sebastian Curi, Kfir Y. Levy, Andreas Krause:
Adaptive Input Estimation in Linear Dynamical Systems with Applications to Learning-from-Observations. CDC 2019: 4115-4120 - [c164]Robin Spiess, Felix Berkenkamp, Andreas Krause, Jan Poland:
Learning to Compensate Photovoltaic Power Fluctuations from Images of the Sky by Imitating an Optimal Policy. ECC 2019: 9-15 - [c163]Hoda Heidari, Michele Loi, Krishna P. Gummadi, Andreas Krause:
A Moral Framework for Understanding Fair ML through Economic Models of Equality of Opportunity. FAT 2019: 181-190 - [c162]Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, Andreas Krause:
Information-Directed Exploration for Deep Reinforcement Learning. ICLR (Poster) 2019 - [c161]Gabriele Abbati, Philippe Wenk, Michael A. Osborne, Andreas Krause, Bernhard Schölkopf, Stefan Bauer:
AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs. ICML 2019: 1-10 - [c160]Yatao An Bian, Joachim M. Buhmann, Andreas Krause:
Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference. ICML 2019: 644-653 - [c159]Zalán Borsos, Sebastian Curi, Kfir Yehuda Levy, Andreas Krause:
Online Variance Reduction with Mixtures. ICML 2019: 705-714 - [c158]Charlotte Bunne, David Alvarez-Melis, Andreas Krause, Stefanie Jegelka:
Learning Generative Models across Incomparable Spaces. ICML 2019: 851-861 - [c157]Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, Andreas Krause:
Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces. ICML 2019: 3429-3438 - [c156]Majed El Helou, Stephan Mandt, Andreas Krause, Paul A. Beardsley:
Mobile Robotic Painting of Texture. ICRA 2019: 640-647 - [c155]Marcello Fiducioso, Sebastian Curi, Benedikt Schumacher, Markus Gwerder, Andreas Krause:
Safe Contextual Bayesian Optimization for Sustainable Room Temperature PID Control Tuning. IJCAI 2019: 5850-5856 - [c154]Megha Srivastava, Hoda Heidari, Andreas Krause:
Mathematical Notions vs. Human Perception of Fairness: A Descriptive Approach to Fairness for Machine Learning. KDD 2019: 2459-2468 - [c153]Matteo Turchetta, Felix Berkenkamp, Andreas Krause:
Safe Exploration for Interactive Machine Learning. NeurIPS 2019: 2887-2897 - [c152]Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla:
Teaching Multiple Concepts to a Forgetful Learner. NeurIPS 2019: 4050-4060 - [c151]Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi:
Adaptive Sequence Submodularity. NeurIPS 2019: 5353-5364 - [c150]Paulina Grnarova, Kfir Y. Levy, Aurélien Lucchi, Nathanaël Perraudin, Ian Goodfellow, Thomas Hofmann, Andreas Krause:
A Domain Agnostic Measure for Monitoring and Evaluating GANs. NeurIPS 2019: 12069-12079 - [c149]Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause:
No-Regret Learning in Unknown Games with Correlated Payoffs. NeurIPS 2019: 13602-13611 - [c148]Johannes Kirschner, Andreas Krause:
Stochastic Bandits with Context Distributions. NeurIPS 2019: 14090-14099 - [c147]Andisheh Amrollahi, Amir Zandieh, Michael Kapralov, Andreas Krause:
Efficiently Learning Fourier Sparse Set Functions. NeurIPS 2019: 15094-15103 - [i98]Felix Berkenkamp, Angela P. Schoellig, Andreas Krause:
No-regret Bayesian Optimization with Unknown Hyperparameters. CoRR abs/1901.03357 (2019) - [i97]Johannes Kirschner, Mojmír Mutný, Nicole Hiller, Rasmus Ischebeck, Andreas Krause:
Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces. CoRR abs/1902.03229 (2019) - [i96]Megha Srivastava, Hoda Heidari, Andreas Krause:
Mathematical Notions vs. Human Perception of Fairness: A Descriptive Approach to Fairness for Machine Learning. CoRR abs/1902.04783 (2019) - [i95]Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi:
Adaptive Sequence Submodularity. CoRR abs/1902.05981 (2019) - [i94]Philippe Wenk, Gabriele Abbati, Stefan Bauer, Michael A. Osborne, Andreas Krause, Bernhard Schölkopf:
ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems. CoRR abs/1902.06278 (2019) - [i93]Pragnya Alatur, Kfir Y. Levy, Andreas Krause:
Multi-Player Bandits: The Adversarial Case. CoRR abs/1902.08036 (2019) - [i92]Gabriele Abbati, Philippe Wenk, Stefan Bauer, Michael A. Osborne, Andreas Krause, Bernhard Schölkopf:
AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs. CoRR abs/1902.08480 (2019) - [i91]Pier Giuseppe Sessa, Maryam Kamgarpour, Andreas Krause:
Bounding Inefficiency of Equilibria in Continuous Actions Games using Submodularity and Curvature. CoRR abs/1903.00950 (2019) - [i90]Zalán Borsos, Sebastian Curi, Kfir Y. Levy, Andreas Krause:
Online Variance Reduction with Mixtures. CoRR abs/1903.12416 (2019) - [i89]Charlotte Bunne, David Alvarez-Melis, Andreas Krause, Stefanie Jegelka:
Learning Generative Models across Incomparable Spaces. CoRR abs/1905.05461 (2019) - [i88]Johannes Kirschner, Andreas Krause:
Stochastic Bandits with Context Distributions. CoRR abs/1906.02685 (2019) - [i87]Marcello Fiducioso, Sebastian Curi, Benedikt Schumacher, Markus Gwerder, Andreas Krause:
Safe Contextual Bayesian Optimization for Sustainable Room Temperature PID Control Tuning. CoRR abs/1906.12086 (2019) - [i86]Torsten Koller, Felix Berkenkamp, Matteo Turchetta, Joschka Boedecker, Andreas Krause:
Learning-based Model Predictive Control for Safe Exploration and Reinforcement Learning. CoRR abs/1906.12189 (2019) - [i85]Erik A. Daxberger, Anastasia Makarova, Matteo Turchetta, Andreas Krause:
Mixed-Variable Bayesian Optimization. CoRR abs/1907.01329 (2019) - [i84]Silvan Melchior, Felix Berkenkamp, Sebastian Curi, Andreas Krause:
Structured Variational Inference in Unstable Gaussian Process State Space Models. CoRR abs/1907.07035 (2019) - [i83]Jonas Rothfuss, Fábio Ferreira, Simon Boehm, Simon Walther, Maxim Ulrich, Tamim Asfour, Andreas Krause:
Noise Regularization for Conditional Density Estimation. CoRR abs/1907.08982 (2019) - [i82]Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause:
No-Regret Learning in Unknown Games with Correlated Payoffs. CoRR abs/1909.08540 (2019) - [i81]Mojmír Mutný, Michal Derezinski, Andreas Krause:
Convergence Analysis of the Randomized Newton Method with Determinantal Sampling. CoRR abs/1910.11561 (2019) - [i80]Sebastian Curi, Kfir Y. Levy, Stefanie Jegelka, Andreas Krause:
Adaptive Sampling for Stochastic Risk-Averse Learning. CoRR abs/1910.12511 (2019) - [i79]Matteo Turchetta, Andreas Krause, Sebastian Trimpe:
Robust Model-free Reinforcement Learning with Multi-objective Bayesian Optimization. CoRR abs/1910.13399 (2019) - [i78]Matteo Turchetta, Felix Berkenkamp, Andreas Krause:
Safe Exploration for Interactive Machine Learning. CoRR abs/1910.13726 (2019) - [i77]Mohammad Yaghini, Hoda Heidari, Andreas Krause:
A Human-in-the-loop Framework to Construct Context-dependent Mathematical Formulations of Fairness. CoRR abs/1911.03020 (2019) - [i76]Ilnura Usmanova, Andreas Krause, Maryam Kamgarpour:
Safe non-smooth black-box optimization with application to policy search. CoRR abs/1912.09466 (2019) - [i75]Ilnura Usmanova, Andreas Krause, Maryam Kamgarpour:
Log Barriers for Safe Non-convex Black-box Optimization. CoRR abs/1912.09478 (2019) - 2018
- [j27]Eric Schulz, Charley M. Wu, Quentin J. M. Huys, Andreas Krause, Maarten Speekenbrink:
Generalization and Search in Risky Environments. Cogn. Sci. 42(8): 2592-2620 (2018) - [j26]Mark Pfeiffer, Samarth Shukla, Matteo Turchetta, Cesar Cadena, Andreas Krause, Roland Siegwart, Juan I. Nieto:
Reinforced Imitation: Sample Efficient Deep Reinforcement Learning for Mapless Navigation by Leveraging Prior Demonstrations. IEEE Robotics Autom. Lett. 3(4): 4423-4430 (2018) - [c146]Jens Witkowski, Rupert Freeman, Jennifer Wortman Vaughan, David M. Pennock, Andreas Krause:
Incentive-Compatible Forecasting Competitions. AAAI 2018: 1282-1289 - [c145]Baharan Mirzasoleiman, Stefanie Jegelka, Andreas Krause:
Streaming Non-Monotone Submodular Maximization: Personalized Video Summarization on the Fly. AAAI 2018: 1379-1386 - [c144]Goran Radanovic, Adish Singla, Andreas Krause, Boi Faltings:
Information Gathering With Peers: Submodular Optimization With Peer-Prediction Constraints. AAAI 2018: 1603-1610 - [c143]Christoph Hirnschall, Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Learning User Preferences to Incentivize Exploration in the Sharing Economy. AAAI 2018: 2248-2256 - [c142]Adish Singla, Seyed Hamed Hassani, Andreas Krause:
Learning to Interact With Learning Agents. AAAI 2018: 4083-4090 - [c141]Marko Mitrovic, Moran Feldman, Andreas Krause, Amin Karbasi:
Submodularity on Hypergraphs: From Sets to Sequences. AISTATS 2018: 1177-1184 - [c140]Torsten Koller, Felix Berkenkamp, Matteo Turchetta, Andreas Krause:
Learning-Based Model Predictive Control for Safe Exploration. CDC 2018: 6059-6066 - [c139]Zalan Borsos, Andreas Krause, Kfir Y. Levy:
Online Variance Reduction for Stochastic Optimization. COLT 2018: 324-357 - [c138]Johannes Kirschner, Andreas Krause:
Information Directed Sampling and Bandits with Heteroscedastic Noise. COLT 2018: 358-384 - [c137]Spencer M. Richards, Felix Berkenkamp, Andreas Krause:
The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamical Systems. CoRL 2018: 466-476 - [c136]Paulina Grnarova, Kfir Y. Levy, Aurélien Lucchi, Thomas Hofmann, Andreas Krause:
An Online Learning Approach to Generative Adversarial Networks. ICLR (Poster) 2018 - [c135]Hoda Heidari, Andreas Krause:
Preventing Disparate Treatment in Sequential Decision Making. IJCAI 2018: 2248-2254 - [c134]Sebastian Tschiatschek, Aytunc Sahin, Andreas Krause:
Differentiable Submodular Maximization. IJCAI 2018: 2731-2738 - [c133]Olivier Bachem, Mario Lucic, Andreas Krause:
Scalable k -Means Clustering via Lightweight Coresets. KDD 2018: 1119-1127 - [c132]Hoda Heidari, Claudio Ferrari, Krishna P. Gummadi, Andreas Krause:
Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making. NeurIPS 2018: 1273-1283 - [c131]Josip Djolonga, Stefanie Jegelka, Andreas Krause:
Provable Variational Inference for Constrained Log-Submodular Models. NeurIPS 2018: 2702-2712 - [c130]Mojmir Mutny, Andreas Krause:
Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features. NeurIPS 2018: 9019-9030 - [c129]Alkis Gotovos, S. Hamed Hassani, Andreas Krause, Stefanie Jegelka:
Discrete Sampling using Semigradient-based Product Mixtures. UAI 2018: 229-237 - [c128]Sebastian Tschiatschek, Adish Singla, Manuel Gomez-Rodriguez, Arpit Merchant, Andreas Krause:
Fake News Detection in Social Networks via Crowd Signals. WWW (Companion Volume) 2018: 517-524 - [e1]Jennifer G. Dy, Andreas Krause:
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine Learning Research 80, PMLR 2018 [contents] - [i74]Zalán Borsos, Andreas Krause, Kfir Y. Levy:
Online Variance Reduction for Stochastic Optimization. CoRR abs/1802.04715 (2018) - [i73]Marko Mitrovic, Moran Feldman, Andreas Krause, Amin Karbasi:
Submodularity on Hypergraphs: From Sets to Sequences. CoRR abs/1802.09110 (2018) - [i72]Sebastian Tschiatschek, Aytunc Sahin, Andreas Krause:
Differentiable Submodular Maximization. CoRR abs/1803.01785 (2018) - [i71]Torsten Koller, Felix Berkenkamp, Matteo Turchetta, Andreas Krause:
Learning-based Model Predictive Control for Safe Exploration and Reinforcement Learning. CoRR abs/1803.08287 (2018) - [i70]Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico S. Gorbach, Andreas Krause, Joachim M. Buhmann:
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs. CoRR abs/1804.04378 (2018) - [i69]Mark Pfeiffer, Samarth Shukla, Matteo Turchetta, Cesar Cadena, Andreas Krause, Roland Siegwart, Juan I. Nieto:
Reinforced Imitation: Sample Efficient Deep Reinforcement Learning for Map-less Navigation by Leveraging Prior Demonstrations. CoRR abs/1805.07095 (2018) - [i68]An Bian, Joachim M. Buhmann, Andreas Krause:
Optimal DR-Submodular Maximization and Applications to Provable Mean Field Inference. CoRR abs/1805.07482 (2018) - [i67]Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez-Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla:
Teaching Multiple Concepts to Forgetful Learners. CoRR abs/1805.08322 (2018) - [i66]Hoda Heidari, Claudio Ferrari, Krishna P. Gummadi, Andreas Krause:
Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making. CoRR abs/1806.04959 (2018) - [i65]Sebastian Curi, Kfir Y. Levy, Andreas Krause:
Unsupervised Imitation Learning. CoRR abs/1806.07200 (2018) - [i64]Alkis Gotovos, S. Hamed Hassani, Andreas Krause, Stefanie Jegelka:
Discrete Sampling using Semigradient-based Product Mixtures. CoRR abs/1807.01808 (2018) - [i63]Spencer M. Richards, Felix Berkenkamp, Andreas Krause:
The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamic Systems. CoRR abs/1808.00924 (2018) - [i62]Hoda Heidari, Michele Loi, Krishna P. Gummadi, Andreas Krause:
A Moral Framework for Understanding of Fair ML through Economic Models of Equality of Opportunity. CoRR abs/1809.03400 (2018) - [i61]Paulina Grnarova, Kfir Y. Levy, Aurélien Lucchi, Nathanaël Perraudin, Thomas Hofmann, Andreas Krause:
Evaluating GANs via Duality. CoRR abs/1811.05512 (2018) - [i60]Robin Spiess, Felix Berkenkamp, Jan Poland, Andreas Krause:
Learning to Compensate Photovoltaic Power Fluctuations from Images of the Sky by Imitating an Optimal Policy. CoRR abs/1811.05788 (2018) - [i59]Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, Andreas Krause:
Information-Directed Exploration for Deep Reinforcement Learning. CoRR abs/1812.07544 (2018) - 2017
- [j25]Mario Lucic, Matthew Faulkner, Andreas Krause, Dan Feldman:
Training Gaussian Mixture Models at Scale via Coresets. J. Mach. Learn. Res. 18: 160:1-160:25 (2017) - [c127]Jens Witkowski, Pavel Atanasov, Lyle H. Ungar, Andreas Krause:
Proper Proxy Scoring Rules. AAAI 2017: 743-749 - [c126]Sebastian Tschiatschek, Adish Singla, Andreas Krause:
Selecting Sequences of Items via Submodular Maximization. AAAI 2017: 2667-2673 - [c125]Andrew An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, Andreas Krause:
Guaranteed Non-convex Optimization: Submodular Maximization over Continuous Domains. AISTATS 2017: 111-120 - [c124]Yuxin Chen, Seyed Hamed Hassani, Andreas Krause:
Near-optimal Bayesian Active Learning with Correlated and Noisy Tests. AISTATS 2017: 223-231 - [c123]Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause:
Uniform Deviation Bounds for k-Means Clustering. ICML 2017: 283-291 - [c122]Olivier Bachem, Mario Lucic, Andreas Krause:
Distributed and Provably Good Seedings for k-Means in Constant Rounds. ICML 2017: 292-300 - [c121]Andrew An Bian, Joachim M. Buhmann, Andreas Krause, Sebastian Tschiatschek:
Guarantees for Greedy Maximization of Non-submodular Functions with Applications. ICML 2017: 498-507 - [c120]Baharan Mirzasoleiman, Amin Karbasi, Andreas Krause:
Deletion-Robust Submodular Maximization: Data Summarization with "the Right to be Forgotten". ICML 2017: 2449-2458 - [c119]Marko Mitrovic, Mark Bun, Andreas Krause, Amin Karbasi:
Differentially Private Submodular Maximization: Data Summarization in Disguise. ICML 2017: 2478-2487 - [c118]Serban Stan, Morteza Zadimoghaddam, Andreas Krause, Amin Karbasi:
Probabilistic Submodular Maximization in Sub-Linear Time. ICML 2017: 3241-3250 - [c117]Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P. Schoellig, Andreas Krause, Stefan Schaal, Sebastian Trimpe:
Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization. ICRA 2017: 1557-1563 - [c116]Lin Chen, Andreas Krause, Amin Karbasi:
Interactive Submodular Bandit. NIPS 2017: 141-152 - [c115]An Bian, Kfir Yehuda Levy, Andreas Krause, Joachim M. Buhmann:
Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms. NIPS 2017: 486-496 - [c114]Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, Andreas Krause:
Safe Model-based Reinforcement Learning with Stability Guarantees. NIPS 2017: 908-918 - [c113]Josip Djolonga, Andreas Krause:
Differentiable Learning of Submodular Functions. NIPS 2017: 1013-1023 - [c112]Mohammad Reza Karimi, Mario Lucic, S. Hamed Hassani, Andreas Krause:
Stochastic Submodular Maximization: The Case of Coverage Functions. NIPS 2017: 6853-6863 - [c111]Yuxin Chen, Jean-Michel Renders, Morteza Haghir Chehreghani, Andreas Krause:
Efficient Online Learning for Optimizing Value of Information: Theory and Application to Interactive Troubleshooting. UAI 2017 - [c110]Junyao Zhao, Josip Djolonga, Sebastian Tschiatschek, Andreas Krause:
Improving Optimization-Based Approximate Inference by Clamping Variables. UAI 2017 - [i58]Christoph Hirnschall, Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Coordinated Online Learning With Applications to Learning User Preferences. CoRR abs/1702.02849 (2017) - [i57]Adish Singla, Seyed Hamed Hassani, Andreas Krause:
Learning to Use Learners' Advice. CoRR abs/1702.04825 (2017) - [i56]Olivier Bachem, Mario Lucic, Andreas Krause:
Scalable and Distributed Clustering via Lightweight Coresets. CoRR abs/1702.08248 (2017) - [i55]Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause:
Uniform Deviation Bounds for Unbounded Loss Functions like k-Means. CoRR abs/1702.08249 (2017) - [i54]Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P. Schoellig, Andreas Krause, Stefan Schaal, Sebastian Trimpe:
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization. CoRR abs/1703.01250 (2017) - [i53]Andrew An Bian, Joachim M. Buhmann, Andreas Krause, Sebastian Tschiatschek:
Guarantees for Greedy Maximization of Non-submodular Functions with Applications. CoRR abs/1703.02100 (2017) - [i52]Yuxin Chen, Jean-Michel Renders, Morteza Haghir Chehreghani, Andreas Krause:
Efficient Online Learning for Optimizing Value of Information: Theory and Application to Interactive Troubleshooting. CoRR abs/1703.05452 (2017) - [i51]Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, Andreas Krause:
Safe Model-based Reinforcement Learning with Stability Guarantees. CoRR abs/1705.08551 (2017) - [i50]Paulina Grnarova, Kfir Y. Levy, Aurélien Lucchi, Thomas Hofmann, Andreas Krause:
An Online Learning Approach to Generative Adversarial Networks. CoRR abs/1706.03269 (2017) - [i49]Baharan Mirzasoleiman, Stefanie Jegelka, Andreas Krause:
Streaming Non-monotone Submodular Maximization: Personalized Video Summarization on the Fly. CoRR abs/1706.03583 (2017) - [i48]Josip Djolonga, Andreas Krause:
Learning Implicit Generative Models Using Differentiable Graph Tests. CoRR abs/1709.01006 (2017) - [i47]Mohammad Reza Karimi, Mario Lucic, S. Hamed Hassani, Andreas Krause:
Stochastic Submodular Maximization: The Case of Coverage Functions. CoRR abs/1711.01566 (2017) - [i46]An Bian, Kfir Y. Levy, Andreas Krause, Joachim M. Buhmann:
Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms. CoRR abs/1711.02515 (2017) - [i45]Goran Radanovic, Adish Singla, Andreas Krause, Boi Faltings:
Information Gathering with Peers: Submodular Optimization with Peer-Prediction Constraints. CoRR abs/1711.06740 (2017) - [i44]Christoph Hirnschall, Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Learning User Preferences to Incentivize Exploration in the Sharing Economy. CoRR abs/1711.08331 (2017) - [i43]Sebastian Tschiatschek, Adish Singla, Manuel Gomez-Rodriguez, Arpit Merchant, Andreas Krause:
Detecting Fake News in Social Networks via Crowdsourcing. CoRR abs/1711.09025 (2017) - [i42]Sanjit A. Seshia, Xiaojin (Jerry) Zhu, Andreas Krause, Susmit Jha:
Machine Learning and Formal Method (Dagstuhl Seminar 17351). Dagstuhl Reports 7(8): 55-73 (2017) - 2016
- [j24]Marcela Zuluaga, Andreas Krause, Markus Püschel:
e-PAL: An Active Learning Approach to the Multi-Objective Optimization Problem. J. Mach. Learn. Res. 17: 104:1-104:32 (2016) - [j23]Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause:
Distributed Submodular Maximization. J. Mach. Learn. Res. 17: 238:1-238:44 (2016) - [c109]Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause:
Approximate K-Means++ in Sublinear Time. AAAI 2016: 1459-1467 - [c108]Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization. AAAI 2016: 2037-2043 - [c107]Mario Lucic, Olivier Bachem, Andreas Krause:
Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures. AISTATS 2016: 1-9 - [c106]Hemant Tyagi, Anastasios Kyrillidis, Bernd Gärtner, Andreas Krause:
Learning Sparse Additive Models with Interactions in High Dimensions. AISTATS 2016: 111-120 - [c105]Sebastian Tschiatschek, Josip Djolonga, Andreas Krause:
Learning Probabilistic Submodular Diversity Models Via Noise Contrastive Estimation. AISTATS 2016: 770-779 - [c104]Felix Berkenkamp, Riccardo Moriconi, Angela P. Schoellig, Andreas Krause:
Safe learning of regions of attraction for uncertain, nonlinear systems with Gaussian processes. CDC 2016: 4661-4666 - [c103]Eric Schulz, Quentin J. M. Huys, Dominik R. Bach, Maarten Speekenbrink, Andreas Krause:
Better safe than sorry: Risky function exploitation through safe optimization. CogSci 2016 - [c102]Matthias Solèr, Jean-Charles Bazin, Oliver Wang, Andreas Krause, Alexander Sorkine-Hornung:
Suggesting Sounds for Images from Video Collections. ECCV Workshops (2) 2016: 900-917 - [c101]Hany Abdelrahman, Felix Berkenkamp, Jan Poland, Andreas Krause:
Bayesian optimization for maximum power point tracking in photovoltaic power plants. ECC 2016: 2078-2083 - [c100]Besmira Nushi, Adish Singla, Andreas Krause, Donald Kossmann:
Learning and Feature Selection under Budget Constraints in Crowdsourcing. HCOMP 2016: 159-168 - [c99]Yuyin Sun, Adish Singla, Tori Qiao Yan, Andreas Krause, Dieter Fox:
Evaluating Task-Dependent Taxonomies for Navigation. HCOMP 2016: 229-238 - [c98]Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Actively Learning Hemimetrics with Applications to Eliciting User Preferences. ICML 2016: 412-420 - [c97]Eric Balkanski, Baharan Mirzasoleiman, Andreas Krause, Yaron Singer:
Learning Sparse Combinatorial Representations via Two-stage Submodular Maximization. ICML 2016: 2207-2216 - [c96]Mario Lucic, Olivier Bachem, Morteza Zadimoghaddam, Andreas Krause:
Horizontally Scalable Submodular Maximization. ICML 2016: 2981-2989 - [c95]Felix Berkenkamp, Angela P. Schoellig, Andreas Krause:
Safe controller optimization for quadrotors with Gaussian processes. ICRA 2016: 491-496 - [c94]Mario Lucic, Olivier Bachem, Andreas Krause:
Linear-Time Outlier Detection via Sensitivity. IJCAI 2016: 1795-1801 - [c93]Olivier Bachem, Mario Lucic, Seyed Hamed Hassani, Andreas Krause:
Fast and Provably Good Seedings for k-Means. NIPS 2016: 55-63 - [c92]Josip Djolonga, Stefanie Jegelka, Sebastian Tschiatschek, Andreas Krause:
Cooperative Graphical Models. NIPS 2016: 262-270 - [c91]Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, Volkan Cevher:
Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation. NIPS 2016: 1507-1515 - [c90]Josip Djolonga, Sebastian Tschiatschek, Andreas Krause:
Variational Inference in Mixed Probabilistic Submodular Models. NIPS 2016: 1759-1767 - [c89]Matteo Turchetta, Felix Berkenkamp, Andreas Krause:
Safe Exploration in Finite Markov Decision Processes with Gaussian Processes. NIPS 2016: 4305-4313 - [c88]Veselin Raychev, Pavol Bielik, Martin T. Vechev, Andreas Krause:
Learning programs from noisy data. POPL 2016: 761-774 - [i41]Eric Schulz, Quentin J. M. Huys, Dominik R. Bach, Maarten Speekenbrink, Andreas Krause:
Better safe than sorry: Risky function exploitation through safe optimization. CoRR abs/1602.01052 (2016) - [i40]Felix Berkenkamp, Andreas Krause, Angela P. Schoellig:
Bayesian Optimization with Safety Constraints: Safe and Automatic Parameter Tuning in Robotics. CoRR abs/1602.04450 (2016) - [i39]Felix Berkenkamp, Riccardo Moriconi, Angela P. Schoellig, Andreas Krause:
Safe Learning of Regions of Attraction for Uncertain, Nonlinear Systems with Gaussian Processes. CoRR abs/1603.04915 (2016) - [i38]Hemant Tyagi, Anastasios Kyrillidis, Bernd Gärtner, Andreas Krause:
Learning Sparse Additive Models with Interactions in High Dimensions. CoRR abs/1604.05307 (2016) - [i37]Mario Lucic, Olivier Bachem, Andreas Krause:
Linear-time Outlier Detection via Sensitivity. CoRR abs/1605.00519 (2016) - [i36]Mario Lucic, Mesrob I. Ohannessian, Amin Karbasi, Andreas Krause:
Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning. CoRR abs/1605.00529 (2016) - [i35]Hemant Tyagi, Anastasios Kyrillidis, Bernd Gärtner, Andreas Krause:
Algorithms for Learning Sparse Additive Models with Interactions in High Dimensions. CoRR abs/1605.00609 (2016) - [i34]Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Actively Learning Hemimetrics with Applications to Eliciting User Preferences. CoRR abs/1605.07144 (2016) - [i33]Yuxin Chen, S. Hamed Hassani, Andreas Krause:
Near-optimal Bayesian Active Learning with Correlated and Noisy Tests. CoRR abs/1605.07334 (2016) - [i32]Mario Lucic, Olivier Bachem, Morteza Zadimoghaddam, Andreas Krause:
Horizontally Scalable Submodular Maximization. CoRR abs/1605.09619 (2016) - [i31]Matteo Turchetta, Felix Berkenkamp, Andreas Krause:
Safe Exploration in Finite Markov Decision Processes with Gaussian Processes. CoRR abs/1606.04753 (2016) - [i30]Andrew An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, Andreas Krause:
Guaranteed Non-convex Optimization: Submodular Maximization over Continuous Domains. CoRR abs/1606.05615 (2016) - [i29]Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, Volkan Cevher:
Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation. CoRR abs/1610.07379 (2016) - 2015
- [j22]Peter Trautman, Jeremy Ma, Richard M. Murray, Andreas Krause:
Robot navigation in dense human crowds: Statistical models and experimental studies of human-robot cooperation. Int. J. Robotics Res. 34(3): 335-356 (2015) - [c87]Adish Singla, Marco Santoni, Gábor Bartók, Pratik Mukerji, Moritz Meenen, Andreas Krause:
Incentivizing Users for Balancing Bike Sharing Systems. AAAI 2015: 723-729 - [c86]Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, Andreas Krause:
Lazier Than Lazy Greedy. AAAI 2015: 1812-1818 - [c85]Yuxin Chen, Shervin Javdani, Amin Karbasi, J. Andrew Bagnell, Siddhartha S. Srinivasa, Andreas Krause:
Submodular Surrogates for Value of Information. AAAI 2015: 3511-3518 - [c84]Mario Lucic, Mesrob I. Ohannessian, Amin Karbasi, Andreas Krause:
Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning. AISTATS 2015 - [c83]Yuxin Chen, S. Hamed Hassani, Amin Karbasi, Andreas Krause:
Sequential Information Maximization: When is Greedy Near-optimal? COLT 2015: 338-363 - [c82]Adish Singla, Eric Horvitz, Pushmeet Kohli, Andreas Krause:
Learning to Hire Teams. HCOMP 2015: 34-35 - [c81]Besmira Nushi, Adish Singla, Anja Gruenheid, Erfan Zamanian, Andreas Krause, Donald Kossmann:
Crowd Access Path Optimization: Diversity Matters. HCOMP 2015: 130-139 - [c80]Jian Zhang, Josip Djolonga, Andreas Krause:
Higher-Order Inference for Multi-class Log-Supermodular Models. ICCV 2015: 1859-1867 - [c79]Olivier Bachem, Mario Lucic, Andreas Krause:
Coresets for Nonparametric Estimation - the Case of DP-Means. ICML 2015: 209-217 - [c78]Yanan Sui, Alkis Gotovos, Joel W. Burdick, Andreas Krause:
Safe Exploration for Optimization with Gaussian Processes. ICML 2015: 997-1005 - [c77]Josip Djolonga, Andreas Krause:
Scalable Variational Inference in Log-supermodular Models. ICML 2015: 1804-1813 - [c76]Lionel Heng, Alkis Gotovos, Andreas Krause, Marc Pollefeys:
Efficient visual exploration and coverage with a micro aerial vehicle in unknown environments. ICRA 2015: 1071-1078 - [c75]Yuyin Sun, Adish Singla, Dieter Fox, Andreas Krause:
Building Hierarchies of Concepts via Crowdsourcing. IJCAI 2015: 844-853 - [c74]Adish Singla, Eric Horvitz, Pushmeet Kohli, Ryen White, Andreas Krause:
Information Gathering in Networks via Active Exploration. IJCAI 2015: 891-988 - [c73]Alkis Gotovos, Amin Karbasi, Andreas Krause:
Non-Monotone Adaptive Submodular Maximization. IJCAI 2015: 1996-2003 - [c72]Hastagiri P. Vanchinathan, Andreas Marfurt, Charles-Antoine Robelin, Donald Kossmann, Andreas Krause:
Discovering Valuable items from Massive Data. KDD 2015: 1195-1204 - [c71]Alkis Gotovos, S. Hamed Hassani, Andreas Krause:
Sampling from Probabilistic Submodular Models. NIPS 2015: 1945-1953 - [c70]Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, Andreas Krause:
Distributed Submodular Cover: Succinctly Summarizing Massive Data. NIPS 2015: 2881-2889 - [c69]Veselin Raychev, Martin T. Vechev, Andreas Krause:
Predicting Program Properties from "Big Code". POPL 2015: 111-124 - [i28]Josip Djolonga, Andreas Krause:
Scalable Variational Inference in Log-supermodular Models. CoRR abs/1502.06531 (2015) - [i27]Adish Singla, Eric Horvitz, Pushmeet Kohli, Ryen W. White, Andreas Krause:
Information Gathering in Networks via Active Exploration. CoRR abs/1504.06423 (2015) - [i26]Yuyin Sun, Adish Singla, Dieter Fox, Andreas Krause:
Building Hierarchies of Concepts via Crowdsourcing. CoRR abs/1504.07302 (2015) - [i25]Hastagiri P. Vanchinathan, Andreas Marfurt, Charles-Antoine Robelin, Donald Kossmann, Andreas Krause:
Discovering Valuable Items from Massive Data. CoRR abs/1506.00935 (2015) - [i24]Besmira Nushi, Adish Singla, Anja Gruenheid, Erfan Zamanian, Andreas Krause, Donald Kossmann:
Crowd Access Path Optimization: Diversity Matters. CoRR abs/1508.01951 (2015) - [i23]Adish Singla, Eric Horvitz, Pushmeet Kohli, Andreas Krause:
Learning to Hire Teams. CoRR abs/1508.02823 (2015) - [i22]Mario Lucic, Olivier Bachem, Andreas Krause:
Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures. CoRR abs/1508.05243 (2015) - [i21]Felix Berkenkamp, Angela P. Schoellig, Andreas Krause:
Safe Controller Optimization for Quadrotors with Gaussian Processes. CoRR abs/1509.01066 (2015) - [i20]Adish Singla, Sebastian Tschiatschek, Andreas Krause:
Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization. CoRR abs/1511.07211 (2015) - 2014
- [j21]Andreas Krause, Daniel Golovin, Sarah J. Converse:
Sequential Decision Making in Computational Sustainability via Adaptive Submodularity. AI Mag. 35(2): 8-18 (2014) - [j20]Matthew Faulkner, Robert Clayton, Thomas Heaton, K. Mani Chandy, Monica Kohler, Julian J. Bunn, Richard Guy, Annie H. Liu, Michael Olson, MingHei Cheng, Andreas Krause:
Community sense and response systems: your phone as quake detector. Commun. ACM 57(7): 66-75 (2014) - [j19]Thomas Desautels, Andreas Krause, Joel W. Burdick:
Parallelizing exploration-exploitation tradeoffs in Gaussian process bandit optimization. J. Mach. Learn. Res. 15(1): 3873-3923 (2014) - [c68]Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, Drew Bagnell, Siddhartha S. Srinivasa:
Near Optimal Bayesian Active Learning for Decision Making. AISTATS 2014: 430-438 - [c67]Adish Singla, Ian Lienert, Gábor Bartók, Andreas Krause:
Contextual Procurement in Online Crowdsourcing Markets. HCOMP 2014: 58-59 - [c66]Yuxin Chen, Hiroaki Shioi, Cesar Fuentes Montesinos, Lian Pin Koh, Serge A. Wich, Andreas Krause:
Active Detection via Adaptive Submodularity. ICML 2014: 55-63 - [c65]Adish Singla, Ilija Bogunovic, Gábor Bartók, Amin Karbasi, Andreas Krause:
Near-Optimally Teaching the Crowd to Classify. ICML 2014: 154-162 - [c64]Gregory Hitz, Alkis Gotovos, François Pomerleau, Marie-Eve Garneau, Cédric Pradalier, Andreas Krause, Roland Yves Siegwart:
Fully autonomous focused exploration for robotic environmental monitoring. ICRA 2014: 2658-2664 - [c63]Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, Andreas Krause:
Streaming submodular maximization: massive data summarization on the fly. KDD 2014: 671-680 - [c62]Josip Djolonga, Andreas Krause:
From MAP to Marginals: Variational Inference in Bayesian Submodular Models. NIPS 2014: 244-252 - [c61]Hemant Tyagi, Bernd Gärtner, Andreas Krause:
Efficient Sampling for Learning Sparse Additive Models in High Dimensions. NIPS 2014: 514-522 - [c60]Hastagiri P. Vanchinathan, Gábor Bartók, Andreas Krause:
Efficient Partial Monitoring with Prior Information. NIPS 2014: 1691-1699 - [c59]Andreas Krause:
Community sense-and-response systems: Your phone as seismometer. PerCom Workshops 2014: 394 - [c58]Hastagiri P. Vanchinathan, Isidor Nikolic, Fabio De Bona, Andreas Krause:
Explore-exploit in top-N recommender systems via Gaussian processes. RecSys 2014: 225-232 - [p1]Andreas Krause, Daniel Golovin:
Submodular Function Maximization. Tractability 2014: 71-104 - [i19]Amarjeet Singh, Andreas Krause, Carlos Guestrin, William J. Kaiser:
Efficient Informative Sensing using Multiple Robots. CoRR abs/1401.3462 (2014) - [i18]Andreas Krause, Carlos Guestrin:
Optimal Value of Information in Graphical Models. CoRR abs/1401.3474 (2014) - [i17]Andreas Krause, Eric Horvitz:
A Utility-Theoretic Approach to Privacy in Online Services. CoRR abs/1401.3859 (2014) - [i16]Adish Singla, Ilija Bogunovic, Gábor Bartók, Amin Karbasi, Andreas Krause:
Near-Optimally Teaching the Crowd to Classify. CoRR abs/1402.2092 (2014) - [i15]Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, J. Andrew Bagnell, Siddhartha S. Srinivasa:
Near Optimal Bayesian Active Learning for Decision Making. CoRR abs/1402.5886 (2014) - [i14]Daniel Golovin, Andreas Krause, Matthew J. Streeter:
Online Submodular Maximization under a Matroid Constraint with Application to Learning Assignments. CoRR abs/1407.1082 (2014) - [i13]Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, Andreas Krause:
Lazier Than Lazy Greedy. CoRR abs/1409.7938 (2014) - [i12]Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause:
Distributed Submodular Maximization. CoRR abs/1411.0541 (2014) - 2013
- [j18]Jonathan Binney, Andreas Krause, Gaurav S. Sukhatme:
Optimizing waypoints for monitoring spatiotemporal phenomena. Int. J. Robotics Res. 32(8): 873-888 (2013) - [j17]Philip A. Romero, Andreas Krause, Frances H. Arnold:
Navigating the protein fitness landscape with Gaussian processes. Proc. Natl. Acad. Sci. USA 110(3): E193-E201 (2013) - [c57]Andreas Krause:
Submodularity in Machine Learning and Vision. BMVC 2013 - [c56]Adish Singla, Andreas Krause:
Incentives for Privacy Tradeoff in Community Sensing. HCOMP 2013: 165-173 - [c55]Yuxin Chen, Andreas Krause:
Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization. ICML (1) 2013: 160-168 - [c54]Marcela Zuluaga, Guillaume Sergent, Andreas Krause, Markus Püschel:
Active Learning for Multi-Objective Optimization. ICML (1) 2013: 462-470 - [c53]Peter Trautman, Jeremy Ma, Richard M. Murray, Andreas Krause:
Robot navigation in dense human crowds: the case for cooperation. ICRA 2013: 2153-2160 - [c52]Alkis Gotovos, Nathalie Casati, Gregory Hitz, Andreas Krause:
Active Learning for Level Set Estimation. IJCAI 2013: 1344-1350 - [c51]Matthew Faulkner, Annie H. Liu, Andreas Krause:
A fresh perspective: learning to sparsify for detection in massive noisy sensor networks. IPSN 2013: 7-18 - [c50]Maximilian Beinhofer, Jörg Müller, Andreas Krause, Wolfram Burgard:
Robust landmark selection for mobile robot navigation. IROS 2013: 3637-2643 - [c49]Josip Djolonga, Andreas Krause, Volkan Cevher:
High-Dimensional Gaussian Process Bandits. NIPS 2013: 1025-1033 - [c48]Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause:
Distributed Submodular Maximization: Identifying Representative Elements in Massive Data. NIPS 2013: 2049-2057 - [c47]Adish Singla, Andreas Krause:
Truthful incentives in crowdsourcing tasks using regret minimization mechanisms. WWW 2013: 1167-1178 - [i11]Mario Paolucci, Donald Kossmann, Rosaria Conte, Paul Lukowicz, Panos Argyrakis, Ann Blandford, Giulia Bonelli, Stuart Anderson, Sara de Freitas, Bruce Edmonds, Nigel Gilbert, Markus H. Gross, Jörn Kohlhammer, Petros Koumoutsakos, Andreas Krause, Björn-Ola Linnér, Philipp Slusallek, Olga Sorkine, Robert W. Sumner, Dirk Helbing:
Towards a living earth simulator. CoRR abs/1304.1903 (2013) - [i10]Adish Singla, Andreas Krause:
Incentives for Privacy Tradeoff in Community Sensing. CoRR abs/1308.4013 (2013) - 2012
- [j16]Niranjan Srinivas, Andreas Krause, Sham M. Kakade, Matthias W. Seeger:
Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting. IEEE Trans. Inf. Theory 58(5): 3250-3265 (2012) - [j15]Manuel Gomez-Rodriguez, Jure Leskovec, Andreas Krause:
Inferring Networks of Diffusion and Influence. ACM Trans. Knowl. Discov. Data 5(4): 21:1-21:37 (2012) - [c46]Bo Chen, Rui M. Castro, Andreas Krause:
Joint Optimization and Variable Selection of High-dimensional Gaussian Processes. ICML 2012 - [c45]Thomas Desautels, Andreas Krause, Joel W. Burdick:
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization. ICML 2012 - [c44]Marcela Zuluaga, Andreas Krause, Peter A. Milder, Markus Püschel:
"Smart" design space sampling to predict Pareto-optimal solutions. LCTES 2012: 119-128 - [c43]Peter Stobbe, Andreas Krause:
Learning Fourier Sparse Set Functions. AISTATS 2012: 1125-1133 - [i9]Andreas Krause, Carlos Guestrin:
Near-optimal Nonmyopic Value of Information in Graphical Models. CoRR abs/1207.1394 (2012) - 2011
- [j14]Daniel Golovin, Andreas Krause:
Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization. J. Artif. Intell. Res. 42: 427-486 (2011) - [j13]Volkan Cevher, Andreas Krause:
Greedy Dictionary Selection for Sparse Representation. IEEE J. Sel. Top. Signal Process. 5(5): 979-988 (2011) - [j12]Andreas Krause, Ram Rajagopal, Anupam Gupta, Carlos Guestrin:
Simultaneous Optimization of Sensor Placements and Balanced Schedules. IEEE Trans. Autom. Control. 56(10): 2390-2405 (2011) - [j11]Andreas Krause, Carlos Guestrin:
Submodularity and its applications in optimized information gathering. ACM Trans. Intell. Syst. Technol. 2(4): 32:1-32:20 (2011) - [j10]Andreas Krause, Carlos Guestrin, Anupam Gupta, Jon M. Kleinberg:
Robust sensor placements at informative and communication-efficient locations. ACM Trans. Sens. Networks 7(4): 31:1-31:33 (2011) - [c42]Daniel Golovin, Andreas Krause, Beth Gardner, Sarah J. Converse, Steve Morey:
Dynamic Resource Allocation in Conservation Planning. AAAI 2011 - [c41]Andreas Krause, Alex Roper, Daniel Golovin:
Randomized Sensing in Adversarial Environments. IJCAI 2011: 2133-2139 - [c40]Matthew Faulkner, Michael Olson, Rishi Chandy, Jonathan Krause, K. Mani Chandy, Andreas Krause:
The next big one: Detecting earthquakes and other rare events from community-based sensors. IPSN 2011: 13-24 - [c39]Matthew Faulkner, Michael Olson, Rishi Chandy, Jonathan Krause, K. Mani Chandy, Andreas Krause:
Demo abstract, the next big one: Detecting earthquakes and other rare events from community-based sensors. IPSN 2011: 121-122 - [c38]Ryan Gomes, Peter Welinder, Andreas Krause, Pietro Perona:
Crowdclustering. NIPS 2011: 558-566 - [c37]Dan Feldman, Matthew Faulkner, Andreas Krause:
Scalable Training of Mixture Models via Coresets. NIPS 2011: 2142-2150 - [c36]Andreas Krause, Cheng Soon Ong:
Contextual Gaussian Process Bandit Optimization. NIPS 2011: 2447-2455 - [i8]Daniel Golovin, Andreas Krause:
Adaptive Submodular Optimization under Matroid Constraints. CoRR abs/1101.4450 (2011) - 2010
- [j9]Andreas Krause, Eric Horvitz:
A Utility-Theoretic Approach to Privacy in Online Services. J. Artif. Intell. Res. 39: 633-662 (2010) - [j8]Andreas Krause:
SFO: A Toolbox for Submodular Function Optimization. J. Mach. Learn. Res. 11: 1141-1144 (2010) - [c35]Daniel Golovin, Andreas Krause:
Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization. COLT 2010: 333-345 - [c34]Ryan Gomes, Andreas Krause:
Budgeted Nonparametric Learning from Data Streams. ICML 2010: 391-398 - [c33]Andreas Krause, Volkan Cevher:
Submodular Dictionary Selection for Sparse Representation. ICML 2010: 567-574 - [c32]Niranjan Srinivas, Andreas Krause, Sham M. Kakade, Matthias W. Seeger:
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010: 1015-1022 - [c31]Jonathan Binney, Andreas Krause, Gaurav S. Sukhatme:
Informative path planning for an autonomous underwater vehicle. ICRA 2010: 4791-4796 - [c30]Daniel Golovin, Matthew Faulkner, Andreas Krause:
Online distributed sensor selection. IPSN 2010: 220-231 - [c29]Peter Trautman, Andreas Krause:
Unfreezing the robot: Navigation in dense, interacting crowds. IROS 2010: 797-803 - [c28]Manuel Gomez-Rodriguez, Jure Leskovec, Andreas Krause:
Inferring networks of diffusion and influence. KDD 2010: 1019-1028 - [c27]Daniel Golovin, Andreas Krause, Debajyoti Ray:
Near-Optimal Bayesian Active Learning with Noisy Observations. NIPS 2010: 766-774 - [c26]Ryan Gomes, Andreas Krause, Pietro Perona:
Discriminative Clustering by Regularized Information Maximization. NIPS 2010: 775-783 - [c25]Peter Stobbe, Andreas Krause:
Efficient Minimization of Decomposable Submodular Functions. NIPS 2010: 2208-2216 - [i7]Daniel Golovin, Matthew Faulkner, Andreas Krause:
Online Distributed Sensor Selection. CoRR abs/1002.1782 (2010) - [i6]Daniel Golovin, Andreas Krause:
Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization. CoRR abs/1003.3967 (2010) - [i5]Manuel Gomez-Rodriguez, Jure Leskovec, Andreas Krause:
Inferring Networks of Diffusion and Influence. CoRR abs/1006.0234 (2010) - [i4]Daniel Golovin, Andreas Krause, Debajyoti Ray:
Near-Optimal Bayesian Active Learning with Noisy Observations. CoRR abs/1010.3091 (2010) - [i3]Peter Stobbe, Andreas Krause:
Efficient Minimization of Decomposable Submodular Functions. CoRR abs/1010.5511 (2010)
2000 – 2009
- 2009
- [j7]Andreas Krause, Carlos Guestrin:
Optimizing Sensing: From Water to the Web. Computer 42(8): 38-45 (2009) - [j6]Amarjeet Singh, Andreas Krause, Carlos Guestrin, William J. Kaiser:
Efficient Informative Sensing using Multiple Robots. J. Artif. Intell. Res. 34: 707-755 (2009) - [j5]Andreas Krause, Carlos Guestrin:
Optimal Value of Information in Graphical Models. J. Artif. Intell. Res. 35: 557-591 (2009) - [c24]Amarjeet Singh, Andreas Krause, William J. Kaiser:
Nonmyopic Adaptive Informative Path Planning for Multiple Robots. IJCAI 2009: 1843-1850 - [c23]Andreas Krause, Ram Rajagopal, Anupam Gupta, Carlos Guestrin:
Simultaneous placement and scheduling of sensors. IPSN 2009: 181-192 - [c22]Matthew J. Streeter, Daniel Golovin, Andreas Krause:
Online Learning of Assignments. NIPS 2009: 1794-1802 - [i2]Daniel Golovin, Andreas Krause, Matthew J. Streeter:
Online Learning of Assignments that Maximize Submodular Functions. CoRR abs/0908.0772 (2009) - [i1]Niranjan Srinivas, Andreas Krause, Sham M. Kakade, Matthias W. Seeger:
Gaussian Process Bandits without Regret: An Experimental Design Approach. CoRR abs/0912.3995 (2009) - 2008
- [j4]Andreas Krause, Ajit Paul Singh, Carlos Guestrin:
Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies. J. Mach. Learn. Res. 9: 235-284 (2008) - [c21]Andreas Krause, Eric Horvitz:
A Utility-Theoretic Approach to Privacy and Personalization. AAAI 2008: 1181-1188 - [c20]Andreas Krause, Eric Horvitz, Aman Kansal, Feng Zhao:
Toward Community Sensing. IPSN 2008: 481-492 - 2007
- [c19]Alexandra Meliou, Andreas Krause, Carlos Guestrin, Joseph M. Hellerstein:
Nonmyopic Informative Path Planning in Spatio-Temporal Models. AAAI 2007: 602-607 - [c18]Andreas Krause, Carlos Guestrin:
Near-optimal Observation Selection using Submodular Functions. AAAI 2007: 1650-1654 - [c17]Andreas Krause, Carlos Guestrin:
Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach. ICML 2007: 449-456 - [c16]Amarjeet Singh, Andreas Krause, Carlos Guestrin, William J. Kaiser, Maxim A. Batalin:
Efficient Planning of Informative Paths for Multiple Robots. IJCAI 2007: 2204-2211 - [c15]Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne M. VanBriesen, Natalie S. Glance:
Cost-effective outbreak detection in networks. KDD 2007: 420-429 - [c14]Andreas Krause, H. Brendan McMahan, Carlos Guestrin, Anupam Gupta:
Selecting Observations against Adversarial Objectives. NIPS 2007: 777-784 - [c13]Bilge Mutlu, Andreas Krause, Jodi Forlizzi, Carlos Guestrin, Jessica K. Hodgins:
Robust, low-cost, non-intrusive sensing and recognition of seated postures. UIST 2007: 149-158 - 2006
- [j3]Andreas Krause, Asim Smailagic, Daniel P. Siewiorek:
Context-Aware Mobile Computing: Learning Context-Dependent Personal Preferences from a Wearable Sensor Array. IEEE Trans. Mob. Comput. 5(2): 113-127 (2006) - [c12]Andreas Krause, Jure Leskovec, Carlos Guestrin:
Data association for topic intensity tracking. ICML 2006: 497-504 - [c11]Andreas Krause, Carlos Guestrin, Anupam Gupta, Jon M. Kleinberg:
Near-optimal sensor placements: maximizing information while minimizing communication cost. IPSN 2006: 2-10 - 2005
- [c10]Carlos Guestrin, Andreas Krause, Ajit Paul Singh:
Near-optimal sensor placements in Gaussian processes. ICML 2005: 265-272 - [c9]Andreas Krause, Carlos Guestrin:
Optimal Nonmyopic Value of Information in Graphical Models - Efficient Algorithms and Theoretical Limits. IJCAI 2005: 1339-1345 - [c8]Andreas Krause, Matthias Ihmig, Edward Rankin, Derek Leong, Smriti Gupta, Daniel P. Siewiorek, Asim Smailagic, Michael Deisher, Uttam Sengupta:
Trading off Prediction Accuracy and Power Consumption for Context-Aware Wearable Computing. ISWC 2005: 20-26 - [c7]Vipul Singhvi, Andreas Krause, Carlos Guestrin, James H. Garrett Jr., H. Scott Matthews:
Intelligent light control using sensor networks. SenSys 2005: 218-229 - [c6]Andreas Krause, Carlos Guestrin:
Near-optimal Nonmyopic Value of Information in Graphical Models. UAI 2005: 324-331 - 2004
- [j2]Harald Meier, Andreas Krause, Markus Kräutner, Arndt Bode:
Development and implementation of a parallel algorithm for the fast design of oligonucleotide probe sets for diagnostic DNA microarrays. Concurr. Pract. Exp. 16(9): 873-893 (2004) - [j1]Andreas Krause, Dominik Hartl, Fabian J. Theis, Manfred Stangl, Klaus-E. Gerauer, Alexander T. Mehlhorn:
Mobile decision support for transplantation patient data. Int. J. Medical Informatics 73(5): 461-464 (2004) - 2003
- [c5]Andreas Krause, Markus Kräutner, Harald Meier:
Accurate Method for Fast Design of Diagnostic Oligonucleotide Probe Sets for DNA Microarrays. IPDPS 2003: 154 - [c4]Andreas Krause, Daniel P. Siewiorek, Asim Smailagic, Jonny Farringdon:
Unsupervised, Dynamic Identification of Physiological and Activity Context in Wearable Computing. ISWC 2003: 88-97 - [c3]Daniel P. Siewiorek, Asim Smailagic, Junichi Furukawa, Andreas Krause, Neema Moraveji, Kathryn Reiger, Jeremy Shaffer, Fei Lung Wong:
SenSay: A Context-Aware Mobile Phone. ISWC 2003: 248-249 - [c2]Andreas Krause, Alexander T. Mehlhorn, Dominik Hartl, V. Riedl, S. Preis, K. Feike, L. Greiner, Klaus-E. Gerauer, Manfred Stangl:
PDA-based decision support and documentation for transplantation surgery data. MoCoMed 2003: 47-51 - [c1]K. Heiss, Andreas Krause, Alexander T. Mehlhorn, V. Riedl, S. Preis, K. Feike, L. Greiner, Dominik Hartl:
Mobile wireless acess to EHR and PACS in clinical practice. MoCoMed 2003: 109-113
Coauthor Index
aka: S. Hamed Hassani
aka: Mohammad Reza Karimi Jaghargh
aka: Kfir Yehuda Levy
aka: Mojmir Mutny
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-18 02:04 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint