default search action
Martin T. Vechev
Person information
- affiliation: ETH Zürich, Department of Computer Science, Switzerland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j22]Anouk Paradis, Jasper Dekoninck, Benjamin Bichsel, Martin T. Vechev:
Synthetiq: Fast and Versatile Quantum Circuit Synthesis. Proc. ACM Program. Lang. 8(OOPSLA1): 55-82 (2024) - [j21]Hristo Venev, Timon Gehr, Dimitar Dimitrov, Martin T. Vechev:
Modular Synthesis of Efficient Quantum Uncomputation. Proc. ACM Program. Lang. 8(OOPSLA2): 2097-2124 (2024) - [j20]Anouk Paradis, Benjamin Bichsel, Martin T. Vechev:
Reqomp: Space-constrained Uncomputation for Quantum Circuits. Quantum 8: 1258 (2024) - [c160]Anton Alexandrov, Veselin Raychev, Mark Mueller, Ce Zhang, Martin T. Vechev, Kristina Toutanova:
Mitigating Catastrophic Forgetting in Language Transfer via Model Merging. EMNLP (Findings) 2024: 17167-17186 - [c159]Maximilian Baader, Mark Niklas Müller, Yuhao Mao, Martin T. Vechev:
Expressivity of ReLU-Networks under Convex Relaxations. ICLR 2024 - [c158]Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, Martin T. Vechev:
Controlled Text Generation via Language Model Arithmetic. ICLR 2024 - [c157]Kostadin Garov, Dimitar Iliev Dimitrov, Nikola Jovanovic, Martin T. Vechev:
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning. ICLR 2024 - [c156]Yuhao Mao, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Understanding Certified Training with Interval Bound Propagation. ICLR 2024 - [c155]Niels Mündler, Jingxuan He, Slobodan Jenko, Martin T. Vechev:
Self-contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation. ICLR 2024 - [c154]Robin Staab, Mark Vero, Mislav Balunovic, Martin T. Vechev:
Beyond Memorization: Violating Privacy via Inference with Large Language Models. ICLR 2024 - [c153]Nikola Jovanovic, Robin Staab, Martin T. Vechev:
Watermark Stealing in Large Language Models. ICML 2024 - [c152]Luca Beurer-Kellner, Marc Fischer, Martin T. Vechev:
Guiding LLMs The Right Way: Fast, Non-Invasive Constrained Generation. ICML 2024 - [c151]Luca Beurer-Kellner, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Prompt Sketching for Large Language Models. ICML 2024 - [c150]Jingxuan He, Mark Vero, Gabriela Krasnopolska, Martin T. Vechev:
Instruction Tuning for Secure Code Generation. ICML 2024 - [c149]Mark Vero, Mislav Balunovic, Martin T. Vechev:
CuTS: Customizable Tabular Synthetic Data Generation. ICML 2024 - [c148]Robin Staab, Nikola Jovanovic, Mislav Balunovic, Martin T. Vechev:
From Principle to Practice: Vertical Data Minimization for Machine Learning. SP 2024: 4733-4752 - [i88]Momchil Peychev, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Automated Classification of Model Errors on ImageNet. CoRR abs/2401.02430 (2024) - [i87]Jasper Dekoninck, Mark Niklas Müller, Maximilian Baader, Marc Fischer, Martin T. Vechev:
Evading Data Contamination Detection for Language Models is (too) Easy. CoRR abs/2402.02823 (2024) - [i86]Jingxuan He, Mark Vero, Gabriela Krasnopolska, Martin T. Vechev:
Instruction Tuning for Secure Code Generation. CoRR abs/2402.09497 (2024) - [i85]Berkay Berabi, Alexey Gronskiy, Veselin Raychev, Gishor Sivanrupan, Victor Chibotaru, Martin T. Vechev:
DeepCode AI Fix: Fixing Security Vulnerabilities with Large Language Models. CoRR abs/2402.13291 (2024) - [i84]Robin Staab, Mark Vero, Mislav Balunovic, Martin T. Vechev:
Large Language Models are Advanced Anonymizers. CoRR abs/2402.13846 (2024) - [i83]Nikola Jovanovic, Robin Staab, Martin T. Vechev:
Watermark Stealing in Large Language Models. CoRR abs/2402.19361 (2024) - [i82]Dimitar I. Dimitrov, Maximilian Baader, Mark Niklas Müller, Martin T. Vechev:
SPEAR: Exact Gradient Inversion of Batches in Federated Learning. CoRR abs/2403.03945 (2024) - [i81]Luca Beurer-Kellner, Marc Fischer, Martin T. Vechev:
Guiding LLMs The Right Way: Fast, Non-Invasive Constrained Generation. CoRR abs/2403.06988 (2024) - [i80]Stefan Balauca, Mark Niklas Müller, Yuhao Mao, Maximilian Baader, Marc Fischer, Martin T. Vechev:
Overcoming the Paradox of Certified Training with Gaussian Smoothing. CoRR abs/2403.07095 (2024) - [i79]Batuhan Tömekçe, Mark Vero, Robin Staab, Martin T. Vechev:
Private Attribute Inference from Images with Vision-Language Models. CoRR abs/2404.10618 (2024) - [i78]Ivo Petrov, Dimitar I. Dimitrov, Maximilian Baader, Mark Niklas Müller, Martin T. Vechev:
DAGER: Exact Gradient Inversion for Large Language Models. CoRR abs/2405.15586 (2024) - [i77]Jasper Dekoninck, Mark Niklas Müller, Martin T. Vechev:
ConStat: Performance-Based Contamination Detection in Large Language Models. CoRR abs/2405.16281 (2024) - [i76]Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, Martin T. Vechev:
Exploiting LLM Quantization. CoRR abs/2405.18137 (2024) - [i75]Angéline Pouget, Nikola Jovanovic, Mark Vero, Robin Staab, Martin T. Vechev:
Back to the Drawing Board for Fair Representation Learning. CoRR abs/2405.18161 (2024) - [i74]Thibaud Gloaguen, Nikola Jovanovic, Robin Staab, Martin T. Vechev:
Black-Box Detection of Language Model Watermarks. CoRR abs/2405.20777 (2024) - [i73]Yuhao Mao, Stefan Balauca, Martin T. Vechev:
CTBENCH: A Library and Benchmark for Certified Training. CoRR abs/2406.04848 (2024) - [i72]Hanna Yukhymenko, Robin Staab, Mark Vero, Martin T. Vechev:
A Synthetic Dataset for Personal Attribute Inference. CoRR abs/2406.07217 (2024) - [i71]Niels Mündler, Mark Niklas Müller, Jingxuan He, Martin T. Vechev:
Code Agents are State of the Art Software Testers. CoRR abs/2406.12952 (2024) - [i70]Hristo Venev, Timon Gehr, Dimitar Dimitrov, Martin T. Vechev:
Modular Synthesis of Efficient Quantum Uncomputation. CoRR abs/2406.14227 (2024) - [i69]Anton Alexandrov, Veselin Raychev, Mark Niklas Müller, Ce Zhang, Martin T. Vechev, Kristina Toutanova:
Mitigating Catastrophic Forgetting in Language Transfer via Model Merging. CoRR abs/2407.08699 (2024) - [i68]Slobodan Jenko, Jingxuan He, Niels Mündler, Mark Vero, Martin T. Vechev:
Practical Attacks against Black-box Code Completion Engines. CoRR abs/2408.02509 (2024) - [i67]Jasper Dekoninck, Maximilian Baader, Martin T. Vechev:
Polyrating: A Cost-Effective and Bias-Aware Rating System for LLM Evaluation. CoRR abs/2409.00696 (2024) - [i66]Mert Ünsal, Timon Gehr, Martin T. Vechev:
AlphaIntegrator: Transformer Action Search for Symbolic Integration Proofs. CoRR abs/2410.02666 (2024) - [i65]Thibaud Gloaguen, Nikola Jovanovic, Robin Staab, Martin T. Vechev:
Discovering Clues of Spoofed LM Watermarks. CoRR abs/2410.02693 (2024) - [i64]Nikola Jovanovic, Robin Staab, Maximilian Baader, Martin T. Vechev:
Ward: Provable RAG Dataset Inference via LLM Watermarks. CoRR abs/2410.03537 (2024) - [i63]Yuhao Mao, Yani Zhang, Martin T. Vechev:
Multi-Neuron Unleashes Expressivity of ReLU Networks Under Convex Relaxation. CoRR abs/2410.06816 (2024) - [i62]Chenhao Sun, Yuhao Mao, Mark Niklas Müller, Martin T. Vechev:
Average Certified Radius is a Poor Metric for Randomized Smoothing. CoRR abs/2410.06895 (2024) - [i61]Philipp Guldimann, Alexander Spiridonov, Robin Staab, Nikola Jovanovic, Mark Vero, Velko Vechev, Anna Gueorguieva, Mislav Balunovic, Nikola Konstantinov, Pavol Bielik, Petar Tsankov, Martin T. Vechev:
COMPL-AI Framework: A Technical Interpretation and LLM Benchmarking Suite for the EU Artificial Intelligence Act. CoRR abs/2410.07959 (2024) - [i60]Jasper Dekoninck, Maximilian Baader, Martin T. Vechev:
A Unified Approach to Routing and Cascading for LLMs. CoRR abs/2410.10347 (2024) - 2023
- [j19]Martin T. Vechev:
Technical Perspective: Beautiful Symbolic Abstractions for Safe and Secure Machine Learning. Commun. ACM 66(2): 104 (2023) - [j18]Mark Niklas Müller, Marc Fischer, Robin Staab, Martin T. Vechev:
Abstract Interpretation of Fixpoint Iterators with Applications to Neural Networks. Proc. ACM Program. Lang. 7(PLDI): 786-810 (2023) - [j17]Luca Beurer-Kellner, Marc Fischer, Martin T. Vechev:
Prompting Is Programming: A Query Language for Large Language Models. Proc. ACM Program. Lang. 7(PLDI): 1946-1969 (2023) - [j16]Benjamin Bichsel, Anouk Paradis, Maximilian Baader, Martin T. Vechev:
Abstraqt: Analysis of Quantum Circuits via Abstract Stabilizer Simulation. Quantum 7: 1185 (2023) - [c147]Jingxuan He, Martin T. Vechev:
Large Language Models for Code: Security Hardening and Adversarial Testing. CCS 2023: 1865-1879 - [c146]Johan Lokna, Anouk Paradis, Dimitar I. Dimitrov, Martin T. Vechev:
Group and Attack: Auditing Differential Privacy. CCS 2023: 1905-1918 - [c145]Florian E. Dorner, Momchil Peychev, Nikola Konstantinov, Naman Goel, Elliott Ash, Martin T. Vechev:
Human-Guided Fair Classification for Natural Language Processing. ICLR 2023 - [c144]Mark Niklas Müller, Franziska Eckert, Marc Fischer, Martin T. Vechev:
Certified Training: Small Boxes are All You Need. ICLR 2023 - [c143]Mustafa Zeqiri, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Efficient Certified Training and Robustness Verification of Neural ODEs. ICLR 2023 - [c142]Nikola Jovanovic, Mislav Balunovic, Dimitar Iliev Dimitrov, Martin T. Vechev:
FARE: Provably Fair Representation Learning with Practical Certificates. ICML 2023: 15401-15420 - [c141]Mark Vero, Mislav Balunovic, Dimitar Iliev Dimitrov, Martin T. Vechev:
TabLeak: Tabular Data Leakage in Federated Learning. ICML 2023: 35051-35083 - [c140]Florian E. Dorner, Nikola Konstantinov, Georgi Pashaliev, Martin T. Vechev:
Incentivizing Honesty among Competitors in Collaborative Learning and Optimization. NeurIPS 2023 - [c139]Yuhao Mao, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Connecting Certified and Adversarial Training. NeurIPS 2023 - [c138]Momchil Peychev, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Automated Classification of Model Errors on ImageNet. NeurIPS 2023 - [d1]Mark Niklas Müller, Marc Fischer, Robin Staab, Martin T. Vechev:
Abstract Interpretation of Fixpoint Iterators with Applications to Neural Networks - Artifact. Zenodo, 2023 - [i59]Jingxuan He, Martin T. Vechev:
Controlling Large Language Models to Generate Secure and Vulnerable Code. CoRR abs/2302.05319 (2023) - [i58]Mustafa Zeqiri, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Efficient Certified Training and Robustness Verification of Neural ODEs. CoRR abs/2303.05246 (2023) - [i57]Benjamin Bichsel, Maximilian Baader, Anouk Paradis, Martin T. Vechev:
Abstraqt: Analysis of Quantum Circuits via Abstract Stabilizer Simulation. CoRR abs/2304.00921 (2023) - [i56]Yuhao Mao, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
TAPS: Connecting Certified and Adversarial Training. CoRR abs/2305.04574 (2023) - [i55]Niels Mündler, Jingxuan He, Slobodan Jenko, Martin T. Vechev:
Self-contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation. CoRR abs/2305.15852 (2023) - [i54]Florian E. Dorner, Nikola Konstantinov, Georgi Pashaliev, Martin T. Vechev:
Incentivizing Honesty among Competitors in Collaborative Learning and Optimization. CoRR abs/2305.16272 (2023) - [i53]Kostadin Garov, Dimitar I. Dimitrov, Nikola Jovanovic, Martin T. Vechev:
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning. CoRR abs/2306.03013 (2023) - [i52]Yuhao Mao, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Understanding Certified Training with Interval Bound Propagation. CoRR abs/2306.10426 (2023) - [i51]Mark Vero, Mislav Balunovic, Martin T. Vechev:
Programmable Synthetic Tabular Data Generation. CoRR abs/2307.03577 (2023) - [i50]Robin Staab, Mark Vero, Mislav Balunovic, Martin T. Vechev:
Beyond Memorization: Violating Privacy Via Inference with Large Language Models. CoRR abs/2310.07298 (2023) - [i49]Maximilian Baader, Mark Niklas Müller, Yuhao Mao, Martin T. Vechev:
Expressivity of ReLU-Networks under Convex Relaxations. CoRR abs/2311.04015 (2023) - [i48]Luca Beurer-Kellner, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Prompt Sketching for Large Language Models. CoRR abs/2311.04954 (2023) - [i47]Robin Staab, Nikola Jovanovic, Mislav Balunovic, Martin T. Vechev:
From Principle to Practice: Vertical Data Minimization for Machine Learning. CoRR abs/2311.10500 (2023) - [i46]Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, Martin T. Vechev:
Controlled Text Generation via Language Model Arithmetic. CoRR abs/2311.14479 (2023) - 2022
- [j15]Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
PRIMA: general and precise neural network certification via scalable convex hull approximations. Proc. ACM Program. Lang. 6(POPL): 1-33 (2022) - [j14]Dimitar Iliev Dimitrov, Mislav Balunovic, Nikola Konstantinov, Martin T. Vechev:
Data Leakage in Federated Averaging. Trans. Mach. Learn. Res. 2022 (2022) - [j13]Nikola Jovanovic, Mislav Balunovic, Maximilian Baader, Martin T. Vechev:
On the Paradox of Certified Training. Trans. Mach. Learn. Res. 2022 (2022) - [j12]Matthew Mirman, Maximilian Baader, Martin T. Vechev:
The Fundamental Limits of Neural Networks for Interval Certified Robustness. Trans. Mach. Learn. Res. 2022 (2022) - [c137]Marc Fischer, Christian Sprecher, Dimitar I. Dimitrov, Gagandeep Singh, Martin T. Vechev:
Shared Certificates for Neural Network Verification. CAV (1) 2022: 127-148 - [c136]Nikola Jovanovic, Marc Fischer, Samuel Steffen, Martin T. Vechev:
Private and Reliable Neural Network Inference. CCS 2022: 1663-1677 - [c135]Samuel Steffen, Benjamin Bichsel, Martin T. Vechev:
Zapper: Smart Contracts with Data and Identity Privacy. CCS 2022: 2735-2749 - [c134]Momchil Peychev, Anian Ruoss, Mislav Balunovic, Maximilian Baader, Martin T. Vechev:
Latent Space Smoothing for Individually Fair Representations. ECCV (13) 2022: 535-554 - [c133]Mislav Balunovic, Dimitar Iliev Dimitrov, Robin Staab, Martin T. Vechev:
Bayesian Framework for Gradient Leakage. ICLR 2022 - [c132]Mislav Balunovic, Anian Ruoss, Martin T. Vechev:
Fair Normalizing Flows. ICLR 2022 - [c131]Dimitar Iliev Dimitrov, Gagandeep Singh, Timon Gehr, Martin T. Vechev:
Provably Robust Adversarial Examples. ICLR 2022 - [c130]Claudio Ferrari, Mark Niklas Müller, Nikola Jovanovic, Martin T. Vechev:
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound. ICLR 2022 - [c129]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Boosting Randomized Smoothing with Variance Reduced Classifiers. ICLR 2022 - [c128]Jingxuan He, Luca Beurer-Kellner, Martin T. Vechev:
On Distribution Shift in Learning-based Bug Detectors. ICML 2022: 8559-8580 - [c127]Mislav Balunovic, Dimitar I. Dimitrov, Nikola Jovanovic, Martin T. Vechev:
LAMP: Extracting Text from Gradients with Language Model Priors. NeurIPS 2022 - [c126]Luca Beurer-Kellner, Martin T. Vechev, Laurent Vanbever, Petar Velickovic:
Learning to Configure Computer Networks with Neural Algorithmic Reasoning. NeurIPS 2022 - [c125]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
(De-)Randomized Smoothing for Decision Stump Ensembles. NeurIPS 2022 - [c124]Pesho Ivanov, Benjamin Bichsel, Martin T. Vechev:
Fast and Optimal Sequence-to-Graph Alignment Guided by Seeds. RECOMB 2022: 306-325 - [c123]Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, Martin T. Vechev:
ZeeStar: Private Smart Contracts by Homomorphic Encryption and Zero-knowledge Proofs. SP 2022: 179-197 - [i45]Dimitar I. Dimitrov, Mislav Balunovic, Nikola Jovanovic, Martin T. Vechev:
LAMP: Extracting Text from Gradients with Language Model Priors. CoRR abs/2202.08827 (2022) - [i44]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Robust and Accurate - Compositional Architectures for Randomized Smoothing. CoRR abs/2204.00487 (2022) - [i43]Jingxuan He, Luca Beurer-Kellner, Martin T. Vechev:
On Distribution Shift in Learning-based Bug Detectors. CoRR abs/2204.10049 (2022) - [i42]Claudio Ferrari, Mark Niklas Müller, Nikola Jovanovic, Martin T. Vechev:
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound. CoRR abs/2205.00263 (2022) - [i41]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
(De-)Randomized Smoothing for Decision Stump Ensembles. CoRR abs/2205.13909 (2022) - [i40]Dimitar I. Dimitrov, Mislav Balunovic, Nikola Konstantinov, Martin T. Vechev:
Data Leakage in Federated Averaging. CoRR abs/2206.12395 (2022) - [i39]Mark Vero, Mislav Balunovic, Dimitar I. Dimitrov, Martin T. Vechev:
Data Leakage in Tabular Federated Learning. CoRR abs/2210.01785 (2022) - [i38]Mark Niklas Müller, Franziska Eckert, Marc Fischer, Martin T. Vechev:
Certified Training: Small Boxes are All You Need. CoRR abs/2210.04871 (2022) - [i37]Nikola Jovanovic, Mislav Balunovic, Dimitar I. Dimitrov, Martin T. Vechev:
FARE: Provably Fair Representation Learning. CoRR abs/2210.07213 (2022) - [i36]Nikola Jovanovic, Marc Fischer, Samuel Steffen, Martin T. Vechev:
Private and Reliable Neural Network Inference. CoRR abs/2210.15614 (2022) - [i35]Luca Beurer-Kellner, Martin T. Vechev, Laurent Vanbever, Petar Velickovic:
Learning to Configure Computer Networks with Neural Algorithmic Reasoning. CoRR abs/2211.01980 (2022) - [i34]Luca Beurer-Kellner, Marc Fischer, Martin T. Vechev:
Prompting Is Programming: A Query Language For Large Language Models. CoRR abs/2212.06094 (2022) - [i33]Florian E. Dorner, Momchil Peychev, Nikola Konstantinov, Naman Goel, Elliott Ash, Martin T. Vechev:
Human-Guided Fair Classification for Natural Language Processing. CoRR abs/2212.10154 (2022) - 2021
- [c122]Anian Ruoss, Maximilian Baader, Mislav Balunovic, Martin T. Vechev:
Efficient Certification of Spatial Robustness. AAAI 2021: 2504-2513 - [c121]Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Marian Dan, Martin T. Vechev:
Scalable Polyhedral Verification of Recurrent Neural Networks. CAV (1) 2021: 225-248 - [c120]Jingxuan He, Gishor Sivanrupan, Petar Tsankov, Martin T. Vechev:
Learning to Explore Paths for Symbolic Execution. CCS 2021: 2526-2540 - [c119]Tobias Lorenz, Anian Ruoss, Mislav Balunovic, Gagandeep Singh, Martin T. Vechev:
Robustness Certification for Point Cloud Models. ICCV 2021: 7588-7598 - [c118]Mark Niklas Müller, Mislav Balunovic, Martin T. Vechev:
Certify or Predict: Boosting Certified Robustness with Compositional Architectures. ICLR 2021 - [c117]Berkay Berabi, Jingxuan He, Veselin Raychev, Martin T. Vechev:
TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer. ICML 2021: 780-791 - [c116]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Scalable Certified Segmentation via Randomized Smoothing. ICML 2021: 3340-3351 - [c115]Miguel Zamora, Momchil Peychev, Sehoon Ha, Martin T. Vechev, Stelian Coros:
PODS: Policy Optimization via Differentiable Simulation. ICML 2021: 7805-7817 - [c114]Christoph Müller, François Serre, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Scaling Polyhedral Neural Network Verification on GPUs. MLSys 2021 - [c113]Chengyuan Yao, Pavol Bielik, Petar Tsankov, Martin T. Vechev:
Automated Discovery of Adaptive Attacks on Adversarial Defenses. NeurIPS 2021: 26858-26870 - [c112]Rüdiger Birkner, Tobias Brodmann, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
Metha: Network Verifiers Need To Be Correct Too! NSDI 2021: 99-113 - [c111]Anouk Paradis, Benjamin Bichsel, Samuel Steffen, Martin T. Vechev:
Unqomp: synthesizing uncomputation in Quantum circuits. PLDI 2021: 222-236 - [c110]Jingxuan He, Cheng-Chun Lee, Veselin Raychev, Martin T. Vechev:
Learning to find naming issues with big code and small supervision. PLDI 2021: 296-311 - [c109]Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, Martin T. Vechev:
Fast and precise certification of transformers. PLDI 2021: 466-481 - [c108]Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, Martin T. Vechev:
Robustness certification with generative models. PLDI 2021: 1141-1154 - [c107]Benjamin Bichsel, Samuel Steffen, Ilija Bogunovic, Martin T. Vechev:
DP-Sniper: Black-Box Discovery of Differential Privacy Violations using Classifiers. SP 2021: 391-409 - [i32]Nikola Jovanovic, Mislav Balunovic, Maximilian Baader, Martin T. Vechev:
Certified Defenses: Why Tighter Relaxations May Hurt Training? CoRR abs/2102.06700 (2021) - [i31]Chengyuan Yao, Pavol Bielik, Petar Tsankov, Martin T. Vechev:
Automated Discovery of Adaptive Attacks on Adversarial Defenses. CoRR abs/2102.11860 (2021) - [i30]Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Precise Multi-Neuron Abstractions for Neural Network Certification. CoRR abs/2103.03638 (2021) - [i29]Tobias Lorenz, Anian Ruoss, Mislav Balunovic, Gagandeep Singh, Martin T. Vechev:
Robustness Certification for Point Cloud Models. CoRR abs/2103.16652 (2021) - [i28]Mislav Balunovic, Anian Ruoss, Martin T. Vechev:
Fair Normalizing Flows. CoRR abs/2106.05937 (2021) - [i27]Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin T. Vechev:
Boosting Randomized Smoothing with Variance Reduced Classifiers. CoRR abs/2106.06946 (2021) - [i26]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Scalable Certified Segmentation via Randomized Smoothing. CoRR abs/2107.00228 (2021) - [i25]Christian Sprecher, Marc Fischer, Dimitar I. Dimitrov, Gagandeep Singh, Martin T. Vechev:
Shared Certificates for Neural Network Verification. CoRR abs/2109.00542 (2021) - [i24]Mark Niklas Müller, Robin Staab, Marc Fischer, Martin T. Vechev:
Effective Certification of Monotone Deep Equilibrium Models. CoRR abs/2110.08260 (2021) - [i23]Mislav Balunovic, Dimitar I. Dimitrov, Robin Staab, Martin T. Vechev:
Bayesian Framework for Gradient Leakage. CoRR abs/2111.04706 (2021) - [i22]Momchil Peychev, Anian Ruoss, Mislav Balunovic, Maximilian Baader, Martin T. Vechev:
Latent Space Smoothing for Individually Fair Representations. CoRR abs/2111.13650 (2021) - [i21]Matthew Mirman, Maximilian Baader, Martin T. Vechev:
The Fundamental Limits of Interval Arithmetic for Neural Networks. CoRR abs/2112.05235 (2021) - 2020
- [c106]Maximilian Baader, Matthew Mirman, Martin T. Vechev:
Universal Approximation with Certified Networks. ICLR 2020 - [c105]Mislav Balunovic, Martin T. Vechev:
Adversarial Training and Provable Defenses: Bridging the Gap. ICLR 2020 - [c104]Larissa Laich, Pavol Bielik, Martin T. Vechev:
Guiding Program Synthesis by Learning to Generate Examples. ICLR 2020 - [c103]Pavol Bielik, Martin T. Vechev:
Adversarial Robustness for Code. ICML 2020: 896-907 - [c102]Raphaël Dang-Nhu, Gagandeep Singh, Pavol Bielik, Martin T. Vechev:
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. ICML 2020: 2356-2365 - [c101]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Certified Defense to Image Transformations via Randomized Smoothing. NeurIPS 2020 - [c100]Anian Ruoss, Mislav Balunovic, Marc Fischer, Martin T. Vechev:
Learning Certified Individually Fair Representations. NeurIPS 2020 - [c99]Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, Martin T. Vechev:
Config2Spec: Mining Network Specifications from Network Configurations. NSDI 2020: 969-984 - [c98]Benjamin Bichsel, Maximilian Baader, Timon Gehr, Martin T. Vechev:
Silq: a high-level quantum language with safe uncomputation and intuitive semantics. PLDI 2020: 286-300 - [c97]Timon Gehr, Samuel Steffen, Martin T. Vechev:
λPSI: exact inference for higher-order probabilistic programs. PLDI 2020: 883-897 - [c96]Jingxuan He, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Learning fast and precise numerical analysis. PLDI 2020: 1112-1127 - [c95]Pesho Ivanov, Benjamin Bichsel, Harun Mustafa, André Kahles, Gunnar Rätsch, Martin T. Vechev:
AStarix: Fast and Optimal Sequence-to-Graph Alignment. RECOMB 2020: 104-119 - [c94]Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
Probabilistic Verification of Network Configurations. SIGCOMM 2020: 750-764 - [c93]Anton Permenev, Dimitar K. Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, Martin T. Vechev:
VerX: Safety Verification of Smart Contracts. SP 2020: 1661-1677 - [i20]Pavol Bielik, Martin T. Vechev:
Adversarial Robustness for Code. CoRR abs/2002.04694 (2020) - [i19]Anian Ruoss, Mislav Balunovic, Marc Fischer, Martin T. Vechev:
Learning Certified Individually Fair Representations. CoRR abs/2002.10312 (2020) - [i18]Marc Fischer, Maximilian Baader, Martin T. Vechev:
Certification of Semantic Perturbations via Randomized Smoothing. CoRR abs/2002.12463 (2020) - [i17]Raphaël Dang-Nhu, Gagandeep Singh, Pavol Bielik, Martin T. Vechev:
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. CoRR abs/2003.03778 (2020) - [i16]Matthew Mirman, Timon Gehr, Martin T. Vechev:
Robustness Certification of Generative Models. CoRR abs/2004.14756 (2020) - [i15]Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Marian Dan, Martin T. Vechev:
Fast and Effective Robustness Certification for Recurrent Neural Networks. CoRR abs/2005.13300 (2020) - [i14]Christoph Müller, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Neural Network Robustness Verification on GPUs. CoRR abs/2007.10868 (2020) - [i13]Dimitar I. Dimitrov, Gagandeep Singh, Timon Gehr, Martin T. Vechev:
Scalable Inference of Symbolic Adversarial Examples. CoRR abs/2007.12133 (2020) - [i12]Nick Baumann, Samuel Steffen, Benjamin Bichsel, Petar Tsankov, Martin T. Vechev:
zkay v0.2: Practical Data Privacy for Smart Contracts. CoRR abs/2009.01020 (2020) - [i11]Anian Ruoss, Maximilian Baader, Mislav Balunovic, Martin T. Vechev:
Efficient Certification of Spatial Robustness. CoRR abs/2009.09318 (2020)
2010 – 2019
- 2019
- [j11]Veselin Raychev, Martin T. Vechev, Andreas Krause:
Predicting program properties from 'big code'. Commun. ACM 62(3): 99-107 (2019) - [j10]Gagandeep Singh, Timon Gehr, Markus Püschel, Martin T. Vechev:
An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL): 41:1-41:30 (2019) - [c92]Jingxuan He, Mislav Balunovic, Nodar Ambroladze, Petar Tsankov, Martin T. Vechev:
Learning to Fuzz from Symbolic Execution with Application to Smart Contracts. CCS 2019: 531-548 - [c91]Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov, Martin T. Vechev:
zkay: Specifying and Enforcing Data Privacy in Smart Contracts. CCS 2019: 1759-1776 - [c90]Gagandeep Singh, Timon Gehr, Markus Püschel, Martin T. Vechev:
Boosting Robustness Certification of Neural Networks. ICLR (Poster) 2019 - [c89]Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, Martin T. Vechev:
DL2: Training and Querying Neural Networks with Logic. ICML 2019: 1931-1941 - [c88]Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, Martin T. Vechev:
Beyond the Single Neuron Convex Barrier for Neural Network Certification. NeurIPS 2019: 15072-15083 - [c87]Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, Martin T. Vechev:
Certifying Geometric Robustness of Neural Networks. NeurIPS 2019: 15287-15297 - [c86]Jan Eberhardt, Samuel Steffen, Veselin Raychev, Martin T. Vechev:
Unsupervised learning of API aliasing specifications. PLDI 2019: 745-759 - [c85]Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, Martin T. Vechev:
Scalable taint specification inference with big code. PLDI 2019: 760-774 - [i10]Matthew Mirman, Gagandeep Singh, Martin T. Vechev:
A Provable Defense for Deep Residual Networks. CoRR abs/1903.12519 (2019) - [i9]Maximilian Baader, Matthew Mirman, Martin T. Vechev:
Universal Approximation with Certified Networks. CoRR abs/1909.13846 (2019) - [i8]Marc Fischer, Matthew Mirman, Steven Stalder, Martin T. Vechev:
Online Robustness Training for Deep Reinforcement Learning. CoRR abs/1911.00887 (2019) - [i7]Philippe Schlattner, Pavol Bielik, Martin T. Vechev:
Learning to Infer User Interface Attributes from Images. CoRR abs/1912.13243 (2019) - 2018
- [j9]Pavol Bielik, Marc Fischer, Martin T. Vechev:
Robust relational layout synthesis from examples for Android. Proc. ACM Program. Lang. 2(OOPSLA): 156:1-156:29 (2018) - [j8]Gagandeep Singh, Markus Püschel, Martin T. Vechev:
A practical construction for decomposing numerical abstract domains. Proc. ACM Program. Lang. 2(POPL): 55:1-55:28 (2018) - [j7]Dimitar K. Dimitrov, Martin T. Vechev, Vivek Sarkar:
Race Detection in Two Dimensions. ACM Trans. Parallel Comput. 4(4): 19:1-19:22 (2018) - [c84]Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Fast Numerical Program Analysis with Reinforcement Learning. CAV (1) 2018: 211-229 - [c83]Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, Martin T. Vechev:
Securify: Practical Security Analysis of Smart Contracts. CCS 2018: 67-82 - [c82]Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov, Martin T. Vechev:
DP-Finder: Finding Differential Privacy Violations by Sampling and Optimization. CCS 2018: 508-524 - [c81]Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, Martin T. Vechev:
Debin: Predicting Debug Information in Stripped Binaries. CCS 2018: 1667-1680 - [c80]Benjamin Bichsel, Timon Gehr, Martin T. Vechev:
Fine-Grained Semantics for Probabilistic Programs. ESOP 2018: 145-185 - [c79]Matthew Mirman, Dimitar K. Dimitrov, Pavle Djordjevic, Timon Gehr, Martin T. Vechev:
Training Neural Machines with Trace-Based Supervision. ICML 2018: 3566-3574 - [c78]Matthew Mirman, Timon Gehr, Martin T. Vechev:
Differentiable Abstract Interpretation for Provably Robust Neural Networks. ICML 2018: 3575-3583 - [c77]Mislav Balunovic, Pavol Bielik, Martin T. Vechev:
Learning to Solve SMT Formulas. NeurIPS 2018: 10338-10349 - [c76]Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, Martin T. Vechev:
Fast and Effective Robustness Certification. NeurIPS 2018: 10825-10836 - [c75]Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion. NSDI 2018: 579-594 - [c74]Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, Martin T. Vechev:
Net2Text: Query-Guided Summarization of Network Forwarding Behaviors. NSDI 2018: 609-623 - [c73]Lucas Brutschy, Dimitar K. Dimitrov, Peter Müller, Martin T. Vechev:
Static serializability analysis for causal consistency. PLDI 2018: 90-104 - [c72]Rumen Paletov, Petar Tsankov, Veselin Raychev, Martin T. Vechev:
Inferring crypto API rules from code changes. PLDI 2018: 450-464 - [c71]Marco F. Cusumano-Towner, Benjamin Bichsel, Timon Gehr, Martin T. Vechev, Vikash K. Mansinghka:
Incremental inference for probabilistic programs. PLDI 2018: 571-585 - [c70]Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann, Martin T. Vechev:
Bayonet: probabilistic inference for networks. PLDI 2018: 586-602 - [c69]Dana Drachsler-Cohen, Martin T. Vechev, Eran Yahav:
Practical concurrent traversals in search trees. PPoPP 2018: 207-218 - [c68]Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, Martin T. Vechev:
AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation. IEEE Symposium on Security and Privacy 2018: 3-18 - [c67]Roland Meier, Petar Tsankov, Vincent Lenders, Laurent Vanbever, Martin T. Vechev:
NetHide: Secure and Practical Network Topology Obfuscation. USENIX Security Symposium 2018: 693-709 - [c66]Cedric Baumann, Andrei Marian Dan, Yuri Meshman, Torsten Hoefler, Martin T. Vechev:
Automatic Verification of RMA Programs via Abstraction Extrapolation. VMCAI 2018: 47-70 - [i6]Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Buenzli, Martin T. Vechev:
Securify: Practical Security Analysis of Smart Contracts. CoRR abs/1806.01143 (2018) - 2017
- [j6]Andrei Marian Dan, Yuri Meshman, Martin T. Vechev, Eran Yahav:
Effective abstractions for verification under relaxed memory models. Comput. Lang. Syst. Struct. 47: 62-76 (2017) - [c65]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
Learning a Static Analyzer from Data. CAV (1) 2017: 233-253 - [c64]Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
Network-Wide Configuration Synthesis. CAV (2) 2017: 261-281 - [c63]Andrei Marian Dan, Manu Sridharan, Satish Chandra, Jean-Baptiste Jeannin, Martin T. Vechev:
Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts. CAV (2) 2017: 521-541 - [c62]Martin Kucera, Petar Tsankov, Timon Gehr, Marco Guarnieri, Martin T. Vechev:
Synthesis of Probabilistic Privacy Enforcement. CCS 2017: 391-408 - [c61]Nader H. Bshouty, Dana Drachsler-Cohen, Martin T. Vechev, Eran Yahav:
Learning Disjunctions of Predicates. COLT 2017: 346-369 - [c60]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
Program Synthesis for Character Level Language Modeling. ICLR (Poster) 2017 - [c59]Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Fast polyhedra abstract domain. POPL 2017: 46-59 - [c58]Lucas Brutschy, Dimitar K. Dimitrov, Peter Müller, Martin T. Vechev:
Serializability for eventual consistency: criterion, analysis, and applications. POPL 2017: 458-472 - [c57]Roman May, Ahmed El-Hassany, Laurent Vanbever, Martin T. Vechev:
BigBug: Practical Concurrency Analysis for SDN. SOSR 2017: 88-94 - [e2]Albert Cohen, Martin T. Vechev:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. ACM 2017, ISBN 978-1-4503-4988-8 [contents] - [i5]Nader H. Bshouty, Dana Drachsler-Cohen, Martin T. Vechev, Eran Yahav:
Learning Disjunctions of Predicates. CoRR abs/1706.05070 (2017) - 2016
- [j5]Martin T. Vechev, Eran Yahav:
Programming with "Big Code". Found. Trends Program. Lang. 3(4): 231-284 (2016) - [c56]Petar Tsankov, Marco Pistoia, Omer Tripp, Martin T. Vechev, Pietro Ferrara:
FASE: functionality-aware security enforcement. ACSAC 2016: 471-483 - [c55]Timon Gehr, Sasa Misailovic, Martin T. Vechev:
PSI: Exact Symbolic Inference for Probabilistic Programs. CAV (1) 2016: 62-83 - [c54]Benjamin Bichsel, Veselin Raychev, Petar Tsankov, Martin T. Vechev:
Statistical Deobfuscation of Android Applications. CCS 2016: 343-355 - [c53]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
PHOG: Probabilistic Model for Code. ICML 2016: 2933-2942 - [c52]Andrei Marian Dan, Patrick Lam, Torsten Hoefler, Martin T. Vechev:
Modeling and analysis of remote memory access programming. OOPSLA 2016: 129-144 - [c51]Veselin Raychev, Pavol Bielik, Martin T. Vechev:
Probabilistic model for code with decision trees. OOPSLA 2016: 731-747 - [c50]Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, Martin T. Vechev:
SDNRacer: concurrency analysis for software-defined networks. PLDI 2016: 402-415 - [c49]Veselin Raychev, Pavol Bielik, Martin T. Vechev, Andreas Krause:
Learning programs from noisy data. POPL 2016: 761-774 - [i4]Dana Drachsler-Cohen, Martin T. Vechev, Eran Yahav:
Optimal Learning of Specifications from Examples. CoRR abs/1608.00089 (2016) - [i3]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
Learning a Static Analyzer from Data. CoRR abs/1611.01752 (2016) - [i2]Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin T. Vechev:
Network-wide Configuration Synthesis. CoRR abs/1611.02537 (2016) - 2015
- [c48]Timon Gehr, Dimitar K. Dimitrov, Martin T. Vechev:
Learning Commutativity Specifications. CAV (1) 2015: 307-323 - [c47]Jibin Ou, Martin T. Vechev, Otmar Hilliges:
An Interactive System for Data Structure Development. CHI 2015: 3053-3062 - [c46]Casper Svenning Jensen, Anders Møller, Veselin Raychev, Dimitar K. Dimitrov, Martin T. Vechev:
Stateless model checking of event-driven applications. OOPSLA 2015: 57-73 - [c45]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
Scalable race detection for Android applications. OOPSLA 2015: 332-348 - [c44]Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Making numerical program analysis fast. PLDI 2015: 303-313 - [c43]Veselin Raychev, Martin T. Vechev, Andreas Krause:
Predicting Program Properties from "Big Code". POPL 2015: 111-124 - [c42]Pavol Bielik, Veselin Raychev, Martin T. Vechev:
Programming with "Big Code": Lessons, Techniques and Applications. SNAPL 2015: 41-50 - [c41]Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, Martin T. Vechev:
SDNRacer: detecting concurrency violations in software-defined networks. SOSR 2015: 22:1-22:7 - [c40]Dimitar K. Dimitrov, Martin T. Vechev, Vivek Sarkar:
Race Detection in Two Dimensions. SPAA 2015: 101-110 - [c39]Andrei Marian Dan, Yuri Meshman, Martin T. Vechev, Eran Yahav:
Effective Abstractions for Verification under Relaxed Memory Models. VMCAI 2015: 449-466 - [i1]William W. Cohen, Charles Sutton, Martin T. Vechev:
Programming with "Big Code" (Dagstuhl Seminar 15472). Dagstuhl Reports 5(11): 90-102 (2015) - 2014
- [c38]Ohad Shacham, Eran Yahav, Guy Golan-Gueta, Alex Aiken, Nathan Grasso Bronson, Mooly Sagiv, Martin T. Vechev:
Verifying atomicity via data independence. ISSTA 2014: 26-36 - [c37]Svetoslav Karaivanov, Veselin Raychev, Martin T. Vechev:
Phrase-Based Statistical Translation of Programming Languages. Onward! 2014: 173-184 - [c36]Dimitar K. Dimitrov, Veselin Raychev, Martin T. Vechev, Eric Koskinen:
Commutativity race detection. PLDI 2014: 305-315 - [c35]Veselin Raychev, Martin T. Vechev, Eran Yahav:
Code completion with statistical language models. PLDI 2014: 419-428 - [c34]Dana Drachsler, Martin T. Vechev, Eran Yahav:
Practical concurrent binary search trees via logical ordering. PPoPP 2014: 343-356 - [c33]Yuri Meshman, Andrei Marian Dan, Martin T. Vechev, Eran Yahav:
Synthesis of Memory Fences via Refinement Propagation. SAS 2014: 237-252 - 2013
- [j4]Martin T. Vechev, Eran Yahav, Greta Yorsh:
Abstraction-guided synthesis of synchronization. Int. J. Softw. Tools Technol. Transf. 15(5-6): 413-431 (2013) - [c32]Veselin Raychev, Martin T. Vechev, Manu Sridharan:
Effective race detection for event-driven programs. OOPSLA 2013: 151-166 - [c31]Veselin Raychev, Max Schäfer, Manu Sridharan, Martin T. Vechev:
Refactoring with synthesis. OOPSLA 2013: 339-354 - [c30]Andrei Marian Dan, Yuri Meshman, Martin T. Vechev, Eran Yahav:
Predicate Abstraction for Relaxed Memory Models. SAS 2013: 84-104 - [c29]Veselin Raychev, Martin T. Vechev, Eran Yahav:
Automatic Synthesis of Deterministic Concurrency. SAS 2013: 283-303 - 2012
- [j3]Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin T. Vechev, Eran Yahav:
Efficient data race detection for async-finish parallelism. Formal Methods Syst. Des. 41(3): 321-347 (2012) - [j2]Michael Kuperstein, Martin T. Vechev, Eran Yahav:
Automatic inference of memory fences. SIGACT News 43(2): 108-123 (2012) - [c28]Boris Petrov, Martin T. Vechev, Manu Sridharan, Julian Dolby:
Race detection for web applications. PLDI 2012: 251-262 - [c27]Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin T. Vechev, Eran Yahav:
Dynamic synthesis for relaxed memory models. PLDI 2012: 429-440 - [c26]Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin T. Vechev, Eran Yahav:
Scalable and precise dynamic datarace detection for structured parallelism. PLDI 2012: 531-542 - [e1]Martin T. Vechev, Kathryn S. McKinley:
International Symposium on Memory Management, ISMM '12, Beijing, China, June 15-16, 2012. ACM 2012, ISBN 978-1-4503-1350-6 [contents] - 2011
- [j1]Matthew Arnold, Martin T. Vechev, Eran Yahav:
QVM: An Efficient Runtime for Detecting Defects in Deployed Systems. ACM Trans. Softw. Eng. Methodol. 21(1): 2:1-2:35 (2011) - [c25]Ohad Shacham, Nathan Grasso Bronson, Alex Aiken, Mooly Sagiv, Martin T. Vechev, Eran Yahav:
Testing atomicity of composed concurrent operations. OOPSLA 2011: 51-64 - [c24]Arun Raman, Greta Yorsh, Martin T. Vechev, Eran Yahav:
Sprint: speculative prefetching of remote data. OOPSLA 2011: 259-274 - [c23]Edward Aftandilian, Samuel Z. Guyer, Martin T. Vechev, Eran Yahav:
Asynchronous assertions. OOPSLA 2011: 275-288 - [c22]Michael Kuperstein, Martin T. Vechev, Eran Yahav:
Partial-coherence abstractions for relaxed memory models. PLDI 2011: 187-198 - [c21]Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael, Martin T. Vechev:
Laws of order: expensive synchronization in concurrent algorithms cannot be eliminated. POPL 2011: 487-498 - 2010
- [c20]Martin T. Vechev:
Computer-aided construction of concurrent systems. CompSysTech 2010: 19-24 - [c19]Michael Kuperstein, Martin T. Vechev, Eran Yahav:
Automatic inference of memory fences. FMCAD 2010: 111-119 - [c18]Martin T. Vechev, Eran Yahav, Greta Yorsh:
PHALANX: parallel checking of expressive heap assertions. ISMM 2010: 41-50 - [c17]Peter W. O'Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, Greta Yorsh:
Verifying linearizability with hindsight. PODC 2010: 85-94 - [c16]Martin T. Vechev, Eran Yahav, Greta Yorsh:
Abstraction-guided synthesis of synchronization. POPL 2010: 327-338 - [c15]Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin T. Vechev, Eran Yahav:
Efficient Data Race Detection for Async-Finish Parallelism. RV 2010: 368-383 - [c14]Martin T. Vechev, Eran Yahav, Raghavan Raman, Vivek Sarkar:
Automatic Verification of Determinism for Structured Parallel Programs. SAS 2010: 455-471
2000 – 2009
- 2009
- [c13]Ohad Shacham, Martin T. Vechev, Eran Yahav:
Chameleon: adaptive selection of collections. PLDI 2009: 408-418 - [c12]Maged M. Michael, Martin T. Vechev, Vijay A. Saraswat:
Idempotent work stealing. PPoPP 2009: 45-54 - [c11]Martin T. Vechev, Eran Yahav, Greta Yorsh:
Experience with Model Checking Linearizability. SPIN 2009: 261-278 - [c10]Martin T. Vechev, Eran Yahav, Greta Yorsh:
Inferring Synchronization under Limited Observability. TACAS 2009: 139-154 - 2008
- [c9]Matthew Arnold, Martin T. Vechev, Eran Yahav:
QVM: an efficient runtime for detecting defects in deployed systems. OOPSLA 2008: 143-162 - [c8]Martin T. Vechev, Eran Yahav:
Deriving linearizable fine-grained concurrent objects. PLDI 2008: 125-135 - 2007
- [b1]Martin T. Vechev:
Derivation and evaluation of concurrent collectors. University of Cambridge, UK, 2007 - [c7]Martin T. Vechev, Eran Yahav, David F. Bacon, Noam Rinetzky:
CGCExplorer: a semi-automated search procedure for provably correct concurrent collectors. PLDI 2007: 456-467 - 2006
- [c6]Martin T. Vechev, Eran Yahav, David F. Bacon:
Correctness-preserving derivation of concurrent garbage collection algorithms. PLDI 2006: 341-353 - 2005
- [c5]Martin T. Vechev, David F. Bacon, Perry Cheng, David Grove:
Derivation and Evaluation of Concurrent Collectors. ECOOP 2005: 577-601 - [c4]David F. Bacon, Perry Cheng, David Grove, Michael Hind, V. T. Rajan, Eran Yahav, Matthias Hauswirth, Christoph M. Kirsch, Daniel Spoonhower, Martin T. Vechev:
High-level real-time programming in Java. EMSOFT 2005: 68-78 - [c3]David F. Bacon, Perry Cheng, David Grove, Martin T. Vechev:
Syncopation: generational real-time garbage collection in the metronome. LCTES 2005: 183-192 - 2004
- [c2]Martin T. Vechev, David F. Bacon:
Write barrier elision for concurrent garbage collectors. ISMM 2004: 13-24 - 2003
- [c1]Martin T. Vechev, Peter D. Petrov:
Class Unloading with a Concurrent Garbage Collector in an Embedded Java VM. Embedded Systems and Applications 2003: 99-108
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-02 22:28 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint