default search action
Philip S. Yu
Person information
- affiliation: University of Illinois at Chicago, Department of Computer Science, Chicago, IL, USA
- affiliation (PhD): Stanford University, Stanford, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j587]Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui Xiong, Philip S. Yu:
A Survey of Text Watermarking in the Era of Large Language Models. ACM Comput. Surv. 57(2): 47:1-47:36 (2025) - [j586]Chaoguang Luo, Liuying Wen, Yong Qin, Philip S. Yu, Liangwei Yang, Zhineng Hu:
Diversified recommendation with weighted hypergraph embedding: Case study in music. Neurocomputing 616: 128905 (2025) - [j585]Litian Zhang, Xiaoming Zhang, Ziyi Zhou, Xi Zhang, Philip S. Yu, Chaozhuo Li:
Knowledge-aware multimodal pre-training for fake news detection. Inf. Fusion 114: 102715 (2025) - 2024
- [j584]Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, Philip S. Yu:
Large language models in law: A survey. AI Open 5: 181-196 (2024) - [j583]Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, Philip S. Yu:
Machine Unlearning: A Survey. ACM Comput. Surv. 56(1): 9:1-9:36 (2024) - [j582]Huiqiang Chen, Tianqing Zhu, Tao Zhang, Wanlei Zhou, Philip S. Yu:
Privacy and Fairness in Federated Learning: On the Perspective of Tradeoff. ACM Comput. Surv. 56(2): 39:1-39:37 (2024) - [j581]Yao Wan, Zhangqian Bi, Yang He, Jianguo Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin, Philip S. Yu:
Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit. ACM Comput. Surv. 56(12): 309:1-309:41 (2024) - [j580]Xinqi Du, Hechang Chen, Yongheng Xing, Philip S. Yu, Lifang He:
A Contrastive-Enhanced Ensemble Framework for Efficient Multi-Agent Reinforcement Learning. Expert Syst. Appl. 245: 123158 (2024) - [j579]Yao Chen, Wensheng Gan, Gengsen Huang, Yongdong Wu, Philip S. Yu:
Privacy-preserving federated discovery of DNA motifs with differential privacy. Expert Syst. Appl. 249: 123799 (2024) - [j578]Liangqi Yuan, Ziran Wang, Lichao Sun, Philip S. Yu, Christopher G. Brinton:
Decentralized Federated Learning: A Survey and Perspective. IEEE Internet Things J. 11(21): 34617-34638 (2024) - [j577]Shicheng Wan, Hong Lin, Wensheng Gan, Jiahui Chen, Philip S. Yu:
Web3: The Next Internet Revolution. IEEE Internet Things J. 11(21): 34811-34825 (2024) - [j576]Yijie Gui, Wensheng Gan, Yongdong Wu, Philip S. Yu:
Privacy preserving rare itemset mining. Inf. Sci. 662: 120262 (2024) - [j575]Kay Liu, Yingtong Dou, Xueying Ding, Xiyang Hu, Ruitong Zhang, Hao Peng, Lichao Sun, Philip S. Yu:
PyGOD: A Python Library for Graph Outlier Detection. J. Mach. Learn. Res. 25: 141:1-141:9 (2024) - [j574]Zefeng Chen, Wensheng Gan, Gengsen Huang, Yanxin Zheng, Philip S. Yu:
Towards utility-driven contiguous sequential patterns in uncertain multi-sequences. Knowl. Based Syst. 284: 111314 (2024) - [j573]Han Chen, Yuhua Li, Philip S. Yu, Yixiong Zou, Ruixuan Li:
DCMSL: Dual influenced community strength-boosted multi-scale graph contrastive learning. Knowl. Based Syst. 304: 112472 (2024) - [j572]Hao Peng, Jia Wu, Jiaxu Cui, Philip S. Yu:
Introduction to the special issue on recent advances in graph learning: theory, algorithms, applications, and systems. Int. J. Mach. Learn. Cybern. 15(1): 1-2 (2024) - [j571]Li Sun, Junda Ye, Jiawei Zhang, Yong Yang, Mingsheng Liu, Feiyang Wang, Philip S. Yu:
Contrastive sequential interaction network learning on co-evolving Riemannian spaces. Int. J. Mach. Learn. Cybern. 15(4): 1397-1413 (2024) - [j570]Zhongyuan Jiang, Haibo Liu, Jing Li, Xinghua Li, Jianfeng Ma, Philip S. Yu:
Target link protection against link-prediction-based attacks via artificial bee colony algorithm based on random walk. Int. J. Mach. Learn. Cybern. 15(11): 4959-4971 (2024) - [j569]Guangsi Shi, Daokun Zhang, Ming Jin, Shirui Pan, Philip S. Yu:
Towards complex dynamic physics system simulation with graph neural ordinary equations. Neural Networks 176: 106341 (2024) - [j568]Qian Li, Jianxin Li, Jia Wu, Xutan Peng, Cheng Ji, Hao Peng, Lihong Wang, Philip S. Yu:
Triplet-aware graph neural networks for factorized multi-modal knowledge graph entity alignment. Neural Networks 179: 106479 (2024) - [j567]Lilin Zhang, Ning Yang, Yanchao Sun, Philip S. Yu:
Provable Unrestricted Adversarial Training Without Compromise With Generalizability. IEEE Trans. Pattern Anal. Mach. Intell. 46(12): 8302-8319 (2024) - [j566]Xinqi Du, Hechang Chen, Che Wang, Yongheng Xing, Jielong Yang, Philip S. Yu, Yi Chang, Lifang He:
Robust multi-agent reinforcement learning via Bayesian distributional value estimation. Pattern Recognit. 145: 109917 (2024) - [j565]Jiayang Wu, Wensheng Gan, Han-Chieh Chao, Philip S. Yu:
Geospatial Big Data: Survey and Challenges. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 17: 17007-17020 (2024) - [j564]Jiushun Ma, Yuxin Huang, Linqin Wang, Xiang Huang, Hao Peng, Zhengtao Yu, Philip S. Yu:
Augmenting Low-Resource Cross-Lingual Summarization with Progression-Grounded Training and Prompting. ACM Trans. Asian Low Resour. Lang. Inf. Process. 23(9): 129:1-129:22 (2024) - [j563]Xiang Huang, Hao Peng, Dongcheng Zou, Zhiwei Liu, Jianxin Li, Kay Liu, Jia Wu, Jianlin Su, Philip S. Yu:
CoSENT: Consistent Sentence Embedding via Similarity Ranking. IEEE ACM Trans. Audio Speech Lang. Process. 32: 2800-2813 (2024) - [j562]Ran Song, Xiang Huang, Hao Peng, Shengxiang Gao, Zhengtao Yu, Philip S. Yu:
WDEA: The Structure and Semantic Fusion With Wasserstein Distance for Low-Resource Language Entity Alignment. IEEE ACM Trans. Audio Speech Lang. Process. 32: 4511-4525 (2024) - [j561]Linqin Wang, Xiang Huang, Zhengtao Yu, Hao Peng, Shengxiang Gao, Cunli Mao, Yuxin Huang, Ling Dong, Philip S. Yu:
Zero-Shot Text Normalization via Cross-Lingual Knowledge Distillation. IEEE ACM Trans. Audio Speech Lang. Process. 32: 4631-4646 (2024) - [j560]Senzhang Wang, Changdong Wang, Di Jin, Shirui Pan, Philip S. Yu:
Guest Editorial TBD Special Issue on Graph Machine Learning for Recommender Systems. IEEE Trans. Big Data 10(6): 682 (2024) - [j559]Qihua Feng, Peiya Li, Zhixun Lu, Chaozhuo Li, Zefan Wang, Zhiquan Liu, Chunhui Duan, Feiran Huang, Jian Weng, Philip S. Yu:
EViT: Privacy-Preserving Image Retrieval via Encrypted Vision Transformer in Cloud Computing. IEEE Trans. Circuits Syst. Video Technol. 34(8): 7467-7483 (2024) - [j558]Zhixiao Wang, Yahui Chai, Chengcheng Sun, Xiaobin Rui, Hao Mi, Xinyu Zhang, Philip S. Yu:
A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs. IEEE Trans. Cybern. 54(2): 1037-1047 (2024) - [j557]Bin Pu, Jiansong Liu, Yan Kang, Jianguo Chen, Philip S. Yu:
MVSTT: A Multiview Spatial-Temporal Transformer Network for Traffic-Flow Forecasting. IEEE Trans. Cybern. 54(3): 1582-1595 (2024) - [j556]Jia Wu, Jian Yang, Philip S. Yu, Carlo Condo:
Special Section on Community Detection in Time-Varying Information and Computing Networks: Theory, Models, and Applications. IEEE Trans. Emerg. Top. Comput. 12(2): 402 (2024) - [j555]Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, Xing Xie:
A Survey on Evaluation of Large Language Models. ACM Trans. Intell. Syst. Technol. 15(3): 39:1-39:45 (2024) - [j554]Chunkai Zhang, Yuting Yang, Zilin Du, Wensheng Gan, Philip S. Yu:
HUSP-SP: Faster Utility Mining on Sequence Data. ACM Trans. Knowl. Discov. Data 18(1): 5:1-5:21 (2024) - [j553]Chunkai Zhang, Maohua Lyu, Wensheng Gan, Philip S. Yu:
Totally-ordered Sequential Rules for Utility Maximization. ACM Trans. Knowl. Discov. Data 18(4): 80:1-80:23 (2024) - [j552]Gengsen Huang, Wensheng Gan, Philip S. Yu:
TaSPM: Targeted Sequential Pattern Mining. ACM Trans. Knowl. Discov. Data 18(5): 114:1-114:18 (2024) - [j551]Ting-Ting Su, Chang-Dong Wang, Wu-Dong Xi, Jian-Huang Lai, Philip S. Yu:
Hierarchical Alignment With Polar Contrastive Learning for Next-Basket Recommendation. IEEE Trans. Knowl. Data Eng. 36(1): 199-210 (2024) - [j550]Chuanpan Zheng, Xiaoliang Fan, Shirui Pan, Haibing Jin, Zhaopeng Peng, Zonghan Wu, Cheng Wang, Philip S. Yu:
Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting. IEEE Trans. Knowl. Data Eng. 36(1): 372-385 (2024) - [j549]Yue Wang, Yao Wan, Lu Bai, Lixin Cui, Zhuo Xu, Ming Li, Philip S. Yu, Edwin R. Hancock:
Collaborative Knowledge Graph Fusion by Exploiting the Open Corpus. IEEE Trans. Knowl. Data Eng. 36(2): 475-489 (2024) - [j548]Wen-Zhi Li, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
Towards Effective and Robust Graph Contrastive Learning With Graph Autoencoding. IEEE Trans. Knowl. Data Eng. 36(2): 868-881 (2024) - [j547]Siyuan Guo, Lixin Zou, Hechang Chen, Bohao Qu, Haotian Chi, Philip S. Yu, Yi Chang:
Sample Efficient Offline-to-Online Reinforcement Learning. IEEE Trans. Knowl. Data Eng. 36(3): 1299-1310 (2024) - [j546]Xuming Hu, Zhaochen Hong, Chenwei Zhang, Aiwei Liu, Shiao Meng, Lijie Wen, Irwin King, Philip S. Yu:
Reading Broadly to Open Your Mind: Improving Open Relation Extraction With Search Documents Under Self-Supervisions. IEEE Trans. Knowl. Data Eng. 36(5): 2026-2040 (2024) - [j545]Shuaiqi Liu, Jiannong Cao, Zhongfen Deng, Wenting Zhao, Ruosong Yang, Zhiyuan Wen, Philip S. Yu:
Neural Abstractive Summarization for Long Text and Multiple Tables. IEEE Trans. Knowl. Data Eng. 36(6): 2572-2586 (2024) - [j544]Jiaqian Ren, Hao Peng, Lei Jiang, Zhiwei Liu, Jia Wu, Zhengtao Yu, Philip S. Yu:
Uncertainty-Guided Boundary Learning for Imbalanced Social Event Detection. IEEE Trans. Knowl. Data Eng. 36(6): 2701-2715 (2024) - [j543]Jiangnan Xia, Yu Yang, Senzhang Wang, Hongzhi Yin, Jiannong Cao, Philip S. Yu:
Bayes-Enhanced Multi-View Attention Networks for Robust POI Recommendation. IEEE Trans. Knowl. Data Eng. 36(7): 2895-2909 (2024) - [j542]Xinqi Du, Ziyue Li, Cheng Long, Yongheng Xing, Philip S. Yu, Hechang Chen:
FELight: Fairness-Aware Traffic Signal Control via Sample-Efficient Reinforcement Learning. IEEE Trans. Knowl. Data Eng. 36(9): 4678-4692 (2024) - [j541]Man-Sheng Chen, Chang-Dong Wang, Dong Huang, Jian-Huang Lai, Philip S. Yu:
Concept Factorization Based Multiview Clustering for Large-Scale Data. IEEE Trans. Knowl. Data Eng. 36(11): 5784-5796 (2024) - [j540]Haibo Wang, Chuan Zhou, Xin Chen, Jia Wu, Shirui Pan, Zhao Li, Jilong Wang, Philip S. Yu:
Graph Structure Reshaping Against Adversarial Attacks on Graph Neural Networks. IEEE Trans. Knowl. Data Eng. 36(11): 6344-6357 (2024) - [j539]Lu Bai, Lixin Cui, Yue Wang, Ming Li, Jing Li, Philip S. Yu, Edwin R. Hancock:
HAQJSK: Hierarchical-Aligned Quantum Jensen-Shannon Kernels for Graph Classification. IEEE Trans. Knowl. Data Eng. 36(11): 6370-6384 (2024) - [j538]Yi Zhang, Yuying Zhao, Zhaoqing Li, Xueqi Cheng, Yu Wang, Olivera Kotevska, Philip S. Yu, Tyler Derr:
A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and Applications. IEEE Trans. Knowl. Data Eng. 36(12): 7497-7515 (2024) - [j537]Zhangtao Cheng, Fan Zhou, Xovee Xu, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, Philip S. Yu:
Information Cascade Popularity Prediction via Probabilistic Diffusion. IEEE Trans. Knowl. Data Eng. 36(12): 8541-8555 (2024) - [j536]Tengfei Ma, Yujie Chen, Wen Tao, Dashun Zheng, Xuan Lin, Patrick Cheong-Iao Pang, Yiping Liu, Yijun Wang, Longyue Wang, Bosheng Song, Xiangxiang Zeng, Philip S. Yu:
Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction. IEEE Trans. Knowl. Data Eng. 36(12): 8682-8694 (2024) - [j535]Youwei Liang, Dong Huang, Chang-Dong Wang, Philip S. Yu:
Multi-View Graph Learning by Joint Modeling of Consistency and Inconsistency. IEEE Trans. Neural Networks Learn. Syst. 35(2): 2848-2862 (2024) - [j534]Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cécile Paris, Surya Nepal, Di Jin, Quan Z. Sheng, Philip S. Yu:
A Comprehensive Survey on Community Detection With Deep Learning. IEEE Trans. Neural Networks Learn. Syst. 35(4): 4682-4702 (2024) - [j533]Qian Li, Jianxin Li, Jiawei Sheng, Shiyao Cui, Jia Wu, Yiming Hei, Hao Peng, Shu Guo, Lihong Wang, Amin Beheshti, Philip S. Yu:
A Survey on Deep Learning Event Extraction: Approaches and Applications. IEEE Trans. Neural Networks Learn. Syst. 35(5): 6301-6321 (2024) - [j532]Lingjuan Lyu, Han Yu, Xingjun Ma, Chen Chen, Lichao Sun, Jun Zhao, Qiang Yang, Philip S. Yu:
Privacy and Robustness in Federated Learning: Attacks and Defenses. IEEE Trans. Neural Networks Learn. Syst. 35(7): 8726-8746 (2024) - [j531]Xunxun Wu, Chang-Dong Wang, Jia-Qi Lin, Wu-Dong Xi, Philip S. Yu:
Motif-Based Contrastive Learning for Community Detection. IEEE Trans. Neural Networks Learn. Syst. 35(9): 11706-11719 (2024) - [j530]Jie Xu, Chaozhuo Li, Feiran Huang, Zhoujun Li, Xing Xie, Philip S. Yu:
Sinkhorn Distance Minimization for Adaptive Semi-Supervised Social Network Alignment. IEEE Trans. Neural Networks Learn. Syst. 35(10): 13340-13353 (2024) - [j529]Hao Peng, Jian Yang, Jia Wu, Philip S. Yu:
Introduction to the Special Issue on Advanced Graph Mining on the Web: Theory, Algorithms, and Applications: Part 2. ACM Trans. Web 18(2): 16:1-16:2 (2024) - [c1092]Xiaorui Su, Pengwei Hu, Zhu-Hong You, Philip S. Yu, Lun Hu:
Dual-Channel Learning Framework for Drug-Drug Interaction Prediction via Relation-Aware Heterogeneous Graph Transformer. AAAI 2024: 249-256 - [c1091]Yuwei Cao, Hao Peng, Zhengtao Yu, Philip S. Yu:
Hierarchical and Incremental Structural Entropy Minimization for Unsupervised Social Event Detection. AAAI 2024: 8255-8264 - [c1090]Li Sun, Zhenhao Huang, Zixi Wang, Feiyang Wang, Hao Peng, Philip S. Yu:
Motif-Aware Riemannian Graph Neural Network with Generative-Contrastive Learning. AAAI 2024: 9044-9052 - [c1089]Jingyu Pu, Chenhang Cui, Xinyue Chen, Yazhou Ren, Xiaorong Pu, Zhifeng Hao, Philip S. Yu, Lifang He:
Adaptive Feature Imputation with Latent Graph for Deep Incomplete Multi-View Clustering. AAAI 2024: 14633-14641 - [c1088]Xuming Hu, Zhaochen Hong, Yong Jiang, Zhichao Lin, Xiaobin Wang, Pengjun Xie, Philip S. Yu:
Three Heads Are Better than One: Improving Cross-Domain NER with Progressive Decomposed Network. AAAI 2024: 18261-18269 - [c1087]Henry Peng Zou, Vinay Samuel, Yue Zhou, Weizhi Zhang, Liancheng Fang, Zihe Song, Philip S. Yu, Cornelia Caragea:
ImplicitAVE: An Open-Source Dataset and Multimodal LLMs Benchmark for Implicit Attribute Value Extraction. ACL (Findings) 2024: 338-354 - [c1086]Tao Zhang, Chenwei Zhang, Xian Li, Jingbo Shang, Hoang Nguyen, Philip S. Yu:
Stronger, Lighter, Better: Towards Life-Long Attribute Value Extraction for E-Commerce Products. ACL (Findings) 2024: 8631-8643 - [c1085]Xuming Hu, Xiaochuan Li, Junzhe Chen, Yinghui Li, Yangning Li, Xiaoguang Li, Yasheng Wang, Qun Liu, Lijie Wen, Philip S. Yu, Zhijiang Guo:
Evaluating Robustness of Generative Search Engine on Adversarial Factoid Questions. ACL (Findings) 2024: 10650-10671 - [c1084]Jiayang Wu, Wensheng Gan, Jinqi Lai, Guoting Chen, Philip S. Yu:
Drug-gene Associations with Graph Learning. BCB 2024: 61:1-61:6 - [c1083]Zehao Gu, Shiyang Zhou, Yun Xiong, Yang Luo, Hongrun Ren, Qiang Wang, Xiaofeng Gao, Philip S. Yu:
MSTEM: Masked Spatiotemporal Event Series Modeling for Urban Undisciplined Events Forecasting. CIKM 2024: 685-694 - [c1082]Chen Wang, Liangwei Yang, Zhiwei Liu, Xiaolong Liu, Mingdai Yang, Yueqing Liang, Philip S. Yu:
Collaborative Alignment for Recommendation. CIKM 2024: 2315-2325 - [c1081]Xiaoyan Yu, Yifan Wei, Pu Li, Shuaishuai Zhou, Hao Peng, Li Sun, Liehuang Zhu, Philip S. Yu:
DAMe: Personalized Federated Social Event Detection with Dual Aggregation Mechanism. CIKM 2024: 3052-3062 - [c1080]Hengrui Zhang, Shen Wang, Vassilis N. Ioannidis, Soji Adeshina, Jiani Zhang, Xiao Qin, Christos Faloutsos, Da Zheng, George Karypis, Philip S. Yu:
Revisit Orthogonality in Graph-Regularized MLPs. CIKM 2024: 3145-3154 - [c1079]Hengrui Zhang, Qitian Wu, Chenxiao Yang, Philip S. Yu:
InfoMLP: Unlocking the Potential of MLPs for Semi-Supervised Learning with Structured Data. CIKM 2024: 3155-3164 - [c1078]Weizhi Zhang, Liangwei Yang, Zihe Song, Henry Peng Zou, Ke Xu, Liancheng Fang, Philip S. Yu:
Do We Really Need Graph Convolution During Training? Light Post-Training Graph-ODE for Efficient Recommendation. CIKM 2024: 3248-3258 - [c1077]Luyi Ma, Xiaohan Li, Kamilia Ahmadi, Jianpeng Xu, Philip S. Yu, George Karypis:
3rd International Workshop on Industrial Recommendation Systems (IRS). CIKM 2024: 5588-5591 - [c1076]Yongfeng Zhang, Zhiwei Liu, Qingsong Wen, Linsey Pang, Wei Liu, Philip S. Yu:
AI Agent for Information Retrieval: Generating and Ranking. CIKM 2024: 5605-5607 - [c1075]Hoang Nguyen, Chenwei Zhang, Ye Liu, Natalie Parde, Eugene Rohrbaugh, Philip S. Yu:
CORI: CJKV Benchmark with Romanization Integration - a Step towards Cross-lingual Transfer beyond Textual Scripts. LREC/COLING 2024: 4008-4020 - [c1074]Yucheng Jin, Yun Xiong, Juncheng Fang, Xixi Wu, Dongxiao He, Xing Jia, Bingchen Zhao, Philip S. Yu:
Beyond the Known: Novel Class Discovery for Open-World Graph Learning. DASFAA (6) 2024: 117-133 - [c1073]Yibo Wang, Xiangjue Dong, James Caverlee, Philip S. Yu:
DA³: A Distribution-Aware Adversarial Attack against Language Models. EMNLP 2024: 1808-1825 - [c1072]Jiangshu Du, Yibo Wang, Wenting Zhao, Zhongfen Deng, Shuaiqi Liu, Renze Lou, Henry Peng Zou, Pranav Narayanan Venkit, Nan Zhang, Mukund Srinath, Haoran Zhang, Vipul Gupta, Yinghui Li, Tao Li, Fei Wang, Qin Liu, Tianlin Liu, Pengzhi Gao, Congying Xia, Chen Xing, Cheng Jiayang, Zhaowei Wang, Ying Su, Raj Sanjay Shah, Ruohao Guo, Jing Gu, Haoran Li, Kangda Wei, Zihao Wang, Lu Cheng, Surangika Ranathunga, Meng Fang, Jie Fu, Fei Liu, Ruihong Huang, Eduardo Blanco, Yixin Cao, Rui Zhang, Philip S. Yu, Wenpeng Yin:
LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing. EMNLP 2024: 5081-5099 - [c1071]Xuming Hu, Junzhe Chen, Xiaochuan Li, Yufei Guo, Lijie Wen, Philip S. Yu, Zhijiang Guo:
Towards Understanding Factual Knowledge of Large Language Models. ICLR 2024 - [c1070]Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie Wen, Irwin King, Philip S. Yu:
An Unforgeable Publicly Verifiable Watermark for Large Language Models. ICLR 2024 - [c1069]Li Sun, Zhenhao Huang, Hao Peng, Yujie Wang, Chunyang Liu, Philip S. Yu:
LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering. ICML 2024 - [c1068]Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Hanchi Sun, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P. Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, Joaquin Vanschoren, John C. Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yong Chen, Yue Zhao:
Position: TrustLLM: Trustworthiness in Large Language Models. ICML 2024 - [c1067]Fariba Lotfi, Amin Beheshti, Mansour Jamzad, Hamid Beigy, Jia Wu, Philip S. Yu:
The Open Story Model (OSM): Transforming Big Data into Interactive Narratives. ICWS 2024: 1177-1187 - [c1066]Xuexiong Luo, Jia Wu, Jian Yang, Shan Xue, Amin Beheshti, Quan Z. Sheng, David McAlpine, Paul F. Sowman, Alexis Giral, Philip S. Yu:
Graph Neural Networks for Brain Graph Learning: A Survey. IJCAI 2024: 8170-8178 - [c1065]Zhongyi Pei, Zhiyao Cen, Yipeng Huang, Chen Wang, Lin Liu, Philip S. Yu, Mingsheng Long, Jianmin Wang:
BTTackler: A Diagnosis-based Framework for Efficient Deep Learning Hyperparameter Optimization. KDD 2024: 2340-2351 - [c1064]Chen Wang, Ziwei Fan, Liangwei Yang, Mingdai Yang, Xiaolong Liu, Zhiwei Liu, Philip S. Yu:
Pre-Training with Transferable Attention for Addressing Market Shifts in Cross-Market Sequential Recommendation. KDD 2024: 2970-2979 - [c1063]Ronghui Xu, Hao Miao, Senzhang Wang, Philip S. Yu, Jianxin Wang:
PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection. KDD 2024: 3621-3632 - [c1062]Yuxuan Liang, Chuishi Meng, Yanhua Li, Yu Zheng, Jieping Ye, Qiang Yang, Philip S. Yu, Ouri Wolfson:
The 13th International Workshop on Urban Computing. KDD 2024: 6727-6728 - [c1061]Wenting Zhao, Ye Liu, Tong Niu, Yao Wan, Philip S. Yu, Shafiq Joty, Yingbo Zhou, Semih Yavuz:
DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain Question Answering over Knowledge Base and Text. NAACL-HLT (Findings) 2024: 51-68 - [c1060]Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Qingyang Wu, Zhongfen Deng, Jiangshu Du, Shuaiqi Liu, Yunlong Xu, Philip S. Yu:
kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest Neighbor In-Context Learning. NAACL-HLT 2024: 326-337 - [c1059]Yu Wang, Zhiwei Liu, Liangwei Yang, Philip S. Yu:
Conditional Denoising Diffusion for Sequential Recommendation. PAKDD (5) 2024: 156-169 - [c1058]Kun Peng, Lei Jiang, Hao Peng, Rui Liu, Zhengtao Yu, Jiaqian Ren, Zhifeng Hao, Philip S. Yu:
Prompt Based Tri-Channel Graph Convolution Neural Network for Aspect Sentiment Triplet Extraction. SDM 2024: 145-153 - [c1057]Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, Philip S. Yu:
Instruction-based Hypergraph Pretraining. SIGIR 2024: 501-511 - [c1056]Xiaolong Liu, Liangwei Yang, Zhiwei Liu, Mingdai Yang, Chen Wang, Hao Peng, Philip S. Yu:
Knowledge Graph Context-Enhanced Diversified Recommendation. WSDM 2024: 462-471 - [c1055]Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, Philip S. Yu:
Unified Pretraining for Recommendation via Task Hypergraphs. WSDM 2024: 891-900 - [c1054]Xusheng Zhao, Hao Peng, Qiong Dai, Xu Bai, Huailiang Peng, Yanbing Liu, Qinglang Guo, Philip S. Yu:
RDGCN: Reinforced Dependency Graph Convolutional Network for Aspect-based Sentiment Analysis. WSDM 2024: 976-984 - [c1053]Yue Huang, Kai Shu, Philip S. Yu, Lichao Sun:
From Creation to Clarification: ChatGPT's Journey Through the Fake News Quagmire. WWW (Companion Volume) 2024: 513-516 - [c1052]Chuan Shi, Cheng Yang, Yuan Fang, Lichao Sun, Philip S. Yu:
Lecture-style Tutorial: Towards Graph Foundation Models. WWW (Companion Volume) 2024: 1264-1267 - [c1051]Zefeng Chen, Wensheng Gan, Jiayi Sun, Jiayang Wu, Philip S. Yu:
Open Metaverse: Issues, Evolution, and Future. WWW (Companion Volume) 2024: 1351-1360 - [c1050]Wenting Zhao, Zhongfen Deng, Shweta Yadav, Philip S. Yu:
Heterogeneous Knowledge Grounding for Medical Question Answering with Retrieval Augmented Large Language Model. WWW (Companion Volume) 2024: 1590-1594 - [c1049]Li Sun, Jingbin Hu, Suyang Zhou, Zhenhao Huang, Junda Ye, Hao Peng, Zhengtao Yu, Philip S. Yu:
RicciNet: Deep Clustering via A Riemannian Generative Model. WWW 2024: 4071-4082 - [i518]Yao Wan, Yang He, Zhangqian Bi, Jianguo Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin, Philip S. Yu:
Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit. CoRR abs/2401.00288 (2024) - [i517]Li Sun, Zhenhao Huang, Zixi Wang, Feiyang Wang, Hao Peng, Philip S. Yu:
Motif-aware Riemannian Graph Neural Network with Generative-Contrastive Learning. CoRR abs/2401.01232 (2024) - [i516]Li Sun, Junda Ye, Jiawei Zhang, Yong Yang, Mingsheng Liu, Feiyang Wang, Philip S. Yu:
Contrastive Sequential Interaction Network Learning on Co-Evolving Riemannian Spaces. CoRR abs/2401.01243 (2024) - [i515]Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P. Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, John C. Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yue Zhao:
TrustLLM: Trustworthiness in Large Language Models. CoRR abs/2401.05561 (2024) - [i514]Li Sun, Zhenhao Huang, Hua Wu, Junda Ye, Hao Peng, Zhengtao Yu, Philip S. Yu:
DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for Alleviating Over-squashing. CoRR abs/2401.12780 (2024) - [i513]Wenjing Chang, Kay Liu, Kaize Ding, Philip S. Yu, Jianjun Yu:
Multitask Active Learning for Graph Anomaly Detection. CoRR abs/2401.13210 (2024) - [i512]Liangwei Yang, Hengrui Zhang, Zihe Song, Jiawei Zhang, Weizhi Zhang, Jing Ma, Philip S. Yu:
Cyclic Neural Network. CoRR abs/2402.03332 (2024) - [i511]Yuqing Liu, Yu Wang, Lichao Sun, Philip S. Yu:
Rec-GPT4V: Multimodal Recommendation with Large Vision-Language Models. CoRR abs/2402.08670 (2024) - [i510]Chen Wang, Fangxin Wang, Ruocheng Guo, Yueqing Liang, Kay Liu, Philip S. Yu:
Confidence-aware Fine-tuning of Sequential Recommendation Systems via Conformal Prediction. CoRR abs/2402.08976 (2024) - [i509]Yinghui Li, Qingyu Zhou, Yuanzhen Luo, Shirong Ma, Yangning Li, Hai-Tao Zheng, Xuming Hu, Philip S. Yu:
When LLMs Meet Cunning Questions: A Fallacy Understanding Benchmark for Large Language Models. CoRR abs/2402.11100 (2024) - [i508]Xiangjue Dong, Yibo Wang, Philip S. Yu, James Caverlee:
Disclosure and Mitigation of Gender Bias in LLMs. CoRR abs/2402.11190 (2024) - [i507]Yinghui Li, Shang Qin, Jingheng Ye, Shirong Ma, Yangning Li, Libo Qin, Xuming Hu, Wenhao Jiang, Hai-Tao Zheng, Philip S. Yu:
Rethinking the Roles of Large Language Models in Chinese Grammatical Error Correction. CoRR abs/2402.11420 (2024) - [i506]Qian Ma, Hongliang Chi, Hengrui Zhang, Kay Liu, Zhiwei Zhang, Lu Cheng, Suhang Wang, Philip S. Yu, Yao Ma:
Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward Comprehensive Benchmarks. CoRR abs/2402.15680 (2024) - [i505]Chaoguang Luo, Liuying Wen, Yong Qin, Liangwei Yang, Zhineng Hu, Philip S. Yu:
Against Filter Bubbles: Diversified Music Recommendation via Weighted Hypergraph Embedding Learning. CoRR abs/2402.16299 (2024) - [i504]Wei Ju, Siyu Yi, Yifan Wang, Zhiping Xiao, Zhengyang Mao, Hourun Li, Yiyang Gu, Yifang Qin, Nan Yin, Senzhang Wang, Xinwang Liu, Xiao Luo, Philip S. Yu, Ming Zhang:
A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy and OOD Challenges. CoRR abs/2403.04468 (2024) - [i503]Fangxin Wang, Yuqing Liu, Kay Liu, Yibo Wang, Sourav Medya, Philip S. Yu:
Uncertainty in Graph Neural Networks: A Survey. CoRR abs/2403.07185 (2024) - [i502]Xuming Hu, Xiaochuan Li, Junzhe Chen, Yinghui Li, Yangning Li, Xiaoguang Li, Yasheng Wang, Qun Liu, Lijie Wen, Philip S. Yu, Zhijiang Guo:
Evaluating Robustness of Generative Search Engine on Adversarial Factual Questions. CoRR abs/2403.12077 (2024) - [i501]Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang, Philip S. Yu, Qingsong Wen:
Large Language Models for Education: A Survey and Outlook. CoRR abs/2403.18105 (2024) - [i500]Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, Philip S. Yu:
Instruction-based Hypergraph Pretraining. CoRR abs/2403.19063 (2024) - [i499]Yucheng Jin, Yun Xiong, Juncheng Fang, Xixi Wu, Dongxiao He, Xing Jia, Bingchen Zhao, Philip S. Yu:
Beyond the Known: Novel Class Discovery for Open-world Graph Learning. CoRR abs/2403.19907 (2024) - [i498]Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen, Yinghui Li, Lizi Liao, Min Li, Wanxiang Che, Philip S. Yu:
Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers. CoRR abs/2404.04925 (2024) - [i497]Pu Li, Xiaoyan Yu, Hao Peng, Yantuan Xian, Linqin Wang, Li Sun, Jingyun Zhang, Philip S. Yu:
Relational Prompt-based Pre-trained Language Models for Social Event Detection. CoRR abs/2404.08263 (2024) - [i496]Hoang H. Nguyen, Chenwei Zhang, Ye Liu, Natalie Parde, Eugene Rohrbaugh, Philip S. Yu:
CORI: CJKV Benchmark with Romanization Integration - A step towards Cross-lingual Transfer Beyond Textual Scripts. CoRR abs/2404.12618 (2024) - [i495]Hao Peng, Jingyun Zhang, Xiang Huang, Zhifeng Hao, Angsheng Li, Zhengtao Yu, Philip S. Yu:
Unsupervised Social Bot Detection via Structural Information Theory. CoRR abs/2404.13595 (2024) - [i494]Chao Chen, Chenghua Guo, Rui Xu, Xiangwen Liao, Xi Zhang, Sihong Xie, Hui Xiong, Philip S. Yu:
Uncertainty Quantification on Graph Learning: A Survey. CoRR abs/2404.14642 (2024) - [i493]Henry Peng Zou, Vinay Samuel, Yue Zhou, Weizhi Zhang, Liancheng Fang, Zihe Song, Philip S. Yu, Cornelia Caragea:
ImplicitAVE: An Open-Source Dataset and Multimodal LLMs Benchmark for Implicit Attribute Value Extraction. CoRR abs/2404.15592 (2024) - [i492]Weizhi Zhang, Liangwei Yang, Zihe Song, Henry Peng Zou, Ke Xu, Yuanjie Zhu, Philip S. Yu:
Mixed Supervised Graph Contrastive Learning for Recommendation. CoRR abs/2404.15954 (2024) - [i491]Jiayang Wu, Wensheng Gan, Han-Chieh Chao, Philip S. Yu:
Geospatial Big Data: Survey and Challenges. CoRR abs/2404.18428 (2024) - [i490]Yuwei Cao, Hao Peng, Angsheng Li, Chenyu You, Zhifeng Hao, Philip S. Yu:
Multi-Relational Structural Entropy. CoRR abs/2405.07096 (2024) - [i489]Li Sun, Zhenhao Huang, Hao Peng, Yujie Wang, Chunyang Liu, Philip S. Yu:
LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering. CoRR abs/2405.11801 (2024) - [i488]Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu, Yongheng Zhang, Yinghui Li, Min Li, Wanxiang Che, Philip S. Yu:
Large Language Models Meet NLP: A Survey. CoRR abs/2405.12819 (2024) - [i487]Hanyi Xu, Wensheng Gan, Zhenlian Qi, Jiayang Wu, Philip S. Yu:
Large Language Models for Education: A Survey. CoRR abs/2405.13001 (2024) - [i486]Yanxin Zheng, Wensheng Gan, Zefeng Chen, Zhenlian Qi, Qian Liang, Philip S. Yu:
Large Language Models for Medicine: A Survey. CoRR abs/2405.13055 (2024) - [i485]Hengrui Zhang, Liancheng Fang, Philip S. Yu:
Unleashing the Potential of Diffusion Models for Incomplete Data Imputation. CoRR abs/2405.20690 (2024) - [i484]Wenjing Chang, Kay Liu, Philip S. Yu, Jianjun Yu:
Enhancing Fairness in Unsupervised Graph Anomaly Detection through Disentanglement. CoRR abs/2406.00987 (2024) - [i483]Ronghui Xu, Hao Miao, Senzhang Wang, Philip S. Yu, Jianxin Wang:
PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection. CoRR abs/2406.02318 (2024) - [i482]Xuexiong Luo, Jia Wu, Jian Yang, Shan Xue, Amin Beheshti, Quan Z. Sheng, David McAlpine, Paul F. Sowman, Alexis Giral, Philip S. Yu:
Graph Neural Networks for Brain Graph Learning: A Survey. CoRR abs/2406.02594 (2024) - [i481]Jian Zhu, Xiaoye Chen, Wensheng Gan, Zefeng Chen, Philip S. Yu:
Targeted Mining Precise-positioning Episode Rules. CoRR abs/2406.05070 (2024) - [i480]Hengzhu Liu, Ping Xiong, Tianqing Zhu, Philip S. Yu:
A Survey on Machine Unlearning: Techniques and New Emerged Privacy Risks. CoRR abs/2406.06186 (2024) - [i479]Shang Wang, Tianqing Zhu, Bo Liu, Ming Ding, Xu Guo, Dayong Ye, Wanlei Zhou, Philip S. Yu:
Unique Security and Privacy Threats of Large Language Model: A Comprehensive Survey. CoRR abs/2406.07973 (2024) - [i478]Jiawen Qin, Haonan Yuan, Qingyun Sun, Lyujin Xu, Jiaqi Yuan, Pengfeng Huang, Zhaonan Wang, Xingcheng Fu, Hao Peng, Jianxin Li, Philip S. Yu:
IGL-Bench: Establishing the Comprehensive Benchmark for Imbalanced Graph Learning. CoRR abs/2406.09870 (2024) - [i477]Laiqiao Qin, Tianqing Zhu, Wanlei Zhou, Philip S. Yu:
Knowledge Distillation in Federated Learning: a Survey on Long Lasting Challenges and New Solutions. CoRR abs/2406.10861 (2024) - [i476]Linlin Wang, Tianqing Zhu, Wanlei Zhou, Philip S. Yu:
Linkage on Security, Privacy and Fairness in Federated Learning: New Balances and New Perspectives. CoRR abs/2406.10884 (2024) - [i475]Lingzhe Zhang, Tong Jia, Mengxi Jia, Yifan Wu, Aiwei Liu, Yong Yang, Zhonghai Wu, Xuming Hu, Philip S. Yu, Ying Li:
A Survey of AIOps for Failure Management in the Era of Large Language Models. CoRR abs/2406.11213 (2024) - [i474]Haopeng Zhang, Philip S. Yu, Jiawei Zhang:
A Systematic Survey of Text Summarization: From Statistical Methods to Large Language Models. CoRR abs/2406.11289 (2024) - [i473]Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, Philip S. Yu:
Update Selective Parameters: Federated Machine Unlearning Based on Model Explanation. CoRR abs/2406.12516 (2024) - [i472]Yueqing Liang, Liangwei Yang, Chen Wang, Xiongxiao Xu, Philip S. Yu, Kai Shu:
Taxonomy-Guided Zero-Shot Recommendations with LLMs. CoRR abs/2406.14043 (2024) - [i471]Jiangshu Du, Yibo Wang, Wenting Zhao, Zhongfen Deng, Shuaiqi Liu, Renze Lou, Henry Peng Zou, Pranav Narayanan Venkit, Nan Zhang, Mukund Srinath, Haoran Ranran Zhang, Vipul Gupta, Yinghui Li, Tao Li, Fei Wang, Qin Liu, Tianlin Liu, Pengzhi Gao, Congying Xia, Chen Xing, Jiayang Cheng, Zhaowei Wang, Ying Su, Raj Sanjay Shah, Ruohao Guo, Jing Gu, Haoran Li, Kangda Wei, Zihao Wang, Lu Cheng, Surangika Ranathunga, Meng Fang, Jie Fu, Fei Liu, Ruihong Huang, Eduardo Blanco, Yixin Cao, Rui Zhang, Philip S. Yu, Wenpeng Yin:
LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing. CoRR abs/2406.16253 (2024) - [i470]Faqian Guan, Tianqing Zhu, Hui Sun, Wanlei Zhou, Philip S. Yu:
Large Language Models for Link Stealing Attacks Against Graph Neural Networks. CoRR abs/2406.16963 (2024) - [i469]Qingyun Sun, Ziying Chen, Beining Yang, Cheng Ji, Xingcheng Fu, Sheng Zhou, Hao Peng, Jianxin Li, Philip S. Yu:
GC-Bench: An Open and Unified Benchmark for Graph Condensation. CoRR abs/2407.00615 (2024) - [i468]Weizhi Zhang, Liangwei Yang, Zihe Song, Henry Peng Zou, Ke Xu, Liancheng Fang, Philip S. Yu:
Do We Really Need Graph Convolution During Training? Light Post-Training Graph-ODE for Efficient Recommendation. CoRR abs/2407.18910 (2024) - [i467]Feng He, Tianqing Zhu, Dayong Ye, Bo Liu, Wanlei Zhou, Philip S. Yu:
The Emerged Security and Privacy of LLM Agent: A Survey with Case Studies. CoRR abs/2407.19354 (2024) - [i466]Liangwei Yang, Zhiwei Liu, Jianguo Zhang, Rithesh Murthy, Shelby Heinecke, Huan Wang, Caiming Xiong, Philip S. Yu:
Personalized Multi-task Training for Recommender System. CoRR abs/2407.21364 (2024) - [i465]Yujie Feng, Xu Chu, Yongxin Xu, Zexin Lu, Bo Liu, Philip S. Yu, Xiao-Ming Wu:
TaSL: Task Skill Localization and Consolidation for Language Model Continual Learning. CoRR abs/2408.05200 (2024) - [i464]Wendi Chen, Wensheng Gan, Philip S. Yu:
Digital Fingerprinting on Multimedia: A Survey. CoRR abs/2408.14155 (2024) - [i463]Yuqing Liang, Jiancheng Xiao, Wensheng Gan, Philip S. Yu:
Watermarking Techniques for Large Language Models: A Survey. CoRR abs/2409.00089 (2024) - [i462]Xiaoyan Yu, Yifan Wei, Pu Li, Shuaishuai Zhou, Hao Peng, Li Sun, Liehuang Zhu, Philip S. Yu:
DAMe: Personalized Federated Social Event Detection with Dual Aggregation Mechanism. CoRR abs/2409.00614 (2024) - [i461]Leyi Pan, Aiwei Liu, Yijian Lu, Zitian Gao, Yichen Di, Lijie Wen, Irwin King, Philip S. Yu:
WaterSeeker: Efficient Detection of Watermarked Segments in Large Documents. CoRR abs/2409.05112 (2024) - [i460]Yujia Zhou, Yan Liu, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Zheng Liu, Chaozhuo Li, Zhicheng Dou, Tsung-Yi Ho, Philip S. Yu:
Trustworthiness in Retrieval-Augmented Generation Systems: A Survey. CoRR abs/2409.10102 (2024) - [i459]Aiwei Liu, Sheng Guan, Yiming Liu, Leyi Pan, Yifei Zhang, Liancheng Fang, Lijie Wen, Philip S. Yu, Xuming Hu:
Can Watermarked LLMs be Identified by Users via Crafted Prompts? CoRR abs/2410.03168 (2024) - [i458]Aiwei Liu, Haoping Bai, Zhiyun Lu, Yanchao Sun, Xiang Kong, Simon Wang, Jiulong Shan, Albin Madappally Jose, Xiaojiang Liu, Lijie Wen, Philip S. Yu, Meng Cao:
TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights. CoRR abs/2410.04350 (2024) - [i457]Yibo Yan, Shen Wang, Jiahao Huo, Hang Li, Boyan Li, Jiamin Su, Xiong Gao, Yifan Zhang, Tianlong Xu, Zhendong Chu, Aoxiao Zhong, Kun Wang, Hui Xiong, Philip S. Yu, Xuming Hu, Qingsong Wen:
ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection. CoRR abs/2410.04509 (2024) - [i456]Wooseong Yang, Chen Wang, Zihe Song, Weizhi Zhang, Philip S. Yu:
Item Cluster-aware Prompt Learning for Session-based Recommendation. CoRR abs/2410.04756 (2024) - [i455]Dianzhi Yu, Xinni Zhang, Yankai Chen, Aiwei Liu, Yifei Zhang, Philip S. Yu, Irwin King:
Recent Advances of Multimodal Continual Learning: A Comprehensive Survey. CoRR abs/2410.05352 (2024) - [i454]Yuhang Yao, Yuan Li, Xinyi Fan, Junhao Li, Kay Liu, Weizhao Jin, Srivatsan Ravi, Philip S. Yu, Carlee Joe-Wong:
FedGraph: A Research Library and Benchmark for Federated Graph Learning. CoRR abs/2410.06340 (2024) - [i453]Fangxin Wang, Kay Liu, Sourav Medya, Philip S. Yu:
BANGS: Game-Theoretic Node Selection for Graph Self-Training. CoRR abs/2410.09348 (2024) - [i452]Haoyan Xu, Kay Liu, Zhengtao Yao, Philip S. Yu, Kaize Ding, Yue Zhao:
LEGO-Learn: Label-Efficient Graph Open-Set Learning. CoRR abs/2410.16386 (2024) - [i451]Li Sun, Zhenhao Huang, Qiqi Wan, Hao Peng, Philip S. Yu:
Spiking Graph Neural Network on Riemannian Manifolds. CoRR abs/2410.17941 (2024) - [i450]Hengrui Zhang, Liancheng Fang, Qitian Wu, Philip S. Yu:
Diffusion-nested Auto-Regressive Synthesis of Heterogeneous Tabular Data. CoRR abs/2410.21523 (2024) - 2023
- [j528]Xuan Lin, Lichang Dai, Yafang Zhou, Zu-Guo Yu, Wen Zhang, Jian-Yu Shi, Dong-Sheng Cao, Li Zeng, Haowen Chen, Bosheng Song, Philip S. Yu, Xiangxiang Zeng:
Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction. Briefings Bioinform. 24(4) (2023) - [j527]Shuai Zhou, Chi Liu, Dayong Ye, Tianqing Zhu, Wanlei Zhou, Philip S. Yu:
Adversarial Attacks and Defenses in Deep Learning: From a Perspective of Cybersecurity. ACM Comput. Surv. 55(8): 163:1-163:39 (2023) - [j526]Guiling Li, Shaolin Xu, Senzhang Wang, Philip S. Yu:
Forest based on Interval Transformation (FIT): A time series classifier with adaptive features. Expert Syst. Appl. 213(Part C): 118923 (2023) - [j525]Chengcheng Sun, Zhixiao Wang, Xiaobin Rui, Philip S. Yu, Lichao Sun:
An in-depth study on key nodes in social networks. Intell. Data Anal. 27(6): 1811-1838 (2023) - [j524]Chuanren Liu, Ehsan Fakharizadi, Tong Xu, Philip S. Yu:
Recent advances in domain-driven data mining. Int. J. Data Sci. Anal. 15(1): 1-7 (2023) - [j523]Zhimeng Yang, Yazhou Ren, Zirui Wu, Ming Zeng, Jie Xu, Yang Yang, Xiaorong Pu, Philip S. Yu, Lifang He:
DC-FUDA: Improving deep clustering via fully unsupervised domain adaptation. Neurocomputing 526: 109-120 (2023) - [j522]Junsan Zhang, Xiaomin Wang, Yao Wan, Leiquan Wang, Jian Wang, Philip S. Yu:
SOR-TC: Self-attentive octave ResNet with temporal consistency for compressed video action recognition. Neurocomputing 533: 191-205 (2023) - [j521]Jiayi Sun, Wensheng Gan, Han-Chieh Chao, Philip S. Yu, Weiping Ding:
Internet of Behaviors: A Survey. IEEE Internet Things J. 10(13): 11117-11134 (2023) - [j520]Yao Chen, Wensheng Gan, Yongdong Wu, Philip S. Yu:
Privacy-preserving federated mining of frequent itemsets. Inf. Sci. 625: 504-520 (2023) - [j519]Tao Zhang, Tianqing Zhu, Mengde Han, Fengwen Chen, Jing Li, Wanlei Zhou, Philip S. Yu:
Fairness in graph-based semi-supervised learning. Knowl. Inf. Syst. 65(2): 543-570 (2023) - [j518]Xingcheng Fu, Jianxin Li, Jia Wu, Jiawen Qin, Qingyun Sun, Cheng Ji, Senzhang Wang, Hao Peng, Philip S. Yu:
Adaptive curvature exploration geometric graph neural network. Knowl. Inf. Syst. 65(5): 2281-2304 (2023) - [j517]Huan Tian, Bo Liu, Tianqing Zhu, Wanlei Zhou, Philip S. Yu:
CIFair: Constructing continuous domains of invariant features for image fair classifications. Knowl. Based Syst. 268: 110417 (2023) - [j516]Tao Zhang, Tianqing Zhu, Jing Li, Wanlei Zhou, Philip S. Yu:
Revisiting model fairness via adversarial examples. Knowl. Based Syst. 277: 110777 (2023) - [j515]Zishuo Cheng, Tianqing Zhu, Congcong Zhu, Dayong Ye, Wanlei Zhou, Philip S. Yu:
Privacy and evolutionary cooperation in neural-network-based game theory. Knowl. Based Syst. 282: 111076 (2023) - [j514]Hao Peng, Ruitong Zhang, Shaoning Li, Yuwei Cao, Shirui Pan, Philip S. Yu:
Reinforced, Incremental and Cross-Lingual Event Detection From Social Messages. IEEE Trans. Pattern Anal. Mach. Intell. 45(1): 980-998 (2023) - [j513]Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, Philip S. Yu, Mingsheng Long:
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning. IEEE Trans. Pattern Anal. Mach. Intell. 45(2): 2208-2225 (2023) - [j512]Jianxin Li, Qingyun Sun, Hao Peng, Beining Yang, Jia Wu, Philip S. Yu:
Adaptive Subgraph Neural Network With Reinforced Critical Structure Mining. IEEE Trans. Pattern Anal. Mach. Intell. 45(7): 8063-8080 (2023) - [j511]Yang Shu, Zhangjie Cao, Jinghan Gao, Jianmin Wang, Philip S. Yu, Mingsheng Long:
Omni-Training: Bridging Pre-Training and Meta-Training for Few-Shot Learning. IEEE Trans. Pattern Anal. Mach. Intell. 45(12): 15275-15291 (2023) - [j510]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Philip S. Yu:
Discovering High Utility Episodes in Sequences. IEEE Trans. Artif. Intell. 4(3): 473-486 (2023) - [j509]Tao Zhang, Congying Xia, Zhiwei Liu, Shu Zhao, Hao Peng, Philip S. Yu:
Domain-Invariant Feature Progressive Distillation with Adversarial Adaptive Augmentation for Low-Resource Cross-Domain NER. ACM Trans. Asian Low Resour. Lang. Inf. Process. 22(3): 76:1-76:21 (2023) - [j508]Shu'ang Li, Xuming Hu, Li Lin, Aiwei Liu, Lijie Wen, Philip S. Yu:
A Multi-Level Supervised Contrastive Learning Framework for Low-Resource Natural Language Inference. IEEE ACM Trans. Audio Speech Lang. Process. 31: 1771-1783 (2023) - [j507]Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, Philip S. Yu:
A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources. IEEE Trans. Big Data 9(2): 415-436 (2023) - [j506]Chunkai Zhang, Quanjian Dai, Zilin Du, Wensheng Gan, Jian Weng, Philip S. Yu:
TUSQ: Targeted High-Utility Sequence Querying. IEEE Trans. Big Data 9(2): 512-527 (2023) - [j505]Xuan Lin, Zhe Quan, Zhi-Jie Wang, Yan Guo, Xiangxiang Zeng, Philip S. Yu:
Effectively Identifying Compound-Protein Interaction Using Graph Neural Representation. IEEE ACM Trans. Comput. Biol. Bioinform. 20(2): 932-943 (2023) - [j504]Yan Kang, Haining Wang, Bin Pu, Liu Tao, Jianguo Chen, Philip S. Yu:
A Hybrid Two-Stage Teaching-Learning-Based Optimization Algorithm for Feature Selection in Bioinformatics. IEEE ACM Trans. Comput. Biol. Bioinform. 20(3): 1746-1760 (2023) - [j503]Tingting Liang, Congying Xia, Ziqiang Zhao, Yixuan Jiang, Yuyu Yin, Philip S. Yu:
Transferring From Textual Entailment to Biomedical Named Entity Recognition. IEEE ACM Trans. Comput. Biol. Bioinform. 20(4): 2577-2586 (2023) - [j502]Ling Huang, Chang-Dong Wang, Philip S. Yu:
Higher Order Connection Enhanced Community Detection in Adversarial Multiview Networks. IEEE Trans. Cybern. 53(5): 3060-3074 (2023) - [j501]Li Sun, Zhongbao Zhang, Gen Li, Pengxin Ji, Sen Su, Philip S. Yu:
MC2: Unsupervised Multiple Social Network Alignment. ACM Trans. Intell. Syst. Technol. 14(4): 70:1-70:22 (2023) - [j500]Gengsen Huang, Wensheng Gan, Jian Weng, Philip S. Yu:
US-Rule: Discovering Utility-driven Sequential Rules. ACM Trans. Knowl. Discov. Data 17(1): 10:1-10:22 (2023) - [j499]Jie Yang, Zhixiao Wang, Xiaobin Rui, Yahui Chai, Philip S. Yu, Lichao Sun:
Triadic Closure Sensitive Influence Maximization. ACM Trans. Knowl. Discov. Data 17(6): 77:1-77:26 (2023) - [j498]Houye Ji, Xiao Wang, Chuan Shi, Bai Wang, Philip S. Yu:
Heterogeneous Graph Propagation Network. IEEE Trans. Knowl. Data Eng. 35(1): 521-532 (2023) - [j497]Jianxin Li, Hao Peng, Yuwei Cao, Yingtong Dou, Hekai Zhang, Philip S. Yu, Lifang He:
Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks. IEEE Trans. Knowl. Data Eng. 35(1): 560-574 (2023) - [j496]Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Dongxiao He, Jia Wu, Philip S. Yu, Weixiong Zhang:
A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning. IEEE Trans. Knowl. Data Eng. 35(2): 1149-1170 (2023) - [j495]Dongxiao He, Tao Wang, Lu Zhai, Di Jin, Liang Yang, Yuxiao Huang, Zhiyong Feng, Philip S. Yu:
Adversarial Representation Mechanism Learning for Network Embedding. IEEE Trans. Knowl. Data Eng. 35(2): 1200-1213 (2023) - [j494]Qiaomin Yi, Ning Yang, Philip S. Yu:
Dual Adversarial Variational Embedding for Robust Recommendation. IEEE Trans. Knowl. Data Eng. 35(2): 1421-1433 (2023) - [j493]Lu Bai, Yuhang Jiao, Lixin Cui, Luca Rossi, Yue Wang, Philip S. Yu, Edwin R. Hancock:
Learning Graph Convolutional Networks Based on Quantum Vertex Information Propagation. IEEE Trans. Knowl. Data Eng. 35(2): 1747-1760 (2023) - [j492]Shu Zhao, Ziwei Du, Jie Chen, Yanping Zhang, Jie Tang, Philip S. Yu:
Hierarchical Representation Learning for Attributed Networks. IEEE Trans. Knowl. Data Eng. 35(3): 2641-2656 (2023) - [j491]Hao Peng, Jianxin Li, Zheng Wang, Renyu Yang, Mingsheng Liu, Mingming Zhang, Philip S. Yu, Lifang He:
Lifelong Property Price Prediction: A Case Study for the Toronto Real Estate Market. IEEE Trans. Knowl. Data Eng. 35(3): 2765-2780 (2023) - [j490]Pinghua Xu, Wenbin Hu, Jia Wu, Weiwei Liu, Yang Yang, Philip S. Yu:
Signed Network Representation by Preserving Multi-Order Signed Proximity. IEEE Trans. Knowl. Data Eng. 35(3): 3087-3100 (2023) - [j489]Zhenyu Qiu, Jia Wu, Wenbin Hu, Bo Du, Guocai Yuan, Philip S. Yu:
Temporal Link Prediction With Motifs for Social Networks. IEEE Trans. Knowl. Data Eng. 35(3): 3145-3158 (2023) - [j488]Lefeng Zhang, Tianqing Zhu, Ping Xiong, Wanlei Zhou, Philip S. Yu:
A Robust Game-Theoretical Federated Learning Framework With Joint Differential Privacy. IEEE Trans. Knowl. Data Eng. 35(4): 3333-3346 (2023) - [j487]Di Jin, Zhizhi Yu, Dongxiao He, Carl Yang, Philip S. Yu, Jiawei Han:
GCN for HIN via Implicit Utilization of Attention and Meta-Paths. IEEE Trans. Knowl. Data Eng. 35(4): 3925-3937 (2023) - [j486]Xusheng Zhao, Qiong Dai, Jia Wu, Hao Peng, Mingsheng Liu, Xu Bai, Jianlong Tan, Senzhang Wang, Philip S. Yu:
Multi-View Tensor Graph Neural Networks Through Reinforced Aggregation. IEEE Trans. Knowl. Data Eng. 35(4): 4077-4091 (2023) - [j485]Xiaoming Liu, Zhanwei Zhang, Lingjuan Lyu, Zhaohan Zhang, Shuai Xiao, Chao Shen, Philip S. Yu:
Traffic Anomaly Prediction Based on Joint Static-Dynamic Spatio-Temporal Evolutionary Learning. IEEE Trans. Knowl. Data Eng. 35(5): 5356-5370 (2023) - [j484]Li Sun, Zhongbao Zhang, Feiyang Wang, Pengxin Ji, Jian Wen, Sen Su, Philip S. Yu:
Aligning Dynamic Social Networks: An Optimization Over Dynamic Graph Autoencoder. IEEE Trans. Knowl. Data Eng. 35(6): 5597-5611 (2023) - [j483]Jiyue Li, Senzhang Wang, Jiaqiang Zhang, Hao Miao, Junbo Zhang, Philip S. Yu:
Fine-Grained Urban Flow Inference With Incomplete Data. IEEE Trans. Knowl. Data Eng. 35(6): 5851-5864 (2023) - [j482]Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, Philip S. Yu:
Graph Self-Supervised Learning: A Survey. IEEE Trans. Knowl. Data Eng. 35(6): 5879-5900 (2023) - [j481]Gaoyang Guo, Chaokun Wang, Bencheng Yan, Yunkai Lou, Hao Feng, Junchao Zhu, Jun Chen, Fei He, Philip S. Yu:
Learning Adaptive Node Embeddings Across Graphs. IEEE Trans. Knowl. Data Eng. 35(6): 6028-6042 (2023) - [j480]Tengfei Ma, Xuan Lin, Bosheng Song, Philip S. Yu, Xiangxiang Zeng:
KG-MTL: Knowledge Graph Enhanced Multi-Task Learning for Molecular Interaction. IEEE Trans. Knowl. Data Eng. 35(7): 7068-7081 (2023) - [j479]Daokun Zhang, Jie Yin, Philip S. Yu:
Link Prediction with Contextualized Self-Supervision. IEEE Trans. Knowl. Data Eng. 35(7): 7138-7151 (2023) - [j478]Jie Xu, Yazhou Ren, Huayi Tang, Zhimeng Yang, Lili Pan, Yang Yang, Xiaorong Pu, Philip S. Yu, Lifang He:
Self-Supervised Discriminative Feature Learning for Deep Multi-View Clustering. IEEE Trans. Knowl. Data Eng. 35(7): 7470-7482 (2023) - [j477]Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, Philip S. Yu, Lifang He, Bo Li:
Adversarial Attack and Defense on Graph Data: A Survey. IEEE Trans. Knowl. Data Eng. 35(8): 7693-7711 (2023) - [j476]Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng, Philip S. Yu:
Generalizing to Unseen Domains: A Survey on Domain Generalization. IEEE Trans. Knowl. Data Eng. 35(8): 8052-8072 (2023) - [j475]Tingting Liang, Congying Xia, Haoran Xu, Ziqiang Zhao, Yuyu Yin, Liang Chen, Philip S. Yu:
Modeling Reviews for Few-Shot Recommendation via Enhanced Prototypical Network. IEEE Trans. Knowl. Data Eng. 35(9): 9407-9420 (2023) - [j474]Yang Gao, Peng Zhang, Chuan Zhou, Hong Yang, Zhao Li, Yue Hu, Philip S. Yu:
HGNAS++: Efficient Architecture Search for Heterogeneous Graph Neural Networks. IEEE Trans. Knowl. Data Eng. 35(9): 9448-9461 (2023) - [j473]Ziwen Du, Ning Yang, Zhonghua Yu, Philip S. Yu:
Learning From Atypical Behavior: Temporary Interest Aware Recommendation Based on Reinforcement Learning. IEEE Trans. Knowl. Data Eng. 35(10): 9824-9835 (2023) - [j472]Chaozhuo Li, Senzhang Wang, Jie Xu, Zheng Liu, Hao Wang, Xing Xie, Lei Chen, Philip S. Yu:
Semi-Supervised Variational User Identity Linkage via Noise-Aware Self-Learning. IEEE Trans. Knowl. Data Eng. 35(10): 10166-10180 (2023) - [j471]Lefeng Zhang, Tianqing Zhu, Ping Xiong, Wanlei Zhou, Philip S. Yu:
A Game-Theoretic Federated Learning Framework for Data Quality Improvement. IEEE Trans. Knowl. Data Eng. 35(11): 10952-10966 (2023) - [j470]Jianxin Li, Xingcheng Fu, Shijie Zhu, Hao Peng, Senzhang Wang, Qingyun Sun, Philip S. Yu, Lifang He:
A Robust and Generalized Framework for Adversarial Graph Embedding. IEEE Trans. Knowl. Data Eng. 35(11): 11004-11018 (2023) - [j469]Yicong Li, Hongxu Chen, Yile Li, Lin Li, Philip S. Yu, Guandong Xu:
Reinforcement Learning Based Path Exploration for Sequential Explainable Recommendation. IEEE Trans. Knowl. Data Eng. 35(11): 11801-11814 (2023) - [j468]Jianxin Li, Lifang He, Hao Peng, Peng Cui, Charu C. Aggarwal, Philip S. Yu:
Guest Editorial Introduction to the Special Issue on Anomaly Detection in Emerging Data-Driven Applications: Theory, Algorithms, and Applications. IEEE Trans. Knowl. Data Eng. 35(12): 11982-11983 (2023) - [j467]Mengzhu Sun, Xi Zhang, Jianqiang Ma, Sihong Xie, Yazheng Liu, Philip S. Yu:
Inconsistent Matters: A Knowledge-Guided Dual-Consistency Network for Multi-Modal Rumor Detection. IEEE Trans. Knowl. Data Eng. 35(12): 12736-12749 (2023) - [j466]Bao-Yu Liu, Ling Huang, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
Multiview Clustering via Proximity Learning in Latent Representation Space. IEEE Trans. Neural Networks Learn. Syst. 34(2): 973-986 (2023) - [j465]Qi Wang, Weiliang Zhao, Jian Yang, Jia Wu, Shan Xue, Qianli Xing, Philip S. Yu:
C-DeepTrust: A Context-Aware Deep Trust Prediction Model in Online Social Networks. IEEE Trans. Neural Networks Learn. Syst. 34(6): 2767-2780 (2023) - [j464]Tao Zhang, Tianqing Zhu, Kun Gao, Wanlei Zhou, Philip S. Yu:
Balancing Learning Model Privacy, Fairness, and Accuracy With Early Stopping Criteria. IEEE Trans. Neural Networks Learn. Syst. 34(9): 5557-5569 (2023) - [j463]Dayong Ye, Tianqing Zhu, Congcong Zhu, Wanlei Zhou, Philip S. Yu:
Model-Based Self-Advising for Multi-Agent Learning. IEEE Trans. Neural Networks Learn. Syst. 34(10): 7934-7945 (2023) - [j462]Zhi-Hong Deng, Chang-Dong Wang, Ling Huang, Jian-Huang Lai, Philip S. Yu:
G3SR: Global Graph Guided Session-Based Recommendation. IEEE Trans. Neural Networks Learn. Syst. 34(12): 9671-9684 (2023) - [j461]Yiqi Wang, Chaozhuo Li, Zheng Liu, Mingzheng Li, Jiliang Tang, Xing Xie, Lei Chen, Philip S. Yu:
An Adaptive Graph Pre-training Framework for Localized Collaborative Filtering. ACM Trans. Inf. Syst. 41(2): 43:1-43:27 (2023) - [j460]Tianqing Zhu, Dayong Ye, Zishuo Cheng, Wanlei Zhou, Philip S. Yu:
Learning Games for Defending Advanced Persistent Threats in Cyber Systems. IEEE Trans. Syst. Man Cybern. Syst. 53(4): 2410-2422 (2023) - [j459]Hao Peng, Jian Yang, Jia Wu, Philip S. Yu:
Introduction to the Special Issue on Advanced Graph Mining on the Web: Theory, Algorithms, and Applications: Part 1. ACM Trans. Web 17(3): 14:1-14:2 (2023) - [c1048]Li Sun, Junda Ye, Hao Peng, Feiyang Wang, Philip S. Yu:
Self-Supervised Continual Graph Learning in Adaptive Riemannian Spaces. AAAI 2023: 4633-4642 - [c1047]Qingyun Sun, Jianxin Li, Beining Yang, Xingcheng Fu, Hao Peng, Philip S. Yu:
Self-Organization Preserved Graph Structure Learning with Principle of Relevant Information. AAAI 2023: 4643-4651 - [c1046]Jiangshu Du, Wenpeng Yin, Congying Xia, Philip S. Yu:
Learning to Select from Multiple Options. AAAI 2023: 12754-12762 - [c1045]Xuming Hu, Zhijiang Guo, Zhiyang Teng, Irwin King, Philip S. Yu:
Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis. ACL (2) 2023: 303-311 - [c1044]Fukun Ma, Xuming Hu, Aiwei Liu, Yawen Yang, Shuang Li, Philip S. Yu, Lijie Wen:
AMR-based Network for Aspect-based Sentiment Analysis. ACL (1) 2023: 322-337 - [c1043]Shuang Li, Xuming Hu, Aiwei Liu, Yawen Yang, Fukun Ma, Philip S. Yu, Lijie Wen:
Enhancing Cross-lingual Natural Language Inference by Soft Prompting with Multilingual Verbalizer. ACL (Findings) 2023: 1361-1374 - [c1042]Xuming Hu, Shen Wang, Xiao Qin, Chuan Lei, Zhengyuan Shen, Christos Faloutsos, Asterios Katsifodimos, George Karypis, Lijie Wen, Philip S. Yu:
Automatic Table Union Search with Tabular Representation Learning. ACL (Findings) 2023: 3786-3800 - [c1041]Xuming Hu, Yong Jiang, Aiwei Liu, Zhongqiang Huang, Pengjun Xie, Fei Huang, Lijie Wen, Philip S. Yu:
Entity-to-Text based Data Augmentation for various Named Entity Recognition Tasks. ACL (Findings) 2023: 9072-9087 - [c1040]Hoang Nguyen, Chenwei Zhang, Tao Zhang, Eugene Rohrbaugh, Philip S. Yu:
Enhancing Cross-lingual Transfer via Phonemic Transcription Integration. ACL (Findings) 2023: 9163-9175 - [c1039]Xuming Hu, Aiwei Liu, Zeqi Tan, Xin Zhang, Chenwei Zhang, Irwin King, Philip S. Yu:
GDA: Generative Data Augmentation Techniques for Relation Extraction Tasks. ACL (Findings) 2023: 10221-10234 - [c1038]Shen Wang, Ziwei Fan, Jibing Gong, Xiaokai Wei, Philip S. Yu:
TRANSGNN: Towards Knowledge Enhanced Top-K Recommendation via Transformed Heterogeneous Graph Neural Network. IEEE Big Data 2023: 304-314 - [c1037]Xiaolong Liu, Liangwei Yang, Zhiwei Liu, Xiaohan Li, Mingdai Yang, Chen Wang, Philip S. Yu:
Group-Aware Interest Disentangled Dual-Training for Personalized Recommendation. IEEE Big Data 2023: 393-402 - [c1036]Weizhi Zhang, Liangwei Yang, Yuwei Cao, Ke Xu, Yuanjie Zhu, Philip S. Yu:
Dual-Teacher Knowledge Distillation for Strict Cold-Start Recommendation. IEEE Big Data 2023: 483-492 - [c1035]Zhongfen Deng, Seunghyun Yoon, Trung Bui, Franck Dernoncourt, Quan Hung Tran, Shuaiqi Liu, Wenting Zhao, Tao Zhang, Yibo Wang, Philip S. Yu:
Aspect-based Meeting Transcript Summarization: A Two-Stage Approach with Weak Supervision on Sentence Classification. IEEE Big Data 2023: 636-645 - [c1034]Zhongfen Deng, Hao Peng, Tao Zhang, Shuaiqi Liu, Wenting Zhao, Yibo Wang, Philip S. Yu:
JPAVE: A Generation and Classification-based Model for Joint Product Attribute Prediction and Value Extraction. IEEE Big Data 2023: 1087-1094 - [c1033]Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, Philip S. Yu:
Multimodal Large Language Models: A Survey. IEEE Big Data 2023: 2247-2256 - [c1032]Hong Lin, Zirun Gan, Wensheng Gan, Zhenlian Qi, Yuehua Wang, Philip S. Yu:
Interaction in Metaverse: A Survey. IEEE Big Data 2023: 2473-2482 - [c1031]Wensheng Gan, Shicheng Wan, Philip S. Yu:
Model-as-a-Service (MaaS): A Survey. IEEE Big Data 2023: 4636-4645 - [c1030]Xiaolong Liu, Liangwei Yang, Chen Wang, Mingdai Yang, Zhiwei Liu, Philip S. Yu:
Multi-View Graph Convolution for Participant Recommendation. IEEE Big Data 2023: 5647-5656 - [c1029]Hong Lin, Wensheng Gan, Gengsen Huang, Philip S. Yu:
USER: Towards High-Utility Sequential Rules with Repetitive Items. IEEE Big Data 2023: 5977-5986 - [c1028]Ziwei Fan, Zhiwei Liu, Shelby Heinecke, Jianguo Zhang, Huan Wang, Caiming Xiong, Philip S. Yu:
Zero-shot Item-based Recommendation via Multi-task Product Knowledge Graph Pre-Training. CIKM 2023: 483-493 - [c1027]Hsu-Chao Lai, Philip S. Yu, Jiun-Long Huang:
Learning the Co-evolution Process on Live Stream Platforms with Dual Self-attention for Next-topic Recommendations. CIKM 2023: 1158-1167 - [c1026]Xi Wu, Liangwei Yang, Jibing Gong, Chao Zhou, Tianyu Lin, Xiaolong Liu, Philip S. Yu:
Dimension Independent Mixup for Hard Negative Sample in Collaborative Filtering. CIKM 2023: 2785-2794 - [c1025]Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, Philip S. Yu:
Group Identification via Transitional Hypergraph Convolution with Cross-view Self-supervised Learning. CIKM 2023: 2969-2979 - [c1024]Liangwei Yang, Zhiwei Liu, Chen Wang, Mingdai Yang, Xiaolong Liu, Jing Ma, Philip S. Yu:
Graph-based Alignment and Uniformity for Recommendation. CIKM 2023: 4395-4399 - [c1023]Lin Meng, Xiaonan Zhang, Jiawei Zhang, Philip S. Yu:
Location-Adaptive Generative Graph Augmentation for Fraud Detection. CogMI 2023: 24-30 - [c1022]Mingxia Wang, Yun Xiong, Yao Zhang, Philip S. Yu, Yangyong Zhu:
Hierarchical Encoder-Decoder with Addressable Memory Network for Diagnosis Prediction. DASFAA (4) 2023: 266-275 - [c1021]Yahui Chai, Xiaobin Rui, Jie Yang, Philip S. Yu, Zhixiao Wang:
A Graph Embedding Approach for Link Prediction via Triadic Closure Based Direct Aggregation and Weighted Concatenation. DASFAA (3) 2023: 341-350 - [c1020]Zefeng Chen, Wensheng Gan, Gengsen Huang, Yanxin Zheng, Philip S. Yu:
Towards Contiguous Sequences in Uncertain Data. DSAA 2023: 1-10 - [c1019]Hoang Nguyen, Ye Liu, Chenwei Zhang, Tao Zhang, Philip S. Yu:
CoF-CoT: Enhancing Large Language Models with Coarse-to-Fine Chain-of-Thought Prompting for Multi-domain NLU Tasks. EMNLP 2023: 12109-12119 - [c1018]Yawen Yang, Xuming Hu, Fukun Ma, Shu'ang Li, Aiwei Liu, Lijie Wen, Philip S. Yu:
Gaussian Prior Reinforcement Learning for Nested Named Entity Recognition. ICASSP 2023: 1-5 - [c1017]Chin-Yuan Yeh, Hsi-Wen Chen, De-Nian Yang, Wang-Chien Lee, Philip S. Yu, Ming-Syan Chen:
Planning Data Poisoning Attacks on Heterogeneous Recommender Systems in a Multiplayer Setting. ICDE 2023: 2510-2523 - [c1016]Li Sun, Zhenhao Huang, Hua Wu, Junda Ye, Hao Peng, Zhengtao Yu, Philip S. Yu:
DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for Alleviating Over-squashing. ICDM 2023: 558-567 - [c1015]Guangjie Zeng, Hao Peng, Angsheng Li, Zhiwei Liu, Chunyang Liu, Philip S. Yu, Lifang He:
Unsupervised Skin Lesion Segmentation via Structural Entropy Minimization on Multi-Scale Superpixel Graphs. ICDM 2023: 768-777 - [c1014]Zheng Liu, Xiaohan Li, Philip S. Yu:
A Counterfactual Fair Model for Longitudinal Electronic Health Records via Deconfounder. ICDM 2023: 1175-1180 - [c1013]Ke Xu, Yuanjie Zhu, Weizhi Zhang, Philip S. Yu:
Graph Neural Ordinary Differential Equations-based method for Collaborative Filtering. ICDM 2023: 1445-1450 - [c1012]Shen Wang, Ziwei Fan, Jibing Gong, Xiaokai Wei, Philip S. Yu:
IGCN: Item Influence Enhanced Graph Convolution Networks for Recommendation of Cold-Start Items. ICDM (Workshops) 2023: 1516-1525 - [c1011]Fanlong Zeng, Wensheng Gan, Yongheng Wang, Philip S. Yu:
Distributed Training of Large Language Models. ICPADS 2023: 840-847 - [c1010]Li Sun, Feiyang Wang, Junda Ye, Hao Peng, Philip S. Yu:
CONGREGATE: Contrastive Graph Clustering in Curvature Spaces. IJCAI 2023: 2296-2305 - [c1009]Xianghua Zeng, Hao Peng, Angsheng Li, Chunyang Liu, Lifang He, Philip S. Yu:
Hierarchical State Abstraction based on Structural Information Principles. IJCAI 2023: 4549-4557 - [c1008]Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Zhongfen Deng, Philip S. Yu:
Localize, Retrieve and Fuse: A Generalized Framework for Free-Form Question Answering over Tables. IJCNLP (Findings) 2023: 1-12 - [c1007]Yibo Wang, Wenting Zhao, Yao Wan, Zhongfen Deng, Philip S. Yu:
Named Entity Recognition via Machine Reading Comprehension: A Multi-Task Learning Approach. IJCNLP (Findings) 2023: 13-19 - [c1006]Jiangshu Du, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S. Yu:
All Labels Together: Low-shot Intent Detection with an Efficient Label Semantic Encoding Paradigm. IJCNLP (2) 2023: 131-138 - [c1005]Yuefei Lyu, Xiaoyu Yang, Jiaxin Liu, Sihong Xie, Philip S. Yu, Xi Zhang:
Interpretable and Effective Reinforcement Learning for Attacking against Graph-based Rumor Detection. IJCNN 2023: 1-9 - [c1004]Siddharth Bhatia, Mohit Wadhwa, Kenji Kawaguchi, Neil Shah, Philip S. Yu, Bryan Hooi:
Sketch-Based Anomaly Detection in Streaming Graphs. KDD 2023: 93-104 - [c1003]Yu Wang, Zhengyang Wang, Hengrui Zhang, Qingyu Yin, Xianfeng Tang, Yinghan Wang, Danqing Zhang, Limeng Cui, Monica Xiao Cheng, Bing Yin, Suhang Wang, Philip S. Yu:
Exploiting Intent Evolution in E-commercial Query Recommendation. KDD 2023: 5162-5173 - [c1002]Chuishi Meng, Yanhua Li, Yu Zheng, Jieping Ye, Qiang Yang, Philip S. Yu, Ouri Wolfson:
The 12th International Workshop on Urban Computing. KDD 2023: 5874-5875 - [c1001]Xuming Hu, Junzhe Chen, Aiwei Liu, Shiao Meng, Lijie Wen, Philip S. Yu:
Prompt Me Up: Unleashing the Power of Alignments for Multimodal Entity and Relation Extraction. ACM Multimedia 2023: 5185-5194 - [c1000]Fangxin Wang, Lu Cheng, Ruocheng Guo, Kay Liu, Philip S. Yu:
Equal Opportunity of Coverage in Fair Regression. NeurIPS 2023 - [c999]Yuwei Cao, Liangwei Yang, Chen Wang, Zhiwei Liu, Hao Peng, Chenyu You, Philip S. Yu:
Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item Recommendation. RecSys 2023: 322-333 - [c998]Jia-Hao Syu, Jerry Chun-Wei Lin, Philip S. Yu:
Anomaly Detection Networks and Fuzzy Control Modules for Energy Grid Management with Q-Learning-Based Decision Making. SDM 2023: 397-405 - [c997]Hoang H. Nguyen, Chenwei Zhang, Ye Liu, Philip S. Yu:
Slot Induction via Pre-trained Language Model Probing and Multi-level Contrastive Learning. SIGDIAL 2023: 470-481 - [c996]Yibo Wang, Yanbing Xue, Bo Liu, Musen Wen, Wenting Zhao, Stephen D. Guo, Philip S. Yu:
Click-Conversion Multi-Task Model with Position Bias Mitigation for Sponsored Search in eCommerce. SIGIR 2023: 1884-1888 - [c995]Ziwei Fan, Ke Xu, Zhang Dong, Hao Peng, Jiawei Zhang, Philip S. Yu:
Graph Collaborative Signals Denoising and Augmentation for Recommendation. SIGIR 2023: 2037-2041 - [c994]Xuming Hu, Zhaochen Hong, Zhijiang Guo, Lijie Wen, Philip S. Yu:
Read it Twice: Towards Faithfully Interpretable Fact Verification by Revisiting Evidence. SIGIR 2023: 2319-2323 - [c993]Xuming Hu, Junzhe Chen, Shiao Meng, Lijie Wen, Philip S. Yu:
SelfLRE: Self-refining Representation Learning for Low-resource Relation Extraction. SIGIR 2023: 2364-2368 - [c992]Xuming Hu, Zhaochen Hong, Chenwei Zhang, Irwin King, Philip S. Yu:
Think Rationally about What You See: Continuous Rationale Extraction for Relation Extraction. SIGIR 2023: 2436-2440 - [c991]Xuming Hu, Zhijiang Guo, Junzhe Chen, Lijie Wen, Philip S. Yu:
MR2: A Benchmark for Multimodal Retrieval-Augmented Rumor Detection in Social Media. SIGIR 2023: 2901-2912 - [c990]Liangwei Yang, Shengjie Wang, Yunzhe Tao, Jiankai Sun, Xiaolong Liu, Philip S. Yu, Taiqing Wang:
DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation. WSDM 2023: 661-669 - [c989]Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, Philip S. Yu:
Ranking-based Group Identification via Factorized Attention on Social Tripartite Graph. WSDM 2023: 769-777 - [c988]Xiaosu Wang, Yun Xiong, Beichen Kang, Yao Zhang, Philip S. Yu, Yangyong Zhu:
Reducing Negative Effects of the Biases of Language Models in Zero-Shot Setting. WSDM 2023: 904-912 - [c987]Cheng Ji, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Qingyun Sun, Philip S. Yu:
Unbiased and Efficient Self-Supervised Incremental Contrastive Learning. WSDM 2023: 922-930 - [c986]Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Jiawei Zhang, Yangyong Zhu, Philip S. Yu:
ConsRec: Learning Consensus Behind Interactions for Group Recommendation. WWW 2023: 240-250 - [c985]Cheng Yang, Xumeng Gong, Chuan Shi, Philip S. Yu:
A Post-Training Framework for Improving Heterogeneous Graph Neural Networks. WWW 2023: 251-262 - [c984]Dongcheng Zou, Hao Peng, Xiang Huang, Renyu Yang, Jianxin Li, Jia Wu, Chunyang Liu, Philip S. Yu:
SE-GSL: A General and Effective Graph Structure Learning Framework through Structural Entropy Optimization. WWW 2023: 499-510 - [c983]Hsi-Wen Chen, De-Nian Yang, Wang-Chien Lee, Philip S. Yu, Ming-Syan Chen:
CMINet: a Graph Learning Framework for Content-aware Multi-channel Influence Diffusion. WWW 2023: 545-555 - [c982]Wensheng Gan, Zhenqiang Ye, Shicheng Wan, Philip S. Yu:
Web 3.0: The Future of Internet. WWW (Companion Volume) 2023: 1266-1275 - [c981]Ziwei Fan, Zhiwei Liu, Hao Peng, Philip S. Yu:
Mutual Wasserstein Discrepancy Minimization for Sequential Recommendation. WWW 2023: 1375-1385 - [c980]Haoran Wang, Yingtong Dou, Canyu Chen, Lichao Sun, Philip S. Yu, Kai Shu:
Attacking Fake News Detectors via Manipulating News Social Engagement. WWW 2023: 3978-3986 - [c979]Jing Ma, Liangwei Yang, Qiong Feng, Weizhi Zhang, Philip S. Yu:
Graph-based Village Level Poverty Identification. WWW 2023: 4115-4119 - [i449]Qingyun Sun, Jianxin Li, Beining Yang, Xingcheng Fu, Hao Peng, Philip S. Yu:
Self-organization Preserved Graph Structure Learning with Principle of Relevant Information. CoRR abs/2301.00015 (2023) - [i448]Xiaohan Li, Yuqing Liu, Zheng Liu, Philip S. Yu:
Time-aware Hyperbolic Graph Attention Network for Session-based Recommendation. CoRR abs/2301.03780 (2023) - [i447]Lilin Zhang, Ning Yang, Yanchao Sun, Philip S. Yu:
Provable Unrestricted Adversarial Training without Compromise with Generalizability. CoRR abs/2301.09069 (2023) - [i446]Cheng Ji, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Qingyun Sun, Philip S. Yu:
Unbiased and Efficient Self-Supervised Incremental Contrastive Learning. CoRR abs/2301.12104 (2023) - [i445]Ziwei Fan, Zhiwei Liu, Hao Peng, Philip S. Yu:
Mutual Wasserstein Discrepancy Minimization for Sequential Recommendation. CoRR abs/2301.12197 (2023) - [i444]Hengrui Zhang, Shen Wang, Vassilis N. Ioannidis, Soji Adeshina, Jiani Zhang, Xiao Qin, Christos Faloutsos, Da Zheng, George Karypis, Philip S. Yu:
OrthoReg: Improving Graph-regularized MLPs via Orthogonality Regularization. CoRR abs/2302.00109 (2023) - [i443]Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Jiawei Zhang, Yangyong Zhu, Philip S. Yu:
ConsRec: Learning Consensus Behind Interactions for Group Recommendation. CoRR abs/2302.03555 (2023) - [i442]Minqi Jiang, Chaochuan Hou, Ao Zheng, Xiyang Hu, Songqiao Han, Hailiang Huang, Xiangnan He, Philip S. Yu, Yue Zhao:
Weakly Supervised Anomaly Detection: A Survey. CoRR abs/2302.04549 (2023) - [i441]Jing Ma, Liangwei Yang, Qiong Feng, Weizhi Zhang, Philip S. Yu:
Graph-based Village Level Poverty Identification. CoRR abs/2302.06862 (2023) - [i440]Haoran Wang, Yingtong Dou, Canyu Chen, Lichao Sun, Philip S. Yu, Kai Shu:
Attacking Fake News Detectors via Manipulating News Social Engagement. CoRR abs/2302.07363 (2023) - [i439]Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Lifang He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu, Pengtao Xie, Caiming Xiong, Jian Pei, Philip S. Yu, Lichao Sun:
A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT. CoRR abs/2302.09419 (2023) - [i438]Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, Lichao Sun:
A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT. CoRR abs/2303.04226 (2023) - [i437]Dongcheng Zou, Hao Peng, Xiang Huang, Renyu Yang, Jianxin Li, Jia Wu, Chunyang Liu, Philip S. Yu:
SE-GSL: A General and Effective Graph Structure Learning Framework through Structural Entropy Optimization. CoRR abs/2303.09778 (2023) - [i436]Aiwei Liu, Xuming Hu, Lijie Wen, Philip S. Yu:
A comprehensive evaluation of ChatGPT's zero-shot Text-to-SQL capability. CoRR abs/2303.13547 (2023) - [i435]Cheng Yang, Xumeng Gong, Chuan Shi, Philip S. Yu:
A Post-Training Framework for Improving Heterogeneous Graph Neural Networks. CoRR abs/2304.00698 (2023) - [i434]Yao Chen, Wensheng Gan, Gengsen Huang, Yongdong Wu, Philip S. Yu:
Privacy-Preserving Federated Discovery of DNA Motifs with Differential Privacy. CoRR abs/2304.01689 (2023) - [i433]Ziwei Fan, Ke Xu, Zhang Dong, Hao Peng, Jiawei Zhang, Philip S. Yu:
Graph Collaborative Signals Denoising and Augmentation for Recommendation. CoRR abs/2304.03344 (2023) - [i432]Wensheng Gan, Zhenqiang Ye, Shicheng Wan, Philip S. Yu:
Web 3.0: The Future of Internet. CoRR abs/2304.06032 (2023) - [i431]Shicheng Wan, Hong Lin, Wensheng Gan, Jiahui Chen, Philip S. Yu:
Web3: The Next Internet Revolution. CoRR abs/2304.06111 (2023) - [i430]Yu Wang, Zhiwei Liu, Liangwei Yang, Philip S. Yu:
Conditional Denoising Diffusion for Sequential Recommendation. CoRR abs/2304.11433 (2023) - [i429]Xianghua Zeng, Hao Peng, Angsheng Li, Chunyang Liu, Lifang He, Philip S. Yu:
Hierarchical State Abstraction Based on Structural Information Principles. CoRR abs/2304.12000 (2023) - [i428]Zefeng Chen, Wensheng Gan, Jiayi Sun, Jiayang Wu, Philip S. Yu:
Open Metaverse: Issues, Evolution, and Future. CoRR abs/2304.13931 (2023) - [i427]Xuming Hu, Zhaochen Hong, Chenwei Zhang, Irwin King, Philip S. Yu:
Think Rationally about What You See: Continuous Rationale Extraction for Relation Extraction. CoRR abs/2305.03503 (2023) - [i426]Xuming Hu, Zhaochen Hong, Zhijiang Guo, Lijie Wen, Philip S. Yu:
Read it Twice: Towards Faithfully Interpretable Fact Verification by Revisiting Evidence. CoRR abs/2305.03507 (2023) - [i425]Li Sun, Feiyang Wang, Junda Ye, Hao Peng, Philip S. Yu:
Contrastive Graph Clustering in Curvature Spaces. CoRR abs/2305.03555 (2023) - [i424]Yawen Yang, Xuming Hu, Fukun Ma, Shu'ang Li, Aiwei Liu, Lijie Wen, Philip S. Yu:
Gaussian Prior Reinforcement Learning for Nested Named Entity Recognition. CoRR abs/2305.07266 (2023) - [i423]Ziwei Fan, Zhiwei Liu, Shelby Heinecke, Jianguo Zhang, Huan Wang, Caiming Xiong, Philip S. Yu:
Zero-shot Item-based Recommendation via Multi-task Product Knowledge Graph Pre-Training. CoRR abs/2305.07633 (2023) - [i422]Shuang Li, Xuming Hu, Aiwei Liu, Yawen Yang, Fukun Ma, Philip S. Yu, Lijie Wen:
Enhancing Cross-lingual Natural Language Inference by Soft Prompting with Multilingual Verbalizer. CoRR abs/2305.12761 (2023) - [i421]Xuming Hu, Zhijiang Guo, Guanyu Wu, Lijie Wen, Philip S. Yu:
Give Me More Details: Improving Fact-Checking with Latent Retrieval. CoRR abs/2305.16128 (2023) - [i420]Xuming Hu, Zhijiang Guo, Zhiyang Teng, Irwin King, Philip S. Yu:
Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis. CoRR abs/2305.16166 (2023) - [i419]Xuming Hu, Aiwei Liu, Zeqi Tan, Xin Zhang, Chenwei Zhang, Irwin King, Philip S. Yu:
GDA: Generative Data Augmentation Techniques for Relation Extraction Tasks. CoRR abs/2305.16663 (2023) - [i418]Liangqi Yuan, Lichao Sun, Philip S. Yu, Ziran Wang:
Decentralized Federated Learning: A Survey and Perspective. CoRR abs/2306.01603 (2023) - [i417]Mengzhu Sun, Xi Zhang, Jianqiang Ma, Sihong Xie, Yazheng Liu, Philip S. Yu:
Inconsistent Matters: A Knowledge-guided Dual-consistency Network for Multi-modal Rumor Detection. CoRR abs/2306.02137 (2023) - [i416]Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, Philip S. Yu:
Machine Unlearning: A Survey. CoRR abs/2306.03558 (2023) - [i415]Xuan Lin, Lichang Dai, Yafang Zhou, Zu-Guo Yu, Wen Zhang, Jian-Yu Shi, Dong-Sheng Cao, Li Zeng, Haowen Chen, Bosheng Song, Philip S. Yu, Xiangxiang Zeng:
Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction. CoRR abs/2306.05257 (2023) - [i414]Zefeng Chen, Wensheng Gan, Gengsen Huang, Zhenlian Qi, Yan Li, Philip S. Yu:
TALENT: Targeted Mining of Non-overlapping Sequential Patterns. CoRR abs/2306.06470 (2023) - [i413]Yue Huang, Qihui Zhang, Philip S. Yu, Lichao Sun:
TrustGPT: A Benchmark for Trustworthy and Responsible Large Language Models. CoRR abs/2306.11507 (2023) - [i412]Ziwei Fan, Zhiwei Liu, Hao Peng, Philip S. Yu:
Addressing the Rank Degeneration in Sequential Recommendation via Singular Spectrum Smoothing. CoRR abs/2306.11986 (2023) - [i411]Huiqiang Chen, Tianqing Zhu, Tao Zhang, Wanlei Zhou, Philip S. Yu:
Privacy and Fairness in Federated Learning: on the Perspective of Trade-off. CoRR abs/2306.14123 (2023) - [i410]Yuwei Cao, Liangwei Yang, Chen Wang, Zhiwei Liu, Hao Peng, Chenyu You, Philip S. Yu:
Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item Recommendation. CoRR abs/2306.14462 (2023) - [i409]Xi Wu, Liangwei Yang, Jibing Gong, Chao Zhou, Tianyu Lin, Xiaolong Liu, Philip S. Yu:
Dimension Independent Mixup for Hard Negative Sample in Collaborative Filtering. CoRR abs/2306.15905 (2023) - [i408]Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, Xing Xie:
A Survey on Evaluation of Large Language Models. CoRR abs/2307.03109 (2023) - [i407]Hoang Nguyen, Chenwei Zhang, Tao Zhang, Eugene Rohrbaugh, Philip S. Yu:
Enhancing Cross-lingual Transfer via Phonemic Transcription Integration. CoRR abs/2307.04361 (2023) - [i406]Yibo Wang, Yanbing Xue, Bo Liu, Musen Wen, Wenting Zhao, Stephen D. Guo, Philip S. Yu:
Click-Conversion Multi-Task Model with Position Bias Mitigation for Sponsored Search in eCommerce. CoRR abs/2307.16060 (2023) - [i405]Aiwei Liu, Leyi Pan, Xuming Hu, Shu'ang Li, Lijie Wen, Irwin King, Philip S. Yu:
A Private Watermark for Large Language Models. CoRR abs/2307.16230 (2023) - [i404]Hoang H. Nguyen, Chenwei Zhang, Ye Liu, Philip S. Yu:
Slot Induction via Pre-trained Language Model Probing and Multi-level Contrastive Learning. CoRR abs/2308.04712 (2023) - [i403]Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, Philip S. Yu:
Group Identification via Transitional Hypergraph Convolution with Cross-view Self-supervised Learning. CoRR abs/2308.08620 (2023) - [i402]Liangwei Yang, Zhiwei Liu, Chen Wang, Mingdai Yang, Xiaolong Liu, Jing Ma, Philip S. Yu:
Graph-based Alignment and Uniformity for Recommendation. CoRR abs/2308.09292 (2023) - [i401]Zheng Liu, Xiaohan Li, Philip S. Yu:
Mitigating Health Disparity on Biased Electronic Health Records via Deconfounder. CoRR abs/2308.11819 (2023) - [i400]Junling Liu, Chao Liu, Peilin Zhou, Qichen Ye, Dading Chong, Kang Zhou, Yueqi Xie, Yuwei Cao, Shoujin Wang, Chenyu You, Philip S. Yu:
LLMRec: Benchmarking Large Language Models on Recommendation Task. CoRR abs/2308.12241 (2023) - [i399]Yi Zhang, Yuying Zhao, Zhaoqing Li, Xueqi Cheng, Yu Wang, Olivera Kotevska, Philip S. Yu, Tyler Derr:
A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and Applications. CoRR abs/2308.16375 (2023) - [i398]Guangjie Zeng, Hao Peng, Angsheng Li, Zhiwei Liu, Chunyang Liu, Philip S. Yu, Lifang He:
Unsupervised Skin Lesion Segmentation via Structural Entropy Minimization on Multi-Scale Superpixel Graphs. CoRR abs/2309.01899 (2023) - [i397]Jiangshu Du, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S. Yu:
All Labels Together: Low-shot Intent Detection with an Efficient Label Semantic Encoding Paradigm. CoRR abs/2309.03563 (2023) - [i396]Yibo Wang, Wenting Zhao, Yao Wan, Zhongfen Deng, Philip S. Yu:
Named Entity Recognition via Machine Reading Comprehension: A Multi-Task Learning Approach. CoRR abs/2309.11027 (2023) - [i395]Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Zhongfen Deng, Philip S. Yu:
Localize, Retrieve and Fuse: A Generalized Framework for Free-Form Question Answering over Tables. CoRR abs/2309.11049 (2023) - [i394]Zheng Wang, Hongming Ding, Li Pan, Jianhua Li, Zhiguo Gong, Philip S. Yu:
From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited. CoRR abs/2309.13599 (2023) - [i393]Chunkai Zhang, Maohua Lyu, Huaijin Hao, Wensheng Gan, Philip S. Yu:
Discovering Utility-driven Interval Rules. CoRR abs/2309.16102 (2023) - [i392]Xuming Hu, Junzhe Chen, Xiaochuan Li, Yufei Guo, Lijie Wen, Philip S. Yu, Zhijiang Guo:
Do Large Language Models Know about Facts? CoRR abs/2310.05177 (2023) - [i391]Zhongfen Deng, Wei-Te Chen, Lei Chen, Philip S. Yu:
AE-smnsMLC: Multi-Label Classification with Semantic Matching and Negative Label Sampling for Product Attribute Value Extraction. CoRR abs/2310.07137 (2023) - [i390]Chen Wang, Liangwei Yang, Zhiwei Liu, Xiaolong Liu, Mingdai Yang, Yueqing Liang, Philip S. Yu:
Collaborative Contextualization: Bridging the Gap between Collaborative Filtering and Pre-trained Language Model. CoRR abs/2310.09400 (2023) - [i389]Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi:
Towards Graph Foundation Models: A Survey and Beyond. CoRR abs/2310.11829 (2023) - [i388]Xiaolong Liu, Liangwei Yang, Zhiwei Liu, Mingdai Yang, Chen Wang, Hao Peng, Philip S. Yu:
Knowledge Graph Context-Enhanced Diversified Recommendation. CoRR abs/2310.13253 (2023) - [i387]Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, Philip S. Yu:
Unified Pretraining for Recommendation via Task Hypergraphs. CoRR abs/2310.13286 (2023) - [i386]Hong Lin, Zirun Gan, Wensheng Gan, Zhenlian Qi, Yuehua Wang, Philip S. Yu:
Interaction in Metaverse: A Survey. CoRR abs/2310.13699 (2023) - [i385]Hoang H. Nguyen, Ye Liu, Chenwei Zhang, Tao Zhang, Philip S. Yu:
CoF-CoT: Enhancing Large Language Models with Coarse-to-Fine Chain-of-Thought Prompting for Multi-domain NLU Tasks. CoRR abs/2310.14623 (2023) - [i384]Xuming Hu, Junzhe Chen, Aiwei Liu, Shiao Meng, Lijie Wen, Philip S. Yu:
Prompt Me Up: Unleashing the Power of Alignments for Multimodal Entity and Relation Extraction. CoRR abs/2310.16822 (2023) - [i383]Jiaqian Ren, Hao Peng, Lei Jiang, Zhiwei Liu, Jia Wu, Zhengtao Yu, Philip S. Yu:
Uncertainty-guided Boundary Learning for Imbalanced Social Event Detection. CoRR abs/2310.19247 (2023) - [i382]Wenting Zhao, Ye Liu, Tong Niu, Yao Wan, Philip S. Yu, Shafiq Joty, Yingbo Zhou, Semih Yavuz:
DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain Question Answering over Knowledge Base and Text. CoRR abs/2310.20170 (2023) - [i381]Xiangjue Dong, Yibo Wang, Philip S. Yu, James Caverlee:
Probing Explicit and Implicit Gender Bias through LLM Conditional Text Generation. CoRR abs/2311.00306 (2023) - [i380]Jiangnan Xia, Yu Yang, Senzhang Wang, Hongzhi Yin, Jiannong Cao, Philip S. Yu:
Bayes-enhanced Multi-view Attention Networks for Robust POI Recommendation. CoRR abs/2311.00491 (2023) - [i379]Hao Niu, Yun Xiong, Xiaosu Wang, Philip S. Yu:
Joint Learning of Local and Global Features for Aspect-based Sentiment Classification. CoRR abs/2311.01030 (2023) - [i378]Fangxin Wang, Lu Cheng, Ruocheng Guo, Kay Liu, Philip S. Yu:
Equal Opportunity of Coverage in Fair Regression. CoRR abs/2311.02243 (2023) - [i377]Zhongfen Deng, Hao Peng, Tao Zhang, Shuaiqi Liu, Wenting Zhao, Yibo Wang, Philip S. Yu:
JPAVE: A Generation and Classification-based Model for Joint Product Attribute Prediction and Value Extraction. CoRR abs/2311.04196 (2023) - [i376]Zhongfen Deng, Seunghyun Yoon, Trung Bui, Franck Dernoncourt, Quan Hung Tran, Shuaiqi Liu, Wenting Zhao, Tao Zhang, Yibo Wang, Philip S. Yu:
Aspect-based Meeting Transcript Summarization: A Two-Stage Approach with Weak Supervision on Sentence Classification. CoRR abs/2311.04292 (2023) - [i375]Xusheng Zhao, Hao Peng, Qiong Dai, Xu Bai, Huailiang Peng, Yanbing Liu, Qinglang Guo, Philip S. Yu:
RDGCN: Reinforced Dependency Graph Convolutional Network for Aspect-based Sentiment Analysis. CoRR abs/2311.04467 (2023) - [i374]Wensheng Gan, Shicheng Wan, Philip S. Yu:
Model-as-a-Service (MaaS): A Survey. CoRR abs/2311.05804 (2023) - [i373]Fanlong Zeng, Wensheng Gan, Yongheng Wang, Ning Liu, Philip S. Yu:
Large Language Models for Robotics: A Survey. CoRR abs/2311.07226 (2023) - [i372]Yibo Wang, Xiangjue Dong, James Caverlee, Philip S. Yu:
DALA: A Distribution-Aware LoRA-Based Adversarial Attack against Pre-trained Language Models. CoRR abs/2311.08598 (2023) - [i371]Xiaolong Liu, Liangwei Yang, Zhiwei Liu, Xiaohan Li, Mingdai Yang, Chen Wang, Philip S. Yu:
Group-Aware Interest Disentangled Dual-Training for Personalized Recommendation. CoRR abs/2311.09577 (2023) - [i370]Xiaolong Liu, Liangwei Yang, Chen Wang, Mingdai Yang, Zhiwei Liu, Philip S. Yu:
Multi-view Graph Convolution for Participant Recommendation. CoRR abs/2311.12136 (2023) - [i369]Ke Xu, Yuanjie Zhu, Weizhi Zhang, Philip S. Yu:
Graph Neural Ordinary Differential Equations-based method for Collaborative Filtering. CoRR abs/2311.12329 (2023) - [i368]Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, Philip S. Yu:
Multimodal Large Language Models: A Survey. CoRR abs/2311.13165 (2023) - [i367]Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, Philip S. Yu:
Large Language Models in Law: A Survey. CoRR abs/2312.03718 (2023) - [i366]Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Lijie Wen, Irwin King, Philip S. Yu:
A Survey of Text Watermarking in the Era of Large Language Models. CoRR abs/2312.07913 (2023) - [i365]Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Qingyang Wu, Zhongfen Deng, Jiangshu Du, Shuaiqi Liu, Yunlong Xu, Philip S. Yu:
kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest Neighbor In-Context Learning. CoRR abs/2312.10771 (2023) - [i364]Wei-Yao Wang, Wen-Chih Peng, Wei Wang, Philip S. Yu:
ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing Forecasting Models in Badminton. CoRR abs/2312.10942 (2023) - [i363]Kun Peng, Lei Jiang, Hao Peng, Rui Liu, Zhengtao Yu, Jiaqian Ren, Zhifeng Hao, Philip S. Yu:
Prompt Based Tri-Channel Graph Convolution Neural Network for Aspect Sentiment Triplet Extraction. CoRR abs/2312.11152 (2023) - [i362]Yu Wang, Zhiwei Liu, Jianguo Zhang, Weiran Yao, Shelby Heinecke, Philip S. Yu:
DRDT: Dynamic Reflection with Divergent Thinking for LLM-based Sequential Recommendation. CoRR abs/2312.11336 (2023) - [i361]Yuwei Cao, Hao Peng, Zhengtao Yu, Philip S. Yu:
Hierarchical and Incremental Structural Entropy Minimization for Unsupervised Social Event Detection. CoRR abs/2312.11891 (2023) - [i360]Zi-Feng Mai, Chang-Dong Wang, Zhongjie Zeng, Ya Li, Jiaquan Chen, Philip S. Yu:
Hypergraph Enhanced Knowledge Tree Prompt Learning for Next-Basket Recommendation. CoRR abs/2312.15851 (2023) - [i359]Kay Liu, Hengrui Zhang, Ziqing Hu, Fangxin Wang, Philip S. Yu:
Data Augmentation for Supervised Graph Outlier Detection with Latent Diffusion Models. CoRR abs/2312.17679 (2023) - 2022
- [b5]Chuan Shi, Xiao Wang, Philip S. Yu:
Heterogeneous Graph Representation Learning and Applications. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2022, ISBN 978-981-16-6165-5, pp. 1-318 - [j458]Mohammed A. Fouad, Wedad Hussein, Sherine Rady, Philip S. Yu, Tarek F. Gharib:
An Efficient Approach for Mining Reliable High Utility Patterns. IEEE Access 10: 1419-1431 (2022) - [j457]Mohammed A. Fouad, Wedad Hussein, Sherine Rady, Philip S. Yu, Tarek F. Gharib:
An Efficient Approach for Rational Next-Basket Recommendation. IEEE Access 10: 75657-75671 (2022) - [j456]Jiawei Liu, Chuan Shi, Cheng Yang, Zhiyuan Lu, Philip S. Yu:
A survey on heterogeneous information network based recommender systems: Concepts, methods, applications and resources. AI Open 3: 40-57 (2022) - [j455]Lefeng Zhang, Tianqing Zhu, Ping Xiong, Wanlei Zhou, Philip S. Yu:
More than Privacy: Adopting Differential Privacy in Game-theoretic Mechanism Design. ACM Comput. Surv. 54(7): 136:1-136:37 (2022) - [j454]Jianguo Chen, Kenli Li, Zhaolei Zhang, Keqin Li, Philip S. Yu:
A Survey on Applications of Artificial Intelligence in Fighting Against COVID-19. ACM Comput. Surv. 54(8): 158:1-158:32 (2022) - [j453]Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, Xuyun Zhang:
Membership Inference Attacks on Machine Learning: A Survey. ACM Comput. Surv. 54(11s): 235:1-235:37 (2022) - [j452]Shirui Pan, Shaoxiong Ji, Di Jin, Feng Xia, Philip S. Yu:
Guest Editorial: Graph-powered machine learning in future-generation computing systems. Future Gener. Comput. Syst. 126: 88-90 (2022) - [j451]Zishuo Cheng, Dayong Ye, Tianqing Zhu, Wanlei Zhou, Philip S. Yu, Congcong Zhu:
Multi-agent reinforcement learning via knowledge transfer with differentially private noise. Int. J. Intell. Syst. 37(1): 799-828 (2022) - [j450]Shuai Gao, Zhongbao Zhang, Sen Su, Philip S. Yu:
REBORN: Transfer learning based social network alignment. Inf. Sci. 589: 265-282 (2022) - [j449]Boyan Wang, Xuegang Hu, Chenwei Zhang, Pei-Pei Li, Philip S. Yu:
Hierarchical GAN-Tree and Bi-Directional Capsules for multi-label image classification. Knowl. Based Syst. 238: 107882 (2022) - [j448]Rui Wang, Ning Yang, Philip S. Yu:
Learning aspect-level complementarity for intent-aware complementary recommendation. Knowl. Based Syst. 258: 109936 (2022) - [j447]Xusheng Zhao, Jia Wu, Hao Peng, Amin Beheshti, Jessica J. M. Monaghan, David McAlpine, Heivet Hernandez-Perez, Mark Dras, Qiong Dai, Yangyang Li, Philip S. Yu, Lifang He:
Deep reinforcement learning guided graph neural networks for brain network analysis. Neural Networks 154: 56-67 (2022) - [j446]Zhiyu Yao, Yunbo Wang, Jianmin Wang, Philip S. Yu, Mingsheng Long:
VideoDG: Generalizing Temporal Relations in Videos to Novel Domains. IEEE Trans. Pattern Anal. Mach. Intell. 44(11): 7989-8004 (2022) - [j445]Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, Tianyi Wu:
Heterogeneous Information Networks: the Past, the Present, and the Future. Proc. VLDB Endow. 15(12): 3807-3811 (2022) - [j444]Qian Li, Hao Peng, Jianxin Li, Jia Wu, Yuanxing Ning, Lihong Wang, Philip S. Yu, Zheng Wang:
Reinforcement Learning-Based Dialogue Guided Event Extraction to Exploit Argument Relations. IEEE ACM Trans. Audio Speech Lang. Process. 30: 520-533 (2022) - [j443]Qianren Mao, Jianxin Li, Chenghua Lin, Congwen Chen, Hao Peng, Lihong Wang, Philip S. Yu:
Adaptive Pre-Training and Collaborative Fine-Tuning: A Win-Win Strategy to Improve Review Analysis Tasks. IEEE ACM Trans. Audio Speech Lang. Process. 30: 622-634 (2022) - [j442]Qianren Mao, Jianxin Li, Hao Peng, Shizhu He, Lihong Wang, Philip S. Yu, Zheng Wang:
Fact-Driven Abstractive Summarization by Utilizing Multi-Granular Multi-Relational Knowledge. IEEE ACM Trans. Audio Speech Lang. Process. 30: 1665-1678 (2022) - [j441]Di Jin, Wenjun Wang, Guojie Song, Philip S. Yu, Jiawei Han:
Guest Editorial: Special Issue on Network Structural Modeling and Learning in Big Data. IEEE Trans. Big Data 8(4): 867-868 (2022) - [j440]Hao Peng, Renyu Yang, Zheng Wang, Jianxin Li, Lifang He, Philip S. Yu, Albert Y. Zomaya, Rajiv Ranjan:
Lime: Low-Cost and Incremental Learning for Dynamic Heterogeneous Information Networks. IEEE Trans. Computers 71(3): 628-642 (2022) - [j439]Jie Xu, Zhoujun Li, Feiran Huang, Chaozhuo Li, Philip S. Yu:
Visual Sentiment Analysis With Social Relations-Guided Multiattention Networks. IEEE Trans. Cybern. 52(6): 4472-4484 (2022) - [j438]Shi-Ting Zhong, Ling Huang, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
An Autoencoder Framework With Attention Mechanism for Cross-Domain Recommendation. IEEE Trans. Cybern. 52(6): 5229-5241 (2022) - [j437]Dayong Ye, Tianqing Zhu, Zishuo Cheng, Wanlei Zhou, Philip S. Yu:
Differential Advising in Multiagent Reinforcement Learning. IEEE Trans. Cybern. 52(6): 5508-5521 (2022) - [j436]Chang-Dong Wang, Wei Shi, Ling Huang, Kun-Yu Lin, Dong Huang, Philip S. Yu:
Node Pair Information Preserving Network Embedding Based on Adversarial Networks. IEEE Trans. Cybern. 52(7): 5908-5922 (2022) - [j435]Man-Sheng Chen, Ling Huang, Chang-Dong Wang, Dong Huang, Philip S. Yu:
Multiview Subspace Clustering With Grouping Effect. IEEE Trans. Cybern. 52(8): 7655-7668 (2022) - [j434]Tie Li, Gang Kou, Yi Peng, Philip S. Yu:
An Integrated Cluster Detection, Optimization, and Interpretation Approach for Financial Data. IEEE Trans. Cybern. 52(12): 13848-13861 (2022) - [j433]Dayong Ye, Tianqing Zhu, Sheng Shen, Wanlei Zhou, Philip S. Yu:
Differentially Private Multi-Agent Planning for Logistic-Like Problems. IEEE Trans. Dependable Secur. Comput. 19(2): 1212-1226 (2022) - [j432]Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S. Yu, Lifang He:
A Survey on Text Classification: From Traditional to Deep Learning. ACM Trans. Intell. Syst. Technol. 13(2): 31:1-31:41 (2022) - [j431]Senzhang Wang, Meiyue Zhang, Hao Miao, Zhaohui Peng, Philip S. Yu:
Multivariate Correlation-aware Spatio-temporal Graph Convolutional Networks for Multi-scale Traffic Prediction. ACM Trans. Intell. Syst. Technol. 13(3): 38:1-38:22 (2022) - [j430]Zhiwei Liu, Liangwei Yang, Ziwei Fan, Hao Peng, Philip S. Yu:
Federated Social Recommendation with Graph Neural Network. ACM Trans. Intell. Syst. Technol. 13(4): 55:1-55:24 (2022) - [j429]Jianguo Chen, Kenli Li, Philip S. Yu:
Privacy-Preserving Deep Learning Model for Decentralized VANETs Using Fully Homomorphic Encryption and Blockchain. IEEE Trans. Intell. Transp. Syst. 23(8): 11633-11642 (2022) - [j428]Chunkai Zhang, Zilin Du, Yuting Yang, Wensheng Gan, Philip S. Yu:
On-Shelf Utility Mining of Sequence Data. ACM Trans. Knowl. Discov. Data 16(2): 21:1-21:31 (2022) - [j427]Jerry Chun-Wei Lin, Youcef Djenouri, Gautam Srivastava, Yuanfa Li, Philip S. Yu:
Scalable Mining of High-Utility Sequential Patterns With Three-Tier MapReduce Model. ACM Trans. Knowl. Discov. Data 16(3): 60:1-60:26 (2022) - [j426]Yali Gao, Xiaoyong Li, Hao Peng, Binxing Fang, Philip S. Yu:
HinCTI: A Cyber Threat Intelligence Modeling and Identification System Based on Heterogeneous Information Network. IEEE Trans. Knowl. Data Eng. 34(2): 708-722 (2022) - [j425]Shengli Sun, Weiping Li, Yimo Wang, Weilong Liao, Philip S. Yu:
Continuous Monitoring of Maximum Clique Over Dynamic Graphs. IEEE Trans. Knowl. Data Eng. 34(4): 1667-1683 (2022) - [j424]Tao Zhang, Tianqing Zhu, Jing Li, Mengde Han, Wanlei Zhou, Philip S. Yu:
Fairness in Semi-Supervised Learning: Unlabeled Data Help to Reduce Discrimination. IEEE Trans. Knowl. Data Eng. 34(4): 1763-1774 (2022) - [j423]Hao Chen, Chenwei Zhang, Jun Li, Philip S. Yu, Ning Jing:
KGGen: A Generative Approach for Incipient Knowledge Graph Population. IEEE Trans. Knowl. Data Eng. 34(5): 2254-2267 (2022) - [j422]Tianqing Zhu, Dayong Ye, Wei Wang, Wanlei Zhou, Philip S. Yu:
More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence. IEEE Trans. Knowl. Data Eng. 34(6): 2824-2843 (2022) - [j421]Bao-Yu Liu, Ling Huang, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
Multi-View Consensus Proximity Learning for Clustering. IEEE Trans. Knowl. Data Eng. 34(7): 3405-3417 (2022) - [j420]Senzhang Wang, Jiannong Cao, Philip S. Yu:
Deep Learning for Spatio-Temporal Data Mining: A Survey. IEEE Trans. Knowl. Data Eng. 34(8): 3681-3700 (2022) - [j419]Zhongbao Zhang, Zichang Yin, Jian Wen, Li Sun, Sen Su, Philip S. Yu:
DeepBlue: Bi-Layered LSTM for Tweet popUlarity Estimation. IEEE Trans. Knowl. Data Eng. 34(10): 4737-4752 (2022) - [j418]Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang, Xiao Liu, Ruobing Xie, Kai Zhuang, Xu Zhang, Leyu Lin, Philip S. Yu:
Understanding WeChat User Preferences and "Wow" Diffusion. IEEE Trans. Knowl. Data Eng. 34(12): 6033-6046 (2022) - [j417]Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, Philip S. Yu:
A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. IEEE Trans. Neural Networks Learn. Syst. 33(2): 494-514 (2022) - [j416]Chen Li, Hao Peng, Jianxin Li, Lichao Sun, Lingjuan Lyu, Lihong Wang, Philip S. Yu, Lifang He:
Joint Stance and Rumor Detection in Hierarchical Heterogeneous Graph. IEEE Trans. Neural Networks Learn. Syst. 33(6): 2530-2542 (2022) - [j415]Shenghao Liu, Bang Wang, Laurence T. Yang, Philip S. Yu:
HNF: Hybrid Neural Filtering Based on Centrality-Aware Random Walk for Personalized Recommendation. IEEE Trans. Netw. Sci. Eng. 9(3): 1056-1066 (2022) - [j414]Hao Peng, Ruitong Zhang, Yingtong Dou, Renyu Yang, Jingyi Zhang, Philip S. Yu:
Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural Networks. ACM Trans. Inf. Syst. 40(4): 69:1-69:46 (2022) - [j413]Xiao Pan, Shili Nie, Haibo Hu, Philip S. Yu, Jingfeng Guo:
Reverse Nearest Neighbor Search in Semantic Trajectories for Location-Based Services. IEEE Trans. Serv. Comput. 15(2): 986-999 (2022) - [j412]Wenhua Wang, Yuqun Zhang, Yulei Sui, Yao Wan, Zhou Zhao, Jian Wu, Philip S. Yu, Guandong Xu:
Reinforcement-Learning-Guided Source Code Summarization Using Hierarchical Attention. IEEE Trans. Software Eng. 48(2): 102-119 (2022) - [j411]Zhongyuan Jiang, Xianyu Chen, Jianfeng Ma, Philip S. Yu:
RumorDecay: Rumor Dissemination Interruption for Target Recipients in Social Networks. IEEE Trans. Syst. Man Cybern. Syst. 52(10): 6383-6395 (2022) - [c978]Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, Philip S. Yu:
A Self-Supervised Mixed-Curvature Graph Neural Network. AAAI 2022: 4146-4155 - [c977]Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, Philip S. Yu:
Graph Structure Learning with Variational Information Bottleneck. AAAI 2022: 4165-4174 - [c976]Jianguo Zhang, Kazuma Hashimoto, Yao Wan, Zhiwei Liu, Ye Liu, Caiming Xiong, Philip S. Yu:
Are Pre-trained Transformers Robust in Intent Classification? A Missing Ingredient in Evaluation of Out-of-Scope Intent Detection. ConvAI@ACL 2022: 12-20 - [c975]Byung-Hak Kim, Zhongfen Deng, Philip S. Yu, Varun Ganapathi:
Can Current Explainability Help Provide References in Clinical Notes to Support Humans Annotate Medical Codes? LOUHI@EMNLP 2022: 26-34 - [c974]Zheng Liu, Xiaohan Li, Philip S. Yu:
Mitigating health disparities in EHR via deconfounder. BCB 2022: 6:1-6:6 - [c973]Xing Jia, Yun Xiong, Jiawei Zhang, Yao Zhang, Yangyong Zhu, Philip S. Yu:
Few-Shot Radiology Report Generation via Knowledge Transfer and Multi-modal Alignment. BIBM 2022: 1574-1579 - [c972]Ziwei Fan, Zhiwei Liu, Chen Wang, Peijie Huang, Hao Peng, Philip S. Yu:
Sequential Recommendation with Auxiliary Item Relationships via Multi-Relational Transformer. IEEE Big Data 2022: 525-534 - [c971]Xiaohan Li, Zheng Liu, Luyi Ma, Kaushiki Nag, Stephen D. Guo, Philip S. Yu, Kannan Achan:
Mitigating Frequency Bias in Next-Basket Recommendation via Deconfounders. IEEE Big Data 2022: 616-625 - [c970]Xiaohan Li, Yuqing Liu, Zheng Liu, Philip S. Yu:
Time-aware Hyperbolic Graph Attention Network for Session-based Recommendation. IEEE Big Data 2022: 626-635 - [c969]Shen Wang, Zhengzhang Chen, Jingchao Ni, Haifeng Chen, Philip S. Yu:
Towards Robust Graph Neural Networks via Adversarial Contrastive Learning. IEEE Big Data 2022: 636-645 - [c968]Shen Wang, Liangwei Yang, Jibing Gong, Shaojie Zheng, Shuying Du, Zhiwei Liu, Philip S. Yu:
MetaKRec: Collaborative Meta-Knowledge Enhanced Recommender System. IEEE Big Data 2022: 665-674 - [c967]Yibo Wang, Congying Xia, Guan Wang, Philip S. Yu:
Continuous Prompt Tuning Based Textual Entailment Model for E-commerce Entity Typing. IEEE Big Data 2022: 1383-1388 - [c966]Zhongfen Deng, Wei-Te Chen, Lei Chen, Philip S. Yu:
AE-smnsMLC: Multi-Label Classification with Semantic Matching and Negative Label Sampling for Product Attribute Value Extraction. IEEE Big Data 2022: 1816-1821 - [c965]Jia-Hao Syu, Jerry Chun-Wei Lin, Philip S. Yu:
Double-Environmental Q-Learning for Energy Management System in Smart Grid. IEEE Big Data 2022: 6364-6370 - [c964]Lihua Chen, Ning Yang, Philip S. Yu:
Time Lag Aware Sequential Recommendation. CIKM 2022: 212-221 - [c963]Junhui Li, Wensheng Gan, Yijie Gui, Yongdong Wu, Philip S. Yu:
Frequent Itemset Mining with Local Differential Privacy. CIKM 2022: 1146-1155 - [c962]Jiaqian Ren, Lei Jiang, Hao Peng, Lingjuan Lyu, Zhiwei Liu, Chaochao Chen, Jia Wu, Xu Bai, Philip S. Yu:
Cross-Network Social User Embedding with Hybrid Differential Privacy Guarantees. CIKM 2022: 1685-1695 - [c961]Jiaqian Ren, Lei Jiang, Hao Peng, Yuwei Cao, Jia Wu, Philip S. Yu, Lifang He:
From Known to Unknown: Quality-aware Self-improving Graph Neural Network For Open Set Social Event Detection. CIKM 2022: 1696-1705 - [c960]Li Sun, Junda Ye, Hao Peng, Philip S. Yu:
A Self-supervised Riemannian GNN with Time Varying Curvature for Temporal Graph Learning. CIKM 2022: 1827-1836 - [c959]Qingyun Sun, Jianxin Li, Haonan Yuan, Xingcheng Fu, Hao Peng, Cheng Ji, Qian Li, Philip S. Yu:
Position-aware Structure Learning for Graph Topology-imbalance by Relieving Under-reaching and Over-squashing. CIKM 2022: 1848-1857 - [c958]Yu Wang, Hengrui Zhang, Zhiwei Liu, Liangwei Yang, Philip S. Yu:
ContrastVAE: Contrastive Variational AutoEncoder for Sequential Recommendation. CIKM 2022: 2056-2066 - [c957]Ruitong Zhang, Hao Peng, Yingtong Dou, Jia Wu, Qingyun Sun, Yangyang Li, Jingyi Zhang, Philip S. Yu:
Automating DBSCAN via Deep Reinforcement Learning. CIKM 2022: 2620-2630 - [c956]Philip S. Yu, Olivera Kotevska, Tyler Derr:
PAS: Privacy Algorithms in Systems. CIKM 2022: 5181-5182 - [c955]Xuming Hu, Zhijiang Guo, Yu Fu, Lijie Wen, Philip S. Yu:
Scene Graph Modification as Incremental Structure Expanding. COLING 2022: 5707-5720 - [c954]Yi Xie, Yun Xiong, Yangyong Zhu, Philip S. Yu, Cheng Jin, Qiang Wang, Haihong Li:
Concurrent Transformer for Spatial-Temporal Graph Modeling. DASFAA (3) 2022: 314-321 - [c953]Shicheng Wan, Jieying Deng, Wensheng Gan, Jiahui Chen, Philip S. Yu:
Fast Mining RFM Patterns for Behavioral Analytics. DSAA 2022: 1-10 - [c952]Shu Zhao, Ziwei Du, Jie Chen, Yanping Zhang, Jie Tang, Philip S. Yu:
Hierarchical Representation Learning for Attributed Networks. ICDE 2022: 1497-1498 - [c951]Ya-Wen Teng, Yishuo Shi, De-Nian Yang, Wang-Chien Lee, Philip S. Yu, Ying-Liang Lu, Ming-Syan Chen:
Epidemic Spread Optimization for Disease Containment with NPIs and Vaccination. ICDE 2022: 2845-2858 - [c950]Lu Bai, Yuhang Jiao, Lixin Cui, Luca Rossi, Yue Wang, Philip S. Yu, Edwin R. Hancock:
Learning Graph Convolutional Networks based on Quantum Vertex Information Propagation (Extended Abstract). ICDE 2022: 3132-3133 - [c949]Yao Wan, Yang He, Zhangqian Bi, Jianguo Zhang, Yulei Sui, Hongyu Zhang, Kazuma Hashimoto, Hai Jin, Guandong Xu, Caiming Xiong, Philip S. Yu:
NaturalCC: An Open-Source Toolkit for Code Intelligence. ICSE-Companion 2022: 149-153 - [c948]Jiaqian Ren, Lei Jiang, Hao Peng, Zhiwei Liu, Jia Wu, Philip S. Yu:
Evidential Temporal-aware Graph-based Social Event Detection via Dempster-Shafer Theory. ICWS 2022: 331-336 - [c947]Man-Sheng Chen, Chang-Dong Wang, Dong Huang, Jian-Huang Lai, Philip S. Yu:
Efficient Orthogonal Multi-view Subspace Clustering. KDD 2022: 127-135 - [c946]Zimu Wang, Yue He, Jiashuo Liu, Wenchao Zou, Philip S. Yu, Peng Cui:
Invariant Preference Learning for General Debiasing in Recommendation. KDD 2022: 1969-1978 - [c945]Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Caihua Shan, Yiheng Sun, Yangyong Zhu, Philip S. Yu:
CLARE: A Semi-supervised Community Detection Algorithm. KDD 2022: 2059-2069 - [c944]Longbing Cao, Philip S. Yu, Zhilin Zhao:
Shallow and Deep Non-IID Learning on Complex Data. KDD 2022: 4774-4775 - [c943]Pamela Bhattacharya, Jing Gao, Meng Jiang, Mehran Kafai, Srijan Kumar, Qi Li, Neil Shah, Sihong Xie, Philip S. Yu, Ming Zeng:
Joint International Workshop on Misinformation and Misbehavior Mining on the Web & Making a Credible Web for Tomorrow (MIS2-TrueFact). KDD 2022: 4854-4855 - [c942]Chuishi Meng, Yanhua Li, Yu Zheng, Jieping Ye, Qiang Yang, Philip S. Yu, Ouri Wolfson:
The 11th International Workshop on Urban Computing. KDD 2022: 4886-4887 - [c941]Yuwei Cao, William Groves, Tanay Kumar Saha, Joel R. Tetreault, Alejandro Jaimes, Hao Peng, Philip S. Yu:
XLTime: A Cross-Lingual Knowledge Transfer Framework for Temporal Expression Extraction. NAACL-HLT (Findings) 2022: 1931-1942 - [c940]Xuming Hu, Zhijiang Guo, Guanyu Wu, Aiwei Liu, Lijie Wen, Philip S. Yu:
CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking. NAACL-HLT 2022: 3362-3376 - [c939]Shuliang Liu, Xuming Hu, Chenwei Zhang, Shu'ang Li, Lijie Wen, Philip S. Yu:
HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised Relation Extraction. NAACL-HLT 2022: 5970-5980 - [c938]Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, Lichao Sun, Jundong Li, George H. Chen, Zhihao Jia, Philip S. Yu:
BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs. NeurIPS 2022 - [c937]Yizhen Zheng, Shirui Pan, Vincent C. S. Lee, Yu Zheng, Philip S. Yu:
Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination. NeurIPS 2022 - [c936]Zhiwei Liu, Lin Meng, Fei Jiang, Jiawei Zhang, Philip S. Yu:
Deoscillated Adaptive Graph Collaborative Filtering. TAG-ML 2022: 248-257 - [c935]Zhenyun Hao, Jianing Hao, Zhaohui Peng, Senzhang Wang, Philip S. Yu, Xue Wang, Jian Wang:
Dy-HIEN: Dynamic Evolution based Deep Hierarchical Intention Network for Membership Prediction. WSDM 2022: 363-371 - [c934]Xiaoyun Zhao, Ning Yang, Philip S. Yu:
Multi-Sparse-Domain Collaborative Recommendation via Enhanced Comprehensive Aspect Preference Learning. WSDM 2022: 1452-1460 - [c933]Haoran Yang, Hongxu Chen, Shirui Pan, Lin Li, Philip S. Yu, Guandong Xu:
Dual Space Graph Contrastive Learning. WWW 2022: 1238-1247 - [c932]Ziwei Fan, Zhiwei Liu, Yu Wang, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, Philip S. Yu:
Sequential Recommendation via Stochastic Self-Attention. WWW 2022: 2036-2047 - [c931]Liangwei Yang, Zhiwei Liu, Yu Wang, Chen Wang, Ziwei Fan, Philip S. Yu:
Large-scale Personalized Video Game Recommendation via Social-aware Contextualized Graph Neural Network. WWW 2022: 3376-3386 - [i358]Ziwen Du, Ning Yang, Zhonghua Yu, Philip S. Yu:
Learning from Atypical Behavior: Temporary Interest Aware Recommendation Based on Reinforcement Learning. CoRR abs/2201.05970 (2022) - [i357]Xiaoyun Zhao, Ning Yang, Philip S. Yu:
Multi-Sparse-Domain Collaborative Recommendation via Enhanced Comprehensive Aspect Preference Learning. CoRR abs/2201.05973 (2022) - [i356]Ziwei Fan, Zhiwei Liu, Yu Wang, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, Philip S. Yu:
Sequential Recommendation via Stochastic Self-Attention. CoRR abs/2201.06035 (2022) - [i355]Haoran Yang, Hongxu Chen, Shirui Pan, Lin Li, Philip S. Yu, Guandong Xu:
Dual Space Graph Contrastive Learning. CoRR abs/2201.07409 (2022) - [i354]Daokun Zhang, Jie Yin, Philip S. Yu:
Link Prediction with Contextualized Self-Supervision. CoRR abs/2201.10069 (2022) - [i353]Liangwei Yang, Zhiwei Liu, Yu Wang, Chen Wang, Ziwei Fan, Philip S. Yu:
Large-scale Personalized Video Game Recommendation via Social-aware Contextualized Graph Neural Network. CoRR abs/2202.03392 (2022) - [i352]Xiaoqin Pan, Xuan Lin, Dongsheng Cao, Xiangxiang Zeng, Philip S. Yu, Lifang He, Ruth Nussinov, Feixiong Cheng:
Deep learning for drug repurposing: methods, databases, and applications. CoRR abs/2202.05145 (2022) - [i351]Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, Philip S. Yu:
Graph Neural Networks for Graphs with Heterophily: A Survey. CoRR abs/2202.07082 (2022) - [i350]Wensheng Gan, Guoting Chen, Hongzhi Yin, Philippe Fournier-Viger, Chien-Ming Chen, Philip S. Yu:
Towards Revenue Maximization with Popular and Profitable Products. CoRR abs/2202.13041 (2022) - [i349]Gengsen Huang, Wensheng Gan, Philip S. Yu:
TaSPM: Targeted Sequential Pattern Mining. CoRR abs/2202.13202 (2022) - [i348]Wenting Zhao, Ye Liu, Yao Wan, Philip S. Yu:
Attend, Memorize and Generate: Towards Faithful Table-to-Text Generation in Few Shots. CoRR abs/2203.00732 (2022) - [i347]Zhi-Hong Deng, Chang-Dong Wang, Ling Huang, Jian-Huang Lai, Philip S. Yu:
G3SR: Global Graph Guided Session-based Recommendation. CoRR abs/2203.06467 (2022) - [i346]Xusheng Zhao, Jia Wu, Hao Peng, Amin Beheshti, Jessica Monaghan, David McAlpine, Heivet Hernandez-Perez, Mark Dras, Qiong Dai, Yangyang Li, Philip S. Yu, Lifang He:
Deep Reinforcement Learning Guided Graph Neural Networks for Brain Network Analysis. CoRR abs/2203.10093 (2022) - [i345]Zhiwei Liu, Yongjun Chen, Jia Li, Man Luo, Philip S. Yu, Caiming Xiong:
Improving Contrastive Learning with Model Augmentation. CoRR abs/2203.15508 (2022) - [i344]Tingting Liang, Yixuan Jiang, Congying Xia, Ziqiang Zhao, Yuyu Yin, Philip S. Yu:
Multifaceted Improvements for Conversational Open-Domain Question Answering. CoRR abs/2204.00266 (2022) - [i343]Taotao Cai, Quan Z. Sheng, Xiangyu Song, Jian Yang, Wei Emma Zhang, Jia Wu, Philip S. Yu:
A Survey on Location-Driven Influence Maximization. CoRR abs/2204.08005 (2022) - [i342]Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, George H. Chen, Zhihao Jia, Philip S. Yu:
PyGOD: A Python Library for Graph Outlier Detection. CoRR abs/2204.12095 (2022) - [i341]Yuwei Cao, William Groves, Tanay Kumar Saha, Joel R. Tetreault, Alex Jaimes, Hao Peng, Philip S. Yu:
XLTime: A Cross-Lingual Knowledge Transfer Framework for Temporal Expression Extraction. CoRR abs/2205.01757 (2022) - [i340]Shuliang Liu, Xuming Hu, Chenwei Zhang, Shu'ang Li, Lijie Wen, Philip S. Yu:
HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised Relation Extraction. CoRR abs/2205.02225 (2022) - [i339]Jiaqian Ren, Lei Jiang, Hao Peng, Zhiwei Liu, Jia Wu, Philip S. Yu:
Evidential Temporal-aware Graph-based Social Event Detection via Dempster-Shafer Theory. CoRR abs/2205.12179 (2022) - [i338]Shu'ang Li, Xuming Hu, Li Lin, Aiwei Liu, Lijie Wen, Philip S. Yu:
A Multi-level Supervised Contrastive Learning Framework for Low-Resource Natural Language Inference. CoRR abs/2205.15550 (2022) - [i337]Yizhen Zheng, Shirui Pan, Vincent C. S. Lee, Yu Zheng, Philip S. Yu:
Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination. CoRR abs/2206.01535 (2022) - [i336]Wensheng Gan, Gengsen Huang, Jian Weng, Tianlong Gu, Philip S. Yu:
Towards Target Sequential Rules. CoRR abs/2206.04728 (2022) - [i335]Yue Wang, Yao Wan, Lu Bai, Lixin Cui, Zhuo Xu, Ming Li, Philip S. Yu, Edwin R. Hancock:
Collaborative Knowledge Graph Fusion by Exploiting the Open Corpus. CoRR abs/2206.07472 (2022) - [i334]Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, Lichao Sun, Jundong Li, George H. Chen, Zhihao Jia, Philip S. Yu:
Benchmarking Node Outlier Detection on Graphs. CoRR abs/2206.10071 (2022) - [i333]Xuming Hu, Zhijiang Guo, Guanyu Wu, Aiwei Liu, Lijie Wen, Philip S. Yu:
CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking. CoRR abs/2206.11863 (2022) - [i332]Ruitong Zhang, Hao Peng, Yingtong Dou, Jia Wu, Qingyun Sun, Jingyi Zhang, Philip S. Yu:
Automating DBSCAN via Deep Reinforcement Learning. CoRR abs/2208.04537 (2022) - [i331]Lihua Chen, Ning Yang, Philip S. Yu:
Time Lag Aware Sequential Recommendation. CoRR abs/2208.04760 (2022) - [i330]Jiaqian Ren, Lei Jiang, Hao Peng, Yuwei Cao, Jia Wu, Philip S. Yu, Lifang He:
From Known to Unknown: Quality-aware Self-improving Graph Neural Network for Open Set Social Event Detection. CoRR abs/2208.06973 (2022) - [i329]Qingyun Sun, Jianxin Li, Haonan Yuan, Xingcheng Fu, Hao Peng, Cheng Ji, Qian Li, Philip S. Yu:
Position-aware Structure Learning for Graph Topology-imbalance by Relieving Under-reaching and Over-squashing. CoRR abs/2208.08302 (2022) - [i328]Li Sun, Junda Ye, Hao Peng, Philip S. Yu:
A Self-supervised Riemannian GNN with Time Varying Curvature for Temporal Graph Learning. CoRR abs/2208.14073 (2022) - [i327]Jiahui Chen, Xu Guo, Wensheng Gan, Shicheng Wan, Philip S. Yu:
A Generic Algorithm for Top-K On-Shelf Utility Mining. CoRR abs/2208.14230 (2022) - [i326]Yu Wang, Hengrui Zhang, Zhiwei Liu, Liangwei Yang, Philip S. Yu:
ContrastVAE: Contrastive Variational AutoEncoder for Sequential Recommendation. CoRR abs/2209.00456 (2022) - [i325]Jiaqian Ren, Lei Jiang, Hao Peng, Lingjuan Lyu, Zhiwei Liu, Chaochao Chen, Jia Wu, Xu Bai, Philip S. Yu:
Cross-Network Social User Embedding with Hybrid Differential Privacy Guarantees. CoRR abs/2209.01539 (2022) - [i324]Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Yang Du, Sen Su, Philip S. Yu:
PERFECT: A Hyperbolic Embedding for Joint User and Community Alignment. CoRR abs/2209.02908 (2022) - [i323]Xuming Hu, Zhijiang Guo, Yu Fu, Lijie Wen, Philip S. Yu:
Scene Graph Modification as Incremental Structure Expanding. CoRR abs/2209.09093 (2022) - [i322]Chunkai Zhang, Maohua Lyu, Wensheng Gan, Philip S. Yu:
Totally-ordered Sequential Rules for Utility Maximization. CoRR abs/2209.13501 (2022) - [i321]Yao Chen, Wensheng Gan, Yongdong Wu, Philip S. Yu:
Contrast Pattern Mining: A Survey. CoRR abs/2209.13556 (2022) - [i320]Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, Philip S. Yu, Lifang He:
Deep Clustering: A Comprehensive Survey. CoRR abs/2210.04142 (2022) - [i319]Jiayi Sun, Wensheng Gan, Han-Chieh Chao, Philip S. Yu:
Metaverse: Survey, Applications, Security, and Opportunities. CoRR abs/2210.07990 (2022) - [i318]Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Caihua Shan, Yiheng Sun, Yangyong Zhu, Philip S. Yu:
CLARE: A Semi-supervised Community Detection Algorithm. CoRR abs/2210.08274 (2022) - [i317]Xuming Hu, Yong Jiang, Aiwei Liu, Zhongqiang Huang, Pengjun Xie, Fei Huang, Lijie Wen, Philip S. Yu:
EnTDA: Entity-to-Text based Data Augmentation Approach for Named Entity Recognition Tasks. CoRR abs/2210.10343 (2022) - [i316]Ziwei Fan, Zhiwei Liu, Chen Wang, Peijie Huang, Hao Peng, Philip S. Yu:
Sequential Recommendation with Auxiliary Item Relationships via Multi-Relational Transformer. CoRR abs/2210.13572 (2022) - [i315]Byung-Hak Kim, Zhongfen Deng, Philip S. Yu, Varun Ganapathi:
Can Current Explainability Help Provide References in Clinical Notes to Support Humans Annotate Medical Codes? CoRR abs/2210.15882 (2022) - [i314]Zheng Liu, Xiaohan Li, Philip S. Yu:
Mitigating Health Disparities in EHR via Deconfounder. CoRR abs/2210.15901 (2022) - [i313]Jiayi Sun, Wensheng Gan, Zefeng Chen, Junhui Li, Philip S. Yu:
Big Data Meets Metaverse: A Survey. CoRR abs/2210.16282 (2022) - [i312]Mingdai Yang, Zhiwei Liu, Liangwei Yang, Xiaolong Liu, Chen Wang, Hao Peng, Philip S. Yu:
Ranking-based Group Identification via Factorized Attention on Social Tripartite Graph. CoRR abs/2211.01830 (2022) - [i311]Yibo Wang, Congying Xia, Guan Wang, Philip S. Yu:
Continuous Prompt Tuning Based Textual Entailment Model for E-commerce Entity Typing. CoRR abs/2211.02483 (2022) - [i310]Xuming Hu, Shiao Meng, Chenwei Zhang, Xiangli Yang, Lijie Wen, Irwin King, Philip S. Yu:
Gradient Imitation Reinforcement Learning for General Low-Resource Information Extraction. CoRR abs/2211.06014 (2022) - [i309]Liangwei Yang, Shen Wang, Jibing Gong, Shaojie Zheng, Shuying Du, Zhiwei Liu, Philip S. Yu:
MetaKRec: Collaborative Meta-Knowledge Enhanced Recommender System. CoRR abs/2211.07104 (2022) - [i308]Xiaohan Li, Zheng Liu, Luyi Ma, Kaushiki Nag, Stephen D. Guo, Philip S. Yu, Kannan Achan:
Mitigating Frequency Bias in Next-Basket Recommendation via Deconfounders. CoRR abs/2211.09072 (2022) - [i307]Liangwei Yang, Shengjie Wang, Yunzhe Tao, Jiankai Sun, Xiaolong Liu, Philip S. Yu, Taiqing Wang:
DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation. CoRR abs/2211.10486 (2022) - [i306]Jiayi Sun, Wensheng Gan, Han-Chieh Chao, Philip S. Yu, Weiping Ding:
Internet of Behaviors: A Survey. CoRR abs/2211.15588 (2022) - [i305]Li Sun, Junda Ye, Hao Peng, Feiyang Wang, Philip S. Yu:
Self-Supervised Continual Graph Learning in Adaptive Riemannian Spaces. CoRR abs/2211.17068 (2022) - [i304]Jiangshu Du, Wenpeng Yin, Congying Xia, Philip S. Yu:
Learning to Select from Multiple Options. CoRR abs/2212.00301 (2022) - [i303]Hengrui Zhang, Qitian Wu, Yu Wang, Shaofeng Zhang, Junchi Yan, Philip S. Yu:
Localized Contrastive Learning on Graphs. CoRR abs/2212.04604 (2022) - [i302]Gengsen Huang, Wensheng Gan, Philip S. Yu:
Towards Sequence Utility Maximization under Utility Occupancy Measure. CoRR abs/2212.10452 (2022) - [i301]Chunkai Zhang, Yuting Yang, Zilin Du, Wensheng Gan, Philip S. Yu:
HUSP-SP: Faster Utility Mining on Sequence Data. CoRR abs/2212.14255 (2022) - 2021
- [j410]Jerry Chun-Wei Lin, Philippe Fournier-Viger, Vincent S. Tseng, Philip S. Yu:
IEEE Access Special Section Editorial: Utility-Pattern Mining: Theoretical Analytics and Applications. IEEE Access 9: 16604-16607 (2021) - [j409]Xiaobin Rui, Fanrong Meng, Yahui Chai, Zhixiao Wang, Philip S. Yu:
Dismantling Networks by Skeleton Extraction and Greedy Tree Breaking. IEEE Access 9: 84922-84931 (2021) - [j408]Guixiang Ma, Nesreen K. Ahmed, Theodore L. Willke, Philip S. Yu:
Deep graph similarity learning: a survey. Data Min. Knowl. Discov. 35(3): 688-725 (2021) - [j407]Longbing Cao, Qiang Yang, Philip S. Yu:
Data science and AI in FinTech: an overview. Int. J. Data Sci. Anal. 12(2): 81-99 (2021) - [j406]Erik Cambria, Shaoxiong Ji, Shirui Pan, Philip S. Yu:
Knowledge graph representation and reasoning. Neurocomputing 461: 494-496 (2021) - [j405]Chunkai Zhang, Zilin Du, Wensheng Gan, Philip S. Yu:
TKUS: Mining top-k high utility sequential patterns. Inf. Sci. 570: 342-359 (2021) - [j404]Tie Li, Gang Kou, Yi Peng, Philip S. Yu:
A fast diagonal distance metric learning approach for large-scale datasets. Inf. Sci. 571: 225-245 (2021) - [j403]Boyan Wang, Xuegang Hu, Pei-Pei Li, Philip S. Yu:
Cognitive structure learning model for hierarchical multi-label text classification. Knowl. Based Syst. 218: 106876 (2021) - [j402]Zhixiao Wang, Chengcheng Sun, Xiaobin Rui, Philip S. Yu, Lichao Sun:
Localization of multiple diffusion sources based on overlapping community detection. Knowl. Based Syst. 226: 106613 (2021) - [j401]Lixin Cui, Lu Bai, Yue Wang, Philip S. Yu, Edwin R. Hancock:
Fused lasso for feature selection using structural information. Pattern Recognit. 119: 108058 (2021) - [j400]Jianguo Chen, Kenli Li, Keqin Li, Philip S. Yu, Zeng Zeng:
Dynamic Bicycle Dispatching of Dockless Public Bicycle-sharing Systems Using Multi-objective Reinforcement Learning. ACM Trans. Cyber Phys. Syst. 5(4): 34:1-34:24 (2021) - [j399]Xianyu Chen, Zhongyuan Jiang, Hui Li, Jianfeng Ma, Philip S. Yu:
Community Hiding by Link Perturbation in Social Networks. IEEE Trans. Comput. Soc. Syst. 8(3): 704-715 (2021) - [j398]Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:
Fast Utility Mining on Sequence Data. IEEE Trans. Cybern. 51(2): 487-500 (2021) - [j397]Bao-Yu Liu, Ling Huang, Chang-Dong Wang, Suohai Fan, Philip S. Yu:
Adaptively Weighted Multiview Proximity Learning for Clustering. IEEE Trans. Cybern. 51(3): 1571-1585 (2021) - [j396]Wensheng Gan, Guoting Chen, Hongzhi Yin, Philippe Fournier-Viger, Chien-Ming Chen, Philip S. Yu:
Towards Revenue Maximization with Popular and Profitable Products. Trans. Data Sci. 2(4): 42:1-42:21 (2021) - [j395]Jie Xu, Zhoujun Li, Feiran Huang, Chaozhuo Li, Philip S. Yu:
Social Image Sentiment Analysis by Exploiting Multimodal Content and Heterogeneous Relations. IEEE Trans. Ind. Informatics 17(4): 2974-2982 (2021) - [j394]Jianguo Chen, Kenli Li, Keqin Li, Philip S. Yu, Zeng Zeng:
Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing System Using Gated Graph Neural Network. ACM Trans. Intell. Syst. Technol. 12(2): 25:1-25:22 (2021) - [j393]Zhenchang Xia, Jia Wu, Libing Wu, Yanjiao Chen, Jian Yang, Philip S. Yu:
A Comprehensive Survey of the Key Technologies and Challenges Surrounding Vehicular Ad Hoc Networks. ACM Trans. Intell. Syst. Technol. 12(4): 37:1-37:30 (2021) - [j392]Yu Huang, Josh Jia-Ching Ying, Philip S. Yu, Vincent S. Tseng:
Dynamic Graph Mining for Multi-weight Multi-destination Route Planning with Deadlines Constraints. ACM Trans. Knowl. Discov. Data 15(1): 3:1-3:32 (2021) - [j391]Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Hongzhi Yin, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:
Utility Mining Across Multi-Dimensional Sequences. ACM Trans. Knowl. Discov. Data 15(5): 82:1-82:24 (2021) - [j390]Hao Peng, Jianxin Li, Yangqiu Song, Renyu Yang, Rajiv Ranjan, Philip S. Yu, Lifang He:
Streaming Social Event Detection and Evolution Discovery in Heterogeneous Information Networks. ACM Trans. Knowl. Discov. Data 15(5): 89:1-89:33 (2021) - [j389]Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Vincent S. Tseng, Philip S. Yu:
A Survey of Utility-Oriented Pattern Mining. IEEE Trans. Knowl. Data Eng. 33(4): 1306-1327 (2021) - [j388]Chuan Shi, Xiaotian Han, Li Song, Xiao Wang, Senzhang Wang, Junping Du, Philip S. Yu:
Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks. IEEE Trans. Knowl. Data Eng. 33(4): 1413-1425 (2021) - [j387]Jianguo Chen, Philip S. Yu:
A Domain Adaptive Density Clustering Algorithm for Data With Varying Density Distribution. IEEE Trans. Knowl. Data Eng. 33(6): 2310-2321 (2021) - [j386]Mingtao Lei, Xi Zhang, Lingyang Chu, Zhefeng Wang, Philip S. Yu, Binxing Fang:
Finding Route Hotspots in Large Labeled Networks. IEEE Trans. Knowl. Data Eng. 33(6): 2479-2492 (2021) - [j385]Hao Peng, Jianxin Li, Senzhang Wang, Lihong Wang, Qiran Gong, Renyu Yang, Bo Li, Philip S. Yu, Lifang He:
Hierarchical Taxonomy-Aware and Attentional Graph Capsule RCNNs for Large-Scale Multi-Label Text Classification. IEEE Trans. Knowl. Data Eng. 33(6): 2505-2519 (2021) - [j384]Linchuan Xu, Jing Wang, Lifang He, Jiannong Cao, Xiaokai Wei, Philip S. Yu, Kenji Yamanishi:
MixSp: A Framework for Embedding Heterogeneous Information Networks With Arbitrary Number of Node and Edge Types. IEEE Trans. Knowl. Data Eng. 33(6): 2627-2639 (2021) - [j383]Zheng Wang, Xiaojun Ye, Chaokun Wang, Jian Cui, Philip S. Yu:
Network Embedding With Completely-Imbalanced Labels. IEEE Trans. Knowl. Data Eng. 33(11): 3634-3647 (2021) - [j382]Lichao Sun, Bokai Cao, Ji Wang, Witawas Srisa-an, Philip S. Yu, Alex D. Leow, Stephen Checkoway:
Kollector: Detecting Fraudulent Activities on Mobile Devices Using Deep Learning. IEEE Trans. Mob. Comput. 20(4): 1465-1476 (2021) - [j381]Youcef Djenouri, Jerry Chun-Wei Lin, Kjetil Nørvåg, Heri Ramampiaro, Philip S. Yu:
Exploring Decomposition for Solving Pattern Mining Problems. ACM Trans. Manag. Inf. Syst. 12(2): 15:1-15:36 (2021) - [j380]Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu:
A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 32(1): 4-24 (2021) - [j379]Chang-Dong Wang, Man-Sheng Chen, Ling Huang, Jian-Huang Lai, Philip S. Yu:
Smoothness Regularized Multiview Subspace Clustering With Kernel Learning. IEEE Trans. Neural Networks Learn. Syst. 32(11): 5047-5060 (2021) - [j378]Shaoxu Song, Fei Gao, Aoqian Zhang, Jianmin Wang, Philip S. Yu:
Stream Data Cleaning under Speed and Acceleration Constraints. ACM Trans. Database Syst. 46(3): 10:1-10:44 (2021) - [j377]Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:
Beyond Frequency: Utility Mining with Varied Item-specific Minimum Utility. ACM Trans. Internet Techn. 21(1): 3:1-3:32 (2021) - [j376]He Li, Hang Yuan, Jianbin Huang, Jiangtao Cui, Xiaoke Ma, Senzhang Wang, Jaesoo Yoo, Philip S. Yu:
Group Reassignment for Dynamic Edge Partitioning. IEEE Trans. Parallel Distributed Syst. 32(10): 2477-2490 (2021) - [c930]Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, Philip S. Yu:
Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs. AAAI 2021: 4375-4383 - [c929]Ye Liu, Yao Wan, Lifang He, Hao Peng, Philip S. Yu:
KG-BART: Knowledge Graph-Augmented BART for Generative Commonsense Reasoning. AAAI 2021: 6418-6425 - [c928]Xiaohan Li, Zhiwei Liu, Stephen D. Guo, Zheng Liu, Hao Peng, Philip S. Yu, Kannan Achan:
Pre-training Recommender Systems via Reinforced Attentive Multi-relational Graph Neural Network. IEEE BigData 2021: 457-468 - [c927]Fuxin Ren, Zhongbao Zhang, Yang Yan, Zhi Wang, Sen Su, Philip S. Yu:
HAMLET: Hierarchical Attention-based Model with muLti-task sElf-Training for user profiling. IEEE BigData 2021: 500-509 - [c926]Shen Wang, Xiaokai Wei, Cícero Nogueira dos Santos, Zhiguo Wang, Ramesh Nallapati, Andrew O. Arnold, Philip S. Yu:
Knowledge Graph Representation via Hierarchical Hyperbolic Neural Graph Embedding. IEEE BigData 2021: 540-549 - [c925]Shaika Chowdhury, Halid Ziya Yerebakan, Yoshihisa Shinagawa, Philip S. Yu:
MedTextSeg: A Deep Dual Sequential Model for Section Segmentation in Medical Reports. IEEE BigData 2021: 1582-1588 - [c924]Chen Wang, Yingtong Dou, Min Chen, Jia Chen, Zhiwei Liu, Philip S. Yu:
Deep Fraud Detection on Non-attributed Graph. IEEE BigData 2021: 5470-5473 - [c923]Nooshin Mojab, Vahid Noroozi, Abdullah Aleem, Manoj Prabhakar Nallabothula, Joseph Baker, Dimitri T. Azar, Mark Rosenblatt, R. V. Paul Chan, Darvin Yi, Philip S. Yu, Joelle A. Hallak:
I-ODA, Real-world Multi-modal Longitudinal Data for Ophthalmic Applications. HEALTHINF 2021: 566-574 - [c922]Nooshin Mojab, Philip S. Yu, Joelle A. Hallak, Darvin Yi:
CvS: Classification via Segmentation For Small Datasets. BMVC 2021: 174 - [c921]Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, Philip S. Yu:
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer. CIKM 2021: 433-442 - [c920]Li He, Hongxu Chen, Dingxian Wang, Shoaib Jameel, Philip S. Yu, Guandong Xu:
Click-Through Rate Prediction with Multi-Modal Hypergraphs. CIKM 2021: 690-699 - [c919]Yicong Li, Hongxu Chen, Xiangguo Sun, Zhenchao Sun, Lin Li, Lizhen Cui, Philip S. Yu, Guandong Xu:
Hyperbolic Hypergraphs for Sequential Recommendation. CIKM 2021: 988-997 - [c918]Xiaosu Wang, Yun Xiong, Hao Niu, Jingwen Yue, Yangyong Zhu, Philip S. Yu:
Improving Chinese Character Representation with Formation Graph Attention Network. CIKM 2021: 1999-2009 - [c917]Ziwei Fan, Zhiwei Liu, Shen Wang, Lei Zheng, Philip S. Yu:
Modeling Sequences as Distributions with Uncertainty for Sequential Recommendation. CIKM 2021: 3019-3023 - [c916]Chaozhuo Li, Senzhang Wang, Feiran Huang, Jie Xu, Philip S. Yu:
Hubness-aware User Identity Linkage. CIKM 2021: 3196-3200 - [c915]Chen Li, Xutan Peng, Hao Peng, Jia Wu, Lihong Wang, Philip S. Yu, Jianxin Li, Lichao Sun:
Graph-based Semi-Supervised Learning by Strengthening Local Label Consistency. CIKM 2021: 3201-3205 - [c914]Yu Wang, Zhiwei Liu, Ziwei Fan, Lichao Sun, Philip S. Yu:
DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN. CIKM 2021: 3513-3517 - [c913]Chen Wang, Yueqing Liang, Zhiwei Liu, Tao Zhang, Philip S. Yu:
Pre-training Graph Neural Network for Cross Domain Recommendation. CogMI 2021: 140-145 - [c912]Xinyu Wen, Zhaohui Peng, Shanshan Huang, Senzhang Wang, Philip S. Yu:
MISS: A Multi-user Identification Network for Shared-Account Session-Aware Recommendation. DASFAA (3) 2021: 228-243 - [c911]Xiaokang Xu, Zhaohui Peng, Senzhang Wang, Shanshan Huang, Philip S. Yu, Zhenyun Hao, Jian Wang, Xue Wang:
AE-UPCP: Seeking Potential Membership Users by Audience Expansion Combining User Preference with Consumption Pattern. DASFAA (2) 2021: 392-399 - [c910]Ye Liu, Yao Wan, Jian-Guo Zhang, Wenting Zhao, Philip S. Yu:
Enriching Non-Autoregressive Transformer with Syntactic and Semantic Structures for Neural Machine Translation. EACL 2021: 1235-1244 - [c909]Ye Liu, Jian-Guo Zhang, Yao Wan, Congying Xia, Lifang He, Philip S. Yu:
HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text Extractive Summarization. EMNLP (1) 2021: 146-154 - [c908]Ye Liu, Kazuma Hashimoto, Yingbo Zhou, Semih Yavuz, Caiming Xiong, Philip S. Yu:
Dense Hierarchical Retrieval for Open-domain Question Answering. EMNLP (Findings) 2021: 188-200 - [c907]Xuming Hu, Chenwei Zhang, Fukun Ma, Chenyao Liu, Lijie Wen, Philip S. Yu:
Semi-supervised Relation Extraction via Incremental Meta Self-Training. EMNLP (Findings) 2021: 487-496 - [c906]Jian-Guo Zhang, Trung Bui, Seunghyun Yoon, Xiang Chen, Zhiwei Liu, Congying Xia, Quan Hung Tran, Walter Chang, Philip S. Yu:
Few-Shot Intent Detection via Contrastive Pre-Training and Fine-Tuning. EMNLP (1) 2021: 1906-1912 - [c905]Xuming Hu, Chenwei Zhang, Yawen Yang, Xiaohe Li, Li Lin, Lijie Wen, Philip S. Yu:
Gradient Imitation Reinforcement Learning for Low Resource Relation Extraction. EMNLP (1) 2021: 2737-2746 - [c904]Wenting Zhao, Ye Liu, Yao Wan, Philip S. Yu:
Attend, Memorize and Generate: Towards Faithful Table-to-Text Generation in Few Shots. EMNLP (Findings) 2021: 4106-4117 - [c903]Tao Zhang, Congying Xia, Philip S. Yu, Zhiwei Liu, Shu Zhao:
PDALN: Progressive Domain Adaptation over a Pre-trained Model for Low-Resource Cross-Domain Named Entity Recognition. EMNLP (1) 2021: 5441-5451 - [c902]Hsi-Wen Chen, Hong-Han Shuai, De-Nian Yang, Wang-Chien Lee, Chuan Shi, Philip S. Yu, Ming-Syan Chen:
Structure-Aware Parameter-Free Group Query via Heterogeneous Information Network Transformer. ICDE 2021: 2075-2080 - [c901]Xingcheng Fu, Jianxin Li, Jia Wu, Qingyun Sun, Cheng Ji, Senzhang Wang, Jiajun Tan, Hao Peng, Philip S. Yu:
ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network. ICDM 2021: 111-120 - [c900]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Outlier-Robust Multi-View Subspace Clustering with Prior Constraints. ICDM 2021: 439-448 - [c899]Haoran Yang, Hongxu Chen, Lin Li, Philip S. Yu, Guandong Xu:
Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation. ICDM 2021: 787-796 - [c898]Wenwei Ke, Chuanren Liu, Xiangfu Shi, Yiqiao Dai, Philip S. Yu, Xiaoqiang Zhu:
Addressing Exposure Bias in Uplift Modeling for Large-scale Online Advertising. ICDM 2021: 1156-1161 - [c897]Xiaosu Wang, Yun Xiong, Hao Niu, Jingwen Yue, Yangyong Zhu, Philip S. Yu:
BioHanBERT: A Hanzi-aware Pre-trained Language Model for Chinese Biomedical Text Mining. ICDM 2021: 1415-1420 - [c896]Yongshan Zhang, Xinxin Wang, Zhihua Cai, Yicong Zhou, Philip S. Yu:
Tensor-Based Unsupervised Multi-View Feature Selection for Image Recognition. ICME 2021: 1-6 - [c895]Gongxu Luo, Jianxin Li, Hao Peng, Carl Yang, Lichao Sun, Philip S. Yu, Lifang He:
Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural Networks. IJCAI 2021: 2767-2774 - [c894]Shoujin Wang, Liang Hu, Yan Wang, Xiangnan He, Quan Z. Sheng, Mehmet A. Orgun, Longbing Cao, Francesco Ricci, Philip S. Yu:
Graph Learning based Recommender Systems: A Review. IJCAI 2021: 4644-4652 - [c893]Jiangshu Du, Yingtong Dou, Congying Xia, Limeng Cui, Jing Ma, Philip S. Yu:
Cross-lingual COVID-19 Fake News Detection. ICDM (Workshops) 2021: 859-862 - [c892]Yue He, Yancheng Dong, Peng Cui, Yuhang Jiao, Xiaowei Wang, Ji Liu, Philip S. Yu:
Purify and Generate: Learning Faithful Item-to-Item Graph from Noisy User-Item Interaction Behaviors. KDD 2021: 3002-3010 - [c891]Wei Jin, Yao Ma, Yiqi Wang, Xiaorui Liu, Jiliang Tang, Yukuo Cen, Jiezhong Qiu, Jie Tang, Chuan Shi, Yanfang Ye, Jiawei Zhang, Philip S. Yu:
Graph Representation Learning: Foundations, Methods, Applications and Systems. KDD 2021: 4044-4045 - [c890]Subhabrata Mukherjee, Qi Li, Sihong Xie, Philip S. Yu, Jing Gao:
The Third International TrueFact Workshop: Making a Credible Web for Tomorrow. KDD 2021: 4143-4144 - [c889]Jianpeng Xu, Lingfei Wu, Xiaolin Pang, Mohit Sharma, Dawei Yin, George Karypis, Justin Basilico, Philip S. Yu:
2nd International Workshop on Industrial Recommendation Systems (IRS). KDD 2021: 4173-4174 - [c888]Congying Xia, Wenpeng Yin, Yihao Feng, Philip S. Yu:
Incremental Few-shot Text Classification with Multi-round New Classes: Formulation, Dataset and System. NAACL-HLT 2021: 1351-1360 - [c887]Zhongfen Deng, Hao Peng, Dongxiao He, Jianxin Li, Philip S. Yu:
HTCInfoMax: A Global Model for Hierarchical Text Classification via Information Maximization. NAACL-HLT 2021: 3259-3265 - [c886]Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, Philip S. Yu:
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks. NeurIPS 2021: 76-89 - [c885]Charu C. Aggarwal, Yao Li, Philip S. Yu:
Signature-Based Anomaly Detection in Networks. SDM 2021: 109-117 - [c884]Senzhang Wang, Meiyue Zhang, Hao Miao, Philip S. Yu:
MT-STNets: Multi-Task Spatial-Temporal Networks for Multi-Scale Traffic Prediction. SDM 2021: 504-512 - [c883]Zhiwei Liu, Ziwei Fan, Yu Wang, Philip S. Yu:
Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer. SIGIR 2021: 1608-1612 - [c882]Zheng Liu, Xiaohan Li, Zeyu You, Tao Yang, Wei Fan, Philip S. Yu:
Medical Triage Chatbot Diagnosis Improvement via Multi-relational Hyperbolic Graph Neural Network. SIGIR 2021: 1965-1969 - [c881]Congying Xia, Caiming Xiong, Philip S. Yu:
Pseudo Siamese Network for Few-shot Intent Generation. SIGIR 2021: 2005-2009 - [c880]Yingtong Dou, Kai Shu, Congying Xia, Philip S. Yu, Lichao Sun:
User Preference-aware Fake News Detection. SIGIR 2021: 2051-2055 - [c879]Liangwei Yang, Zhiwei Liu, Yingtong Dou, Jing Ma, Philip S. Yu:
ConsisRec: Enhancing GNN for Social Recommendation via Consistent Neighbor Aggregation. SIGIR 2021: 2141-2145 - [c878]Huidi Chen, Yun Xiong, Yangyong Zhu, Philip S. Yu:
Highly Liquid Temporal Interaction Graph Embeddings. WWW 2021: 1639-1648 - [c877]Shen Wang, Xiaokai Wei, Cícero Nogueira dos Santos, Zhiguo Wang, Ramesh Nallapati, Andrew O. Arnold, Bing Xiang, Philip S. Yu, Isabel F. Cruz:
Mixed-Curvature Multi-Relational Graph Neural Network for Knowledge Graph Completion. WWW 2021: 1761-1771 - [c876]Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Yuanxing Ning, Philip S. Yu, Lifang He:
SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism. WWW 2021: 2081-2091 - [c875]Yuwei Cao, Hao Peng, Jia Wu, Yingtong Dou, Jianxin Li, Philip S. Yu:
Knowledge-Preserving Incremental Social Event Detection via Heterogeneous GNNs. WWW 2021: 3383-3395 - [i300]Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Philip S. Yu, Weixiong Zhang:
A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning. CoRR abs/2101.01669 (2021) - [i299]Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, Philip S. Yu:
Dynamic Graph Collaborative Filtering. CoRR abs/2101.02844 (2021) - [i298]Zheng Liu, Xiaohan Li, Hao Peng, Lifang He, Philip S. Yu:
Heterogeneous Similarity Graph Neural Network on Electronic Health Records. CoRR abs/2101.06800 (2021) - [i297]Jianguo Chen, Kenli Li, Keqin Li, Philip S. Yu, Zeng Zeng:
Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing System Using Gated Graph Neural Network. CoRR abs/2101.07425 (2021) - [i296]Jianguo Chen, Kenli Li, Keqin Li, Philip S. Yu, Zeng Zeng:
Dynamic Bicycle Dispatching of Dockless Public Bicycle-sharing Systems using Multi-objective Reinforcement Learning. CoRR abs/2101.07437 (2021) - [i295]Qingyun Sun, Hao Peng, Jianxin Li, Jia Wu, Yuanxing Ning, Philip S. Yu, Lifang He:
SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism. CoRR abs/2101.08170 (2021) - [i294]Yuwei Cao, Hao Peng, Jia Wu, Yingtong Dou, Jianxin Li, Philip S. Yu:
Knowledge-Preserving Incremental Social Event Detection via Heterogeneous GNNs. CoRR abs/2101.08747 (2021) - [i293]Ye Liu, Yao Wan, Jian-Guo Zhang, Wenting Zhao, Philip S. Yu:
Enriching Non-Autoregressive Transformer with Syntactic and SemanticStructures for Neural Machine Translation. CoRR abs/2101.08942 (2021) - [i292]Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, Philip S. Yu:
Graph Self-Supervised Learning: A Survey. CoRR abs/2103.00111 (2021) - [i291]Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang, Xiao Liu, Ruobing Xie, Kai Zhuang, Xu Zhang, Leyu Lin, Philip S. Yu:
Understanding WeChat User Preferences and "Wow" Diffusion. CoRR abs/2103.02930 (2021) - [i290]Zi-Yuan Hu, Jin Huang, Zhi-Hong Deng, Chang-Dong Wang, Ling Huang, Jian-Huang Lai, Philip S. Yu:
BCFNet: A Balanced Collaborative Filtering Network with Attention Mechanism. CoRR abs/2103.06105 (2021) - [i289]Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, Philip S. Yu, Mingsheng Long:
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning. CoRR abs/2103.09504 (2021) - [i288]Mehrnaz Najafi, Philip S. Yu:
An Introduction to Robust Graph Convolutional Networks. CoRR abs/2103.14807 (2021) - [i287]Chunkai Zhang, Zilin Du, Quanjian Dai, Wensheng Gan, Jian Weng, Philip S. Yu:
TUSQ: Targeted High-Utility Sequence Querying. CoRR abs/2103.16615 (2021) - [i286]Hao Peng, Jianxin Li, Yangqiu Song, Renyu Yang, Rajiv Ranjan, Philip S. Yu, Lifang He:
Streaming Social Event Detection and Evolution Discovery in Heterogeneous Information Networks. CoRR abs/2104.00853 (2021) - [i285]Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, Philip S. Yu:
Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs. CoRR abs/2104.02228 (2021) - [i284]Nooshin Mojab, Vahid Noroozi, Abdullah Aleem, Manoj Prabhakar Nallabothula, Joseph Baker, Dimitri T. Azar, Mark Rosenblatt, R. V. Paul Chan, Darvin Yi, Philip S. Yu, Joelle A. Hallak:
I-ODA, Real-World Multi-modal Longitudinal Data for OphthalmicApplications. CoRR abs/2104.02609 (2021) - [i283]Zhongfen Deng, Hao Peng, Dongxiao He, Jianxin Li, Philip S. Yu:
HTCInfoMax: A Global Model for Hierarchical Text Classification via Information Maximization. CoRR abs/2104.05220 (2021) - [i282]Hao Peng, Ruitong Zhang, Yingtong Dou, Renyu Yang, Jingyi Zhang, Philip S. Yu:
Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural Networks. CoRR abs/2104.07886 (2021) - [i281]Jianxin Li, Hao Peng, Yuwei Cao, Yingtong Dou, Hekai Zhang, Philip S. Yu, Lifang He:
Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks. CoRR abs/2104.07892 (2021) - [i280]Congying Xia, Wenpeng Yin, Yihao Feng, Philip S. Yu:
Incremental Few-shot Text Classification with Multi-round New Classes: Formulation, Dataset and System. CoRR abs/2104.11882 (2021) - [i279]Yingtong Dou, Kai Shu, Congying Xia, Philip S. Yu, Lichao Sun:
User Preference-aware Fake News Detection. CoRR abs/2104.12259 (2021) - [i278]Zhiwei Liu, Ziwei Fan, Yu Wang, Philip S. Yu:
Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer. CoRR abs/2105.00522 (2021) - [i277]Congying Xia, Caiming Xiong, Philip S. Yu:
Pseudo Siamese Network for Few-shot Intent Generation. CoRR abs/2105.00896 (2021) - [i276]Liangwei Yang, Zhiwei Liu, Yingtong Dou, Jing Ma, Philip S. Yu:
ConsisRec: Enhancing GNN for Social Recommendation via Consistent Neighbor Aggregation. CoRR abs/2105.02254 (2021) - [i275]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Error-Robust Multi-View Clustering: Progress, Challenges and Opportunities. CoRR abs/2105.03058 (2021) - [i274]Gongxu Luo, Jianxin Li, Hao Peng, Carl Yang, Lichao Sun, Philip S. Yu, Lifang He:
Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural Networks. CoRR abs/2105.03178 (2021) - [i273]Shoujin Wang, Liang Hu, Yan Wang, Xiangnan He, Quan Z. Sheng, Mehmet A. Orgun, Longbing Cao, Francesco Ricci, Philip S. Yu:
Graph Learning based Recommender Systems: A Review. CoRR abs/2105.06339 (2021) - [i272]Jianxin Li, Xingcheng Fu, Hao Peng, Senzhang Wang, Shijie Zhu, Qingyun Sun, Philip S. Yu, Lifang He:
A Robust and Generalized Framework for Adversarial Graph Embedding. CoRR abs/2105.10651 (2021) - [i271]Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cécile Paris, Surya Nepal, Di Jin, Quan Z. Sheng, Philip S. Yu:
A Comprehensive Survey on Community Detection with Deep Learning. CoRR abs/2105.12584 (2021) - [i270]Qianren Mao, Xi Li, Hao Peng, Bang Liu, Shu Guo, Jianxin Li, Lihong Wang, Philip S. Yu:
Attend and Select: A Segment Attention based Selection Mechanism for Microblog Hashtag Generation. CoRR abs/2106.03151 (2021) - [i269]Siddharth Bhatia, Mohit Wadhwa, Philip S. Yu, Bryan Hooi:
Sketch-Based Streaming Anomaly Detection in Dynamic Graphs. CoRR abs/2106.04486 (2021) - [i268]Jianguo Zhang, Kazuma Hashimoto, Yao Wan, Ye Liu, Caiming Xiong, Philip S. Yu:
Are Pretrained Transformers Robust in Intent Classification? A Missing Ingredient in Evaluation of Out-of-Scope Intent Detection. CoRR abs/2106.04564 (2021) - [i267]Ziwei Fan, Zhiwei Liu, Lei Zheng, Shen Wang, Philip S. Yu:
Modeling Sequences as Distributions with Uncertainty for Sequential Recommendation. CoRR abs/2106.06165 (2021) - [i266]Qian Li, Hao Peng, Jianxin Li, Yuanxing Ning, Lihong Wang, Philip S. Yu, Zheng Wang:
Reinforcement Learning-based Dialogue Guided Event Extraction to Exploit Argument Relations. CoRR abs/2106.12384 (2021) - [i265]Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, Philip S. Yu:
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks. CoRR abs/2106.12484 (2021) - [i264]Qiaomin Yi, Ning Yang, Philip S. Yu:
Dual Adversarial Variational Embedding for Robust Recommendation. CoRR abs/2106.15779 (2021) - [i263]Qian Li, Hao Peng, Jianxin Li, Yiming Hei, Rui Sun, Jiawei Sheng, Shu Guo, Lihong Wang, Philip S. Yu:
Deep Learning Schema-based Event Extraction: Literature Review and Current Trends. CoRR abs/2107.02126 (2021) - [i262]Zhiwei Liu, Yongjun Chen, Jia Li, Philip S. Yu, Julian J. McAuley, Caiming Xiong:
Contrastive Self-supervised Sequential Recommendation with Robust Augmentation. CoRR abs/2108.06479 (2021) - [i261]Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, Philip S. Yu:
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer. CoRR abs/2108.06625 (2021) - [i260]Yicong Li, Hongxu Chen, Xiangguo Sun, Zhenchao Sun, Lin Li, Lizhen Cui, Philip S. Yu, Guandong Xu:
Hyperbolic Hypergraphs for Sequential Recommendation. CoRR abs/2108.08134 (2021) - [i259]Yu Wang, Zhiwei Liu, Ziwei Fan, Lichao Sun, Philip S. Yu:
DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN. CoRR abs/2108.11883 (2021) - [i258]Li He, Hongxu Chen, Dingxian Wang, Shoaib Jameel, Philip S. Yu, Guandong Xu:
Click-Through Rate Prediction with Multi-Modal Hypergraphs. CoRR abs/2109.02398 (2021) - [i257]Haoran Yang, Hongxu Chen, Lin Li, Philip S. Yu, Guandong Xu:
Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation. CoRR abs/2109.02859 (2021) - [i256]Jian-Guo Zhang, Trung Bui, Seunghyun Yoon, Xiang Chen, Zhiwei Liu, Congying Xia, Quan Hung Tran, Walter Chang, Philip S. Yu:
Few-Shot Intent Detection via Contrastive Pre-Training and Fine-Tuning. CoRR abs/2109.06349 (2021) - [i255]Xuming Hu, Chenwei Zhang, Yawen Yang, Xiaohe Li, Li Lin, Lijie Wen, Philip S. Yu:
Gradient Imitation Reinforcement Learning for Low Resource Relation Extraction. CoRR abs/2109.06415 (2021) - [i254]Chen Wang, Yingtong Dou, Min Chen, Jia Chen, Zhiwei Liu, Philip S. Yu:
Deep Fraud Detection on Non-attributed Graph. CoRR abs/2110.01171 (2021) - [i253]Ye Liu, Jian-Guo Zhang, Yao Wan, Congying Xia, Lifang He, Philip S. Yu:
HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text Extractive Summarization. CoRR abs/2110.06388 (2021) - [i252]Jiangshu Du, Yingtong Dou, Congying Xia, Limeng Cui, Jing Ma, Philip S. Yu:
Cross-lingual COVID-19 Fake News Detection. CoRR abs/2110.06495 (2021) - [i251]Xingcheng Fu, Jianxin Li, Jia Wu, Qingyun Sun, Cheng Ji, Senzhang Wang, Jiajun Tan, Hao Peng, Philip S. Yu:
ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network. CoRR abs/2110.07888 (2021) - [i250]Ye Liu, Kazuma Hashimoto, Yingbo Zhou, Semih Yavuz, Caiming Xiong, Philip S. Yu:
Dense Hierarchical Retrieval for Open-Domain Question Answering. CoRR abs/2110.15439 (2021) - [i249]Nooshin Mojab, Philip S. Yu, Joelle A. Hallak, Darvin Yi:
CvS: Classification via Segmentation For Small Datasets. CoRR abs/2111.00042 (2021) - [i248]Chunkai Zhang, Quanjian Dai, Zilin Du, Wensheng Gan, Jian Weng, Philip S. Yu:
Utility-driven Mining of Contiguous Sequences. CoRR abs/2111.00247 (2021) - [i247]Chen Wang, Yueqing Liang, Zhiwei Liu, Tao Zhang, Philip S. Yu:
Pre-training Graph Neural Network for Cross Domain Recommendation. CoRR abs/2111.08268 (2021) - [i246]Zhiwei Liu, Liangwei Yang, Ziwei Fan, Hao Peng, Philip S. Yu:
Federated Social Recommendation with Graph Neural Network. CoRR abs/2111.10778 (2021) - [i245]Yicong Li, Hongxu Chen, Yile Li, Lin Li, Philip S. Yu, Guandong Xu:
Reinforcement Learning based Path Exploration for Sequential Explainable Recommendation. CoRR abs/2111.12262 (2021) - [i244]Chuanpan Zheng, Xiaoliang Fan, Shirui Pan, Zonghan Wu, Cheng Wang, Philip S. Yu:
Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting. CoRR abs/2111.13684 (2021) - [i243]Xiaohan Li, Zhiwei Liu, Stephen D. Guo, Zheng Liu, Hao Peng, Philip S. Yu, Kannan Achan:
Pre-training Recommender Systems via Reinforced Attentive Multi-relational Graph Neural Network. CoRR abs/2111.14036 (2021) - [i242]Gengsen Huang, Wensheng Gan, Jian Weng, Philip S. Yu:
US-Rule: Discovering Utility-driven Sequential Rules. CoRR abs/2111.15020 (2021) - [i241]Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, Philip S. Yu:
A Self-supervised Mixed-curvature Graph Neural Network. CoRR abs/2112.05393 (2021) - [i240]Yiqi Wang, Chaozhuo Li, Zheng Liu, Mingzheng Li, Jiliang Tang, Xing Xie, Lei Chen, Philip S. Yu:
An Adaptive Graph Pre-training Framework for Localized Collaborative Filtering. CoRR abs/2112.07191 (2021) - [i239]Chaozhuo Li, Senzhang Wang, Zheng Liu, Xing Xie, Lei Chen, Philip S. Yu:
Semi-Supervised Variational User Identity Linkage via Noise-Aware Self-Learning. CoRR abs/2112.07373 (2021) - [i238]Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, Philip S. Yu:
Graph Structure Learning with Variational Information Bottleneck. CoRR abs/2112.08903 (2021) - [i237]He Huang, Wei Tang, Jiawei Zhang, Philip S. Yu:
Translational Concept Embedding for Generalized Compositional Zero-shot Learning. CoRR abs/2112.10871 (2021) - 2020
- [j375]Yuqing Zhu, Philip S. Yu, Guolei Yi, Mengying Guo, Wenlong Ma, Jianxun Liu, Yungang Bao:
Logless one-phase commit made possible for highly-available datastores. Distributed Parallel Databases 38(1): 101-126 (2020) - [j374]Tianqing Zhu, Ping Xiong, Gang Li, Wanlei Zhou, Philip S. Yu:
Differentially private model publishing in cyber physical systems. Future Gener. Comput. Syst. 108: 1297-1306 (2020) - [j373]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
ICANE: interaction content-aware network embedding via co-embedding of nodes and edges. Int. J. Data Sci. Anal. 9(4): 401-414 (2020) - [j372]Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Han-Chieh Chao, Hamido Fujita, Philip S. Yu:
ProUM: Projection-based utility mining on sequence data. Inf. Sci. 513: 222-240 (2020) - [j371]Hao Peng, Hongfei Wang, Bowen Du, Md. Zakirul Alam Bhuiyan, Hongyuan Ma, Jianwei Liu, Lihong Wang, Zeyu Yang, Linfeng Du, Senzhang Wang, Philip S. Yu:
Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting. Inf. Sci. 521: 277-290 (2020) - [j370]Jianping Cao, Senzhang Wang, Danyan Wen, Zhaohui Peng, Philip S. Yu, Fei-Yue Wang:
Mutual clustering on comparative texts via heterogeneous information networks. Knowl. Inf. Syst. 62(1): 175-202 (2020) - [j369]Xinghua Wang, Zhaohui Peng, Senzhang Wang, Philip S. Yu, Wenjing Fu, Xiaokang Xu, Xiaoguang Hong:
CDLFM: cross-domain recommendation for cold-start users via latent feature mapping. Knowl. Inf. Syst. 62(5): 1723-1750 (2020) - [j368]Tingting Liang, Lifang He, Chun-Ta Lu, Liang Chen, Haochao Ying, Philip S. Yu, Jian Wu:
CAMAR: a broad learning based context-aware recommender for mobile applications. Knowl. Inf. Syst. 62(8): 3291-3319 (2020) - [j367]Tingting Liang, Lei Zheng, Liang Chen, Yao Wan, Philip S. Yu, Jian Wu:
Multi-view factorization machines for mobile app recommendation based on hierarchical attention. Knowl. Based Syst. 187 (2020) - [j366]Yuhui Zhao, Ning Yang, Tao Lin, Philip S. Yu:
Deep Collaborative Embedding for information cascade prediction. Knowl. Based Syst. 193: 105502 (2020) - [j365]Zhi Li, Chaozhuo Li, Liqun Yang, Philip S. Yu, Zhoujun Li:
Mixture distribution modeling for scalable graph-based semi-supervised learning. Knowl. Based Syst. 200: 105974 (2020) - [j364]Chen Li, Xutan Peng, Shanghang Zhang, Hao Peng, Philip S. Yu, Min He, Linfeng Du, Lihong Wang:
Modeling relation paths for knowledge base completion via joint adversarial training. Knowl. Based Syst. 201-202: 105865 (2020) - [j363]Shao-Heng Ko, Hsu-Chao Lai, Hong-Han Shuai, Wang-Chien Lee, Philip S. Yu, De-Nian Yang:
Optimizing Item and Subgroup Configurations for Social-Aware VR Shopping. Proc. VLDB Endow. 13(8): 1275-1289 (2020) - [j362]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Athanasios V. Vasilakos, Philip S. Yu:
Utility-Driven Data Analytics on Uncertain Data. IEEE Syst. J. 14(3): 4442-4453 (2020) - [j361]Zhongyuan Jiang, Xianyu Chen, Bowen Dong, Junsan Zhang, Jibing Gong, Hui Yan, Zehua Zhang, Jianfeng Ma, Philip S. Yu:
Trajectory-Based Community Detection. IEEE Trans. Circuits Syst. II Express Briefs 67-II(6): 1139-1143 (2020) - [j360]Zhongyuan Jiang, Jing Li, Jianfeng Ma, Philip S. Yu:
Similarity-Based and Sybil Attack Defended Community Detection for Social Networks. IEEE Trans. Circuits Syst. 67-II(12): 3487-3491 (2020) - [j359]Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:
HUOPM: High-Utility Occupancy Pattern Mining. IEEE Trans. Cybern. 50(3): 1195-1208 (2020) - [j358]Dayong Ye, Tianqing Zhu, Wanlei Zhou, Philip S. Yu:
Differentially Private Malicious Agent Avoidance in Multiagent Advising Learning. IEEE Trans. Cybern. 50(10): 4214-4227 (2020) - [j357]Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Philip S. Yu:
Utility Mining across Multi-Sequences with Individualized Thresholds. Trans. Data Sci. 1(2): 8:1-8:29 (2020) - [j356]Changping Wang, Chaokun Wang, Zheng Wang, Xiaojun Ye, Philip S. Yu:
Edge2vec: Edge-based Social Network Embedding. ACM Trans. Knowl. Discov. Data 14(4): 45:1-45:24 (2020) - [j355]Senzhang Wang, Hao Chen, Jiannong Cao, Jiawei Zhang, Philip S. Yu:
Locally Balanced Inductive Matrix Completion for Demand-Supply Inference in Stationless Bike-Sharing Systems. IEEE Trans. Knowl. Data Eng. 32(12): 2374-2388 (2020) - [j354]Linchuan Xu, Jiannong Cao, Xiaokai Wei, Philip S. Yu:
Network Embedding via Coupled Kernelized Multi-Dimensional Array Factorization. IEEE Trans. Knowl. Data Eng. 32(12): 2414-2425 (2020) - [j353]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Philippe Fournier-Viger, Xuan Wang, Philip S. Yu:
Utility-Driven Mining of Trend Information for Intelligent System. ACM Trans. Manag. Inf. Syst. 11(3): 14:1-14:28 (2020) - [j352]Yongshan Zhang, Jia Wu, Zhihua Cai, Philip S. Yu:
Multi-View Multi-Label Learning With Sparse Feature Selection for Image Annotation. IEEE Trans. Multim. 22(11): 2844-2857 (2020) - [j351]Jiayu Han, Lei Zheng, Yuanbo Xu, Bangzuo Zhang, Fuzhen Zhuang, Philip S. Yu, Wanli Zuo:
Adaptive Deep Modeling of Users and Items Using Side Information for Recommendation. IEEE Trans. Neural Networks Learn. Syst. 31(3): 737-748 (2020) - [j350]Ling Huang, Chang-Dong Wang, Hongyang Chao, Philip S. Yu:
MVStream: Multiview Data Stream Clustering. IEEE Trans. Neural Networks Learn. Syst. 31(9): 3482-3496 (2020) - [j349]Ning Yang, Yuchi Ma, Li Chen, Philip S. Yu:
A meta-feature based unified framework for both cold-start and warm-start explainable recommendations. World Wide Web 23(1): 241-265 (2020) - [j348]Yue Wang, Chenwei Zhang, Shen Wang, Philip S. Yu, Lu Bai, Lixin Cui, Guandong Xu:
Generative temporal link prediction via self-tokenized sequence modeling. World Wide Web 23(4): 2471-2488 (2020) - [j347]Wenhe Yan, Guiling Li, Zongda Wu, Senzhang Wang, Philip S. Yu:
Extracting diverse-shapelets for early classification on time series. World Wide Web 23(6): 3055-3081 (2020) - [c874]He Huang, Shunta Saito, Yuta Kikuchi, Eiichi Matsumoto, Wei Tang, Philip S. Yu:
Addressing Class Imbalance in Scene Graph Parsing by Learning to Contrast and Score. ACCV (6) 2020: 461-477 - [c873]Qingqin Wang, Yun Xiong, Yangyong Zhu, Philip S. Yu:
KASR: Knowledge-Aware Sequential Recommendation. APWeb/WAIM (1) 2020: 493-508 - [c872]Zhiwei Liu, Xiaohan Li, Ziwei Fan, Stephen D. Guo, Kannan Achan, Philip S. Yu:
Basket Recommendation with Multi-Intent Translation Graph Neural Network. IEEE BigData 2020: 728-737 - [c871]Chen Cui, Ning Yang, Philip S. Yu:
MLANE: Meta-Learning Based Adaptive Network Embedding. IEEE BigData 2020: 904-909 - [c870]Zheng Liu, Xiaohan Li, Hao Peng, Lifang He, Philip S. Yu:
Heterogeneous Similarity Graph Neural Network on Electronic Health Records. IEEE BigData 2020: 1196-1205 - [c869]Shaika Chowdhury, Chenwei Zhang, Philip S. Yu, Yuan Luo:
Med2Meta: Learning Representations of Medical Concepts with Meta-embeddings. HEALTHINF 2020: 369-376 - [c868]He Huang, Wei Tang, Philip S. Yu, Yuanwei Chen, Wenhao Zheng, Qing-Guo Chen:
Multi-label Zero-shot Classification by Learning to Transfer from External Knowledge. BMVC 2020 - [c867]Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, Philip S. Yu:
Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters. CIKM 2020: 315-324 - [c866]Congying Xia, Chenwei Zhang, Jiawei Zhang, Tingting Liang, Hao Peng, Philip S. Yu:
Low-shot Learning in Natural Language Processing. CogMI 2020: 185-189 - [c865]Tao Zhang, Congying Xia, Chun-Ta Lu, Philip S. Yu:
MZET: Memory Augmented Zero-Shot Fine-grained Named Entity Typing. COLING 2020: 77-87 - [c864]Hu Xu, Lei Shu, Philip S. Yu, Bing Liu:
Understanding Pre-trained BERT for Aspect-based Sentiment Analysis. COLING 2020: 244-250 - [c863]Lichao Sun, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S. Yu, Lifang He:
Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks. COLING 2020: 3436-3440 - [c862]Hu Xu, Seungwhan Moon, Honglei Liu, Bing Liu, Pararth Shah, Philip S. Yu:
User Memory Reasoning for Conversational Recommendation. COLING 2020: 5288-5308 - [c861]Zhongfen Deng, Hao Peng, Congying Xia, Jianxin Li, Lifang He, Philip S. Yu:
Hierarchical Bi-Directional Self-Attention Networks for Paper Review Rating Recommendation. COLING 2020: 6302-6314 - [c860]Jialin Qiao, Yuyuan Kang, Xiangdong Huang, Lei Rui, Tian Jiang, Jianmin Wang, Philip S. Yu:
Heterogeneous Replicas for Multi-dimensional Data Management. DASFAA (1) 2020: 20-36 - [c859]Yun Xiong, Shaofeng Xu, Keyao Rong, Xinyue Liu, Xiangnan Kong, Shanshan Li, Philip S. Yu, Yangyong Zhu:
Code2Text: Dual Attention Syntax Annotation Networks for Structure-Aware Code Translation. DASFAA (3) 2020: 87-103 - [c858]Jin Li, Zhaohui Peng, Senzhang Wang, Xiaokang Xu, Philip S. Yu, Zhenyun Hao:
Heterogeneous Graph Embedding for Cross-Domain Recommendation Through Adversarial Learning. DASFAA (3) 2020: 507-522 - [c857]Xuan Lin, Kaiqi Zhao, Tong Xiao, Zhe Quan, Zhi-Jie Wang, Philip S. Yu:
DeepGS: Deep Representation Learning of Graphs and Sequences for Drug-Target Binding Affinity Prediction. ECAI 2020: 1301-1308 - [c856]Hoang Nguyen, Chenwei Zhang, Congying Xia, Philip S. Yu:
Semantic Matching and Aggregation Network for Few-shot Intent Detection. EMNLP (Findings) 2020: 1209-1218 - [c855]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
DomBERT: Domain-oriented Language Model for Aspect-based Sentiment Analysis. EMNLP (Findings) 2020: 1725-1731 - [c854]Congying Xia, Caiming Xiong, Philip S. Yu, Richard Socher:
Composed Variational Natural Language Generation for Few-shot Intents. EMNLP (Findings) 2020: 3379-3388 - [c853]Xuming Hu, Lijie Wen, Yusong Xu, Chenwei Zhang, Philip S. Yu:
SelfORE: Self-supervised Relational Feature Learning for Open Relation Extraction. EMNLP (1) 2020: 3673-3682 - [c852]Shen Wang, Xiaokai Wei, Cícero Nogueira dos Santos, Zhiguo Wang, Ramesh Nallapati, Andrew O. Arnold, Bing Xiang, Philip S. Yu:
H2KGAT: Hierarchical Hyperbolic Knowledge Graph Attention Network. EMNLP (1) 2020: 4952-4962 - [c851]Jian-Guo Zhang, Kazuma Hashimoto, Wenhao Liu, Chien-Sheng Wu, Yao Wan, Philip S. Yu, Richard Socher, Caiming Xiong:
Discriminative Nearest Neighbor Few-Shot Intent Detection by Transferring Natural Language Inference. EMNLP (1) 2020: 5064-5082 - [c850]Jiawei Zhang, Bowen Dong, Philip S. Yu:
FakeDetector: Effective Fake News Detection with Deep Diffusive Neural Network. ICDE 2020: 1826-1829 - [c849]Zhongyuan Jiang, Lichao Sun, Philip S. Yu, Hui Li, Jianfeng Ma, Yulong Shen:
Target Privacy Preserving for Social Networks. ICDE 2020: 1862-1865 - [c848]Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, Philip S. Yu:
Dynamic Graph Collaborative Filtering. ICDM 2020: 322-331 - [c847]Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Yang Du, Sen Su, Philip S. Yu:
Perfect: A Hyperbolic Embedding for Joint User and Community Alignment. ICDM 2020: 501-510 - [c846]Qingyun Sun, Hao Peng, Jianxin Li, Senzhang Wang, Xiangyu Dong, Liangxuan Zhao, Philip S. Yu, Lifang He:
Pairwise Learning for Name Disambiguation in Large-Scale Heterogeneous Academic Networks. ICDM 2020: 511-520 - [c845]Ying Jin, Yunbo Wang, Mingsheng Long, Jianmin Wang, Philip S. Yu, Jiaguang Sun:
A Multi-Player Minimax Game for Generative Adversarial Networks. ICME 2020: 1-6 - [c844]Zhiyu Yao, Yunbo Wang, Mingsheng Long, Jianmin Wang, Philip S. Yu, Jiaguang Sun:
Multi-Task Learning of Generalizable Representations for Video Action Recognition. ICME 2020: 1-6 - [c843]Nooshin Mojab, Vahid Noroozi, Darvin Yi, Manoj Prabhakar Nallabothula, Abdullah Aleem, Philip S. Yu, Joelle A. Hallak:
Real-World Multi-Domain Data Applications for Generalizations to Clinical Settings. ICMLA 2020: 677-684 - [c842]Yue Wang, Zhuo Xu, Lu Bai, Yao Wan, Lixin Cui, Qian Zhao, Edwin R. Hancock, Philip S. Yu:
Cross-Supervised Joint-Event-Extraction with Heterogeneous Information Networks. ICPR 2020: 278-285 - [c841]Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, Philip S. Yu:
Entity Synonym Discovery via Multipiece Bilateral Context Matching. IJCAI 2020: 1431-1437 - [c840]Dongxiao He, Lu Zhai, Zhigang Li, Di Jin, Liang Yang, Yuxiao Huang, Philip S. Yu:
Adversarial Mutual Information Learning for Network Embedding. IJCAI 2020: 3321-3327 - [c839]Fanzhen Liu, Shan Xue, Jia Wu, Chuan Zhou, Wenbin Hu, Cécile Paris, Surya Nepal, Jian Yang, Philip S. Yu:
Deep Learning for Community Detection: Progress, Challenges and Opportunities. IJCAI 2020: 4981-4987 - [c838]Yu Lei, Philip S. Yu:
Container Scheduling in Blockchain-based Cloud Service Platform. ISPA/BDCloud/SocialCom/SustainCom 2020: 976-983 - [c837]Yingtong Dou, Guixiang Ma, Philip S. Yu, Sihong Xie:
Robust Spammer Detection by Nash Reinforcement Learning. KDD 2020: 924-933 - [c836]Yao Zhang, Yun Xiong, Yun Ye, Tengfei Liu, Weiqiang Wang, Yangyong Zhu, Philip S. Yu:
SEAL: Learning Heuristics for Community Detection with Generative Adversarial Networks. KDD 2020: 1103-1113 - [c835]Yue He, Peng Cui, Jianxin Ma, Hao Zou, Xiaowei Wang, Hongxia Yang, Philip S. Yu:
Learning Stable Graphs from Multiple Environments with Selection Bias. KDD 2020: 2194-2202 - [c834]Yuwei Cao, Hao Peng, Philip S. Yu:
Multi-information Source HIN for Medical Concept Embedding. PAKDD (2) 2020: 396-408 - [c833]Zhiwei Liu, Mengting Wan, Stephen D. Guo, Kannan Achan, Philip S. Yu:
BasConv: Aggregating Heterogeneous Interactions for Basket Recommendation with Graph Convolutional Neural Network. SDM 2020: 64-72 - [c832]Charu C. Aggarwal, Yao Li, Philip S. Yu:
On Supervised Change Detection in Graph Streams. SDM 2020: 289-297 - [c831]Ye Liu, Tao Yang, Zeyu You, Wei Fan, Philip S. Yu:
Commonsense Evidence Generation and Injection in Reading Comprehension. SIGdial 2020: 61-73 - [c830]Jibing Gong, Shen Wang, Jinlong Wang, Wenzheng Feng, Hao Peng, Jie Tang, Philip S. Yu:
Attentional Graph Convolutional Networks for Knowledge Concept Recommendation in MOOCs in a Heterogeneous View. SIGIR 2020: 79-88 - [c829]Zhiwei Liu, Yingtong Dou, Philip S. Yu, Yutong Deng, Hao Peng:
Alleviating the Inconsistency Problem of Applying Graph Neural Network to Fraud Detection. SIGIR 2020: 1569-1572 - [c828]Tingting Liang, Congying Xia, Yuyu Yin, Philip S. Yu:
Joint Training Capsule Network for Cold Start Recommendation. SIGIR 2020: 1769-1772 - [c827]Shaika Chowdhury, Philip S. Yu, Yuan Luo:
Improving Medical NLI Using Context-Aware Domain Knowledge. *SEM@COLING 2020: 1-11 - [c826]Jian-Guo Zhang, Kazuma Hashimoto, Chien-Sheng Wu, Yao Wan, Philip S. Yu, Richard Socher, Caiming Xiong:
Find or Classify? Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Tracking. *SEM@COLING 2020: 154-167 - [c825]Lichao Sun, Albert C. Chen, Philip S. Yu, Wei Chen:
Influence Maximization with Spontaneous User Adoption. WSDM 2020: 573-581 - [e36]Jing He, Philip S. Yu, Yong Shi, Xingsen Li, Zhijun Xie, Guangyan Huang, Jie Cao, Fu Xiao:
Data Science - 6th International Conference, ICDS 2019, Ningbo, China, May 15-20, 2019, Revised Selected Papers. Communications in Computer and Information Science 1179, Springer 2020, ISBN 978-981-15-2809-5 [contents] - [i236]Yuhui Zhao, Ning Yang, Tao Lin, Philip S. Yu:
Deep Collaborative Embedding for information cascade prediction. CoRR abs/2001.06665 (2020) - [i235]Zhiwei Liu, Mengting Wan, Stephen D. Guo, Kannan Achan, Philip S. Yu:
BasConv: Aggregating Heterogeneous Interactions for Basket Recommendation with Graph Convolutional Neural Network. CoRR abs/2001.09900 (2020) - [i234]Huanrui Luo, Ning Yang, Philip S. Yu:
Hybrid Deep Embedding for Recommendations with Dynamic Aspect-Level Explanations. CoRR abs/2001.10341 (2020) - [i233]Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, Philip S. Yu:
A Survey on Knowledge Graphs: Representation, Acquisition and Applications. CoRR abs/2002.00388 (2020) - [i232]Zhongyuan Jiang, Lichao Sun, Philip S. Yu, Hui Li, Jianfeng Ma, Yulong Shen:
Target Privacy Preserving for Social Networks. CoRR abs/2002.03284 (2020) - [i231]Shao-Heng Ko, Hsu-Chao Lai, Hong-Han Shuai, De-Nian Yang, Wang-Chien Lee, Philip S. Yu:
Optimizing Item and Subgroup Configurations for Social-Aware VR Shopping. CoRR abs/2002.04338 (2020) - [i230]Lichao Sun, Yingbo Zhou, Philip S. Yu, Caiming Xiong:
Differentially Private Deep Learning with Smooth Sensitivity. CoRR abs/2003.00505 (2020) - [i229]Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li, Philip S. Yu, Caiming Xiong:
Adv-BERT: BERT is not robust on misspellings! Generating nature adversarial samples on BERT. CoRR abs/2003.04985 (2020) - [i228]Aoqian Zhang, Shaoxu Song, Jianmin Wang, Philip S. Yu:
Time Series Data Cleaning: From Anomaly Detection to Anomaly Repairing (Technical Report). CoRR abs/2003.12396 (2020) - [i227]Tao Zhang, Congying Xia, Chun-Ta Lu, Philip S. Yu:
MZET: Memory Augmented Zero-Shot Fine-grained Named Entity Typing. CoRR abs/2004.01267 (2020) - [i226]Congying Xia, Chenwei Zhang, Hoang Nguyen, Jiawei Zhang, Philip S. Yu:
CG-BERT: Conditional Text Generation with BERT for Generalized Few-shot Intent Detection. CoRR abs/2004.01881 (2020) - [i225]Xuming Hu, Lijie Wen, Yusong Xu, Chenwei Zhang, Philip S. Yu:
SelfORE: Self-supervised Relational Feature Learning for Open Relation Extraction. CoRR abs/2004.02438 (2020) - [i224]Shoujin Wang, Liang Hu, Yan Wang, Xiangnan He, Quan Z. Sheng, Mehmet A. Orgun, Longbing Cao, Nan Wang, Francesco Ricci, Philip S. Yu:
Graph Learning Approaches to Recommender Systems: A Review. CoRR abs/2004.11718 (2020) - [i223]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
DomBERT: Domain-oriented Language Model for Aspect-based Sentiment Analysis. CoRR abs/2004.13816 (2020) - [i222]Zhiwei Liu, Yingtong Dou, Philip S. Yu, Yutong Deng, Hao Peng:
Alleviating the Inconsistency Problem of Applying Graph Neural Network to Fraud Detection. CoRR abs/2005.00625 (2020) - [i221]Ye Liu, Tao Yang, Zeyu You, Wei Fan, Philip S. Yu:
Commonsense Evidence Generation and Injection in Reading Comprehension. CoRR abs/2005.05240 (2020) - [i220]Fanzhen Liu, Shan Xue, Jia Wu, Chuan Zhou, Wenbin Hu, Cécile Paris, Surya Nepal, Jian Yang, Philip S. Yu:
Deep Learning for Community Detection: Progress, Challenges and Opportunities. CoRR abs/2005.08225 (2020) - [i219]Tingting Liang, Congying Xia, Yuyu Yin, Philip S. Yu:
Joint Training Capsule Network for Cold Start Recommendation. CoRR abs/2005.11467 (2020) - [i218]Hu Xu, Seungwhan Moon, Honglei Liu, Bing Liu, Pararth Shah, Bing Liu, Philip S. Yu:
User Memory Reasoning for Conversational Recommendation. CoRR abs/2006.00184 (2020) - [i217]Yingtong Dou, Guixiang Ma, Philip S. Yu, Sihong Xie:
Robust Spammer Detection by Nash Reinforcement Learning. CoRR abs/2006.06069 (2020) - [i216]Chen Li, Xutan Peng, Hao Peng, Jianxin Li, Lihong Wang, Philip S. Yu:
Forming an Electoral College for a Graph: a Heuristic Semi-supervised Learning Framework. CoRR abs/2006.06469 (2020) - [i215]Shen Wang, Jibing Gong, Jinlong Wang, Wenzheng Feng, Hao Peng, Jie Tang, Philip S. Yu:
Attentional Graph Convolutional Networks for Knowledge Concept Recommendation in MOOCs in a Heterogeneous View. CoRR abs/2006.13257 (2020) - [i214]Jianguo Chen, Kenli Li, Zhaolei Zhang, Keqin Li, Philip S. Yu:
A Survey on Applications of Artificial Intelligence in Fighting Against COVID-19. CoRR abs/2007.02202 (2020) - [i213]Di Jin, Zhizhi Yu, Dongxiao He, Carl Yang, Philip S. Yu, Jiawei Han:
GCN for HIN via Implicit Utilization of Attention and Meta-paths. CoRR abs/2007.02643 (2020) - [i212]Zheng Wang, Xiaojun Ye, Chaokun Wang, Jian Cui, Philip S. Yu:
Network Embedding with Completely-imbalanced Labels. CoRR abs/2007.03545 (2020) - [i211]Nooshin Mojab, Vahid Noroozi, Darvin Yi, Manoj Prabhakar Nallabothula, Abdullah Aleem, Philip S. Yu, Joelle A. Hallak:
Real-World Multi-Domain Data Applications for Generalizations to Clinical Settings. CoRR abs/2007.12672 (2020) - [i210]He Huang, Yuanwei Chen, Wei Tang, Wenhao Zheng, Qing-Guo Chen, Yao Hu, Philip S. Yu:
Multi-label Zero-shot Classification by Learning to Transfer from External Knowledge. CoRR abs/2007.15610 (2020) - [i209]Lichao Sun, Jianwei Qian, Xun Chen, Philip S. Yu:
LDP-FL: Practical Private Aggregation in Federated Learning with Local Differential Privacy. CoRR abs/2007.15789 (2020) - [i208]Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S. Yu, Lifang He:
A Survey on Text Classification: From Shallow to Deep Learning. CoRR abs/2008.00364 (2020) - [i207]Tianqing Zhu, Dayong Ye, Wei Wang, Wanlei Zhou, Philip S. Yu:
More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence. CoRR abs/2008.01916 (2020) - [i206]Ye Liu, Shaika Chowdhury, Chenwei Zhang, Cornelia Caragea, Philip S. Yu:
Interpretable Multi-Step Reasoning with Knowledge Extraction on Complex Healthcare Question Answering. CoRR abs/2008.02434 (2020) - [i205]Shijie Zhu, Jianxin Li, Hao Peng, Senzhang Wang, Philip S. Yu, Lifang He:
Adversarial Directed Graph Embedding. CoRR abs/2008.03667 (2020) - [i204]Hao Peng, Jianxin Li, Zheng Wang, Renyu Yang, Mingzhe Liu, Mingming Zhang, Philip S. Yu, Lifang He:
Lifelong Property Price Prediction: A Case Study for the Toronto Real Estate Market. CoRR abs/2008.05880 (2020) - [i203]Dayong Ye, Tianqing Zhu, Sheng Shen, Wanlei Zhou, Philip S. Yu:
Differentially Private Multi-Agent Planning for Logistic-like Problems. CoRR abs/2008.06832 (2020) - [i202]Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, Philip S. Yu:
Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters. CoRR abs/2008.08692 (2020) - [i201]Youwei Liang, Dong Huang, Chang-Dong Wang, Philip S. Yu:
Multi-view Graph Learning by Joint Modeling of Consistency and Inconsistency. CoRR abs/2008.10208 (2020) - [i200]Qingyun Sun, Hao Peng, Jianxin Li, Senzhang Wang, Xiangyu Dong, Liangxuan Zhao, Philip S. Yu, Lifang He:
Pairwise Learning for Name Disambiguation in Large-Scale Heterogeneous Academic Networks. CoRR abs/2008.13099 (2020) - [i199]Tao Zhang, Tianqing Zhu, Mengde Han, Jing Li, Wanlei Zhou, Philip S. Yu:
Fairness Constraints in Semi-supervised Learning. CoRR abs/2009.06190 (2020) - [i198]Congying Xia, Caiming Xiong, Philip S. Yu, Richard Socher:
Composed Variational Natural Language Generation for Few-shot Intents. CoRR abs/2009.10056 (2020) - [i197]Tao Zhang, Tianqing Zhu, Jing Li, Mengde Han, Wanlei Zhou, Philip S. Yu:
Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce Discrimination. CoRR abs/2009.12040 (2020) - [i196]Ye Liu, Yao Wan, Lifang He, Hao Peng, Philip S. Yu:
KG-BART: Knowledge Graph-Augmented BART for Generative Commonsense Reasoning. CoRR abs/2009.12677 (2020) - [i195]He Huang, Shunta Saito, Yuta Kikuchi, Eiichi Matsumoto, Wei Tang, Philip S. Yu:
Addressing Class Imbalance in Scene Graph Parsing by Learning to Contrast and Score. CoRR abs/2009.13331 (2020) - [i194]Lichao Sun, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S. Yu, Lifang He:
Mixup-Transfomer: Dynamic Data Augmentation for NLP Tasks. CoRR abs/2010.02394 (2020) - [i193]Hoang Nguyen, Chenwei Zhang, Congying Xia, Philip S. Yu:
Dynamic Semantic Matching and Aggregation Network for Few-shot Intent Detection. CoRR abs/2010.02481 (2020) - [i192]Yue Wang, Zhuo Xu, Lu Bai, Yao Wan, Lixin Cui, Qian Zhao, Edwin R. Hancock, Philip S. Yu:
Cross-Supervised Joint-Event-Extraction with Heterogeneous Information Networks. CoRR abs/2010.06310 (2020) - [i191]Zhiwei Liu, Xiaohan Li, Ziwei Fan, Stephen D. Guo, Kannan Achan, Philip S. Yu:
Basket Recommendation with Multi-Intent Translation Graph Neural Network. CoRR abs/2010.11419 (2020) - [i190]Jian-Guo Zhang, Kazuma Hashimoto, Wenhao Liu, Chien-Sheng Wu, Yao Wan, Philip S. Yu, Richard Socher, Caiming Xiong:
Discriminative Nearest Neighbor Few-Shot Intent Detection by Transferring Natural Language Inference. CoRR abs/2010.13009 (2020) - [i189]Chen Cui, Ning Yang, Philip S. Yu:
MLANE: Meta-Learning Based Adaptive Network Embedding. CoRR abs/2010.13023 (2020) - [i188]Xuming Hu, Fukun Ma, Chenyao Liu, Chenwei Zhang, Lijie Wen, Philip S. Yu:
Semi-supervised Relation Extraction via Incremental Meta Self-Training. CoRR abs/2010.16410 (2020) - [i187]Hu Xu, Lei Shu, Philip S. Yu, Bing Liu:
Understanding Pre-trained BERT for Aspect-based Sentiment Analysis. CoRR abs/2011.00169 (2020) - [i186]Zhongfen Deng, Hao Peng, Congying Xia, Jianxin Li, Lifang He, Philip S. Yu:
Hierarchical Bi-Directional Self-Attention Networks for Paper Review Rating Recommendation. CoRR abs/2011.00802 (2020) - [i185]Zhiwei Liu, Lin Meng, Jiawei Zhang, Philip S. Yu:
Deoscillated Graph Collaborative Filtering. CoRR abs/2011.02100 (2020) - [i184]Dayong Ye, Tianqing Zhu, Zishuo Cheng, Wanlei Zhou, Philip S. Yu:
Differential Advising in Multi-Agent Reinforcement Learning. CoRR abs/2011.03640 (2020) - [i183]Chunkai Zhang, Zilin Du, Wensheng Gan, Philip S. Yu:
TKUS: Mining Top-K High-Utility Sequential Patterns. CoRR abs/2011.13454 (2020) - [i182]Chunkai Zhang, Zilin Du, Yuting Yang, Wensheng Gan, Philip S. Yu:
On-shelf Utility Mining of Sequence Data. CoRR abs/2011.13455 (2020) - [i181]Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, Philip S. Yu:
A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources. CoRR abs/2011.14867 (2020) - [i180]Yao Wan, Yang He, Jianguo Zhang, Yulei Sui, Hai Jin, Guandong Xu, Caiming Xiong, Philip S. Yu:
NaturalCC: A Toolkit to Naturalize the Source Code Corpus. CoRR abs/2012.03225 (2020) - [i179]Lingjuan Lyu, Han Yu, Xingjun Ma, Lichao Sun, Jun Zhao, Qiang Yang, Philip S. Yu:
Privacy and Robustness in Federated Learning: Attacks and Defenses. CoRR abs/2012.06337 (2020)
2010 – 2019
- 2019
- [b4]Jiawei Zhang, Philip S. Yu:
Broad Learning Through Fusions - An Application on Social Networks. Springer 2019, ISBN 978-3-030-12527-1, pp. 1-419 - [j346]Yali Gao, Xiaoyong Li, Jirui Li, Yunquan Gao, Philip S. Yu:
Info-Trust: A Multi-Criteria and Adaptive Trustworthiness Calculation Mechanism for Information Sources. IEEE Access 7: 13999-14012 (2019) - [j345]Ke Yu, Lifang He, Philip S. Yu, Wenkai Zhang, Yue Liu:
Coupled Tensor Decomposition for User Clustering in Mobile Internet Traffic Interaction Pattern. IEEE Access 7: 18113-18124 (2019) - [j344]Ling Huang, Chang-Dong Wang, Hong-Yang Chao, Jian-Huang Lai, Philip S. Yu:
A Score Prediction Approach for Optional Course Recommendation via Cross-User-Domain Collaborative Filtering. IEEE Access 7: 19550-19563 (2019) - [j343]Hechang Chen, Bo Yang, Jiming Liu, Xiao-Nong Zhou, Philip S. Yu:
Mining Spatiotemporal Diffusion Network: A New Framework of Active Surveillance Planning. IEEE Access 7: 108458-108473 (2019) - [j342]Yu Lei, Philip S. Yu:
Cloud Service Community Detection for Real-World Service Networks Based on Parallel Graph Computing. IEEE Access 7: 131355-131362 (2019) - [j341]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
Multi-task network embedding. Int. J. Data Sci. Anal. 8(2): 183-198 (2019) - [j340]Jesse Read, Albert Bifet, Wei Fan, Qiang Yang, Philip S. Yu:
Introduction to the special issue on Big Data, IoT Streams and Heterogeneous Source Mining. Int. J. Data Sci. Anal. 8(3): 221-222 (2019) - [j339]Limeng Cui, Jiawei Zhang, Lifang He, Philip S. Yu:
Multi-view collective tensor decomposition for cross-modal hashing. Int. J. Multim. Inf. Retr. 8(1): 47-59 (2019) - [j338]Jianguo Chen, Kenli Li, Huigui Rong, Kashif Bilal, Keqin Li, Philip S. Yu:
A periodicity-based parallel time series prediction algorithm in cloud computing environments. Inf. Sci. 496: 506-537 (2019) - [j337]Jiayu Han, Lei Zheng, He Huang, Yuanbo Xu, Philip S. Yu, Wanli Zuo:
Deep Latent Factor Model with Hierarchical Similarity Measure for recommender systems. Inf. Sci. 503: 521-532 (2019) - [j336]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Hamido Fujita, Philip S. Yu:
Correlated utility-based pattern mining. Inf. Sci. 504: 470-486 (2019) - [j335]Qianyi Zhan, Jiawei Zhang, Philip S. Yu:
Integrated anchor and social link predictions across multiple social networks. Knowl. Inf. Syst. 60(1): 303-326 (2019) - [j334]Han Zhang, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
Community detection using multilayer edge mixture model. Knowl. Inf. Syst. 60(2): 757-779 (2019) - [j333]Xi Zhang, Yixuan Li, Senzhang Wang, Binxing Fang, Philip S. Yu:
Enhancing stock market prediction with extended coupled hidden Markov model over multi-sourced data. Knowl. Inf. Syst. 61(2): 1071-1090 (2019) - [j332]Chaozhuo Li, Senzhang Wang, Dejian Yang, Philip S. Yu, Yanbo Liang, Zhoujun Li:
Adversarial learning for multi-view network embedding on incomplete graphs. Knowl. Based Syst. 180: 91-103 (2019) - [j331]Yongshan Zhang, Jia Wu, Zhihua Cai, Bo Du, Philip S. Yu:
An unsupervised parameter learning model for RVFL neural network. Neural Networks 112: 85-97 (2019) - [j330]Ahmed A. Metwally, Philip S. Yu, Derek Reiman, Yang Dai, Patricia W. Finn, David L. Perkins:
Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks. PLoS Comput. Biol. 15(2) (2019) - [j329]Zhang-Meng Liu, Philip S. Yu:
Classification, Denoising, and Deinterleaving of Pulse Streams With Recurrent Neural Networks. IEEE Trans. Aerosp. Electron. Syst. 55(4): 1624-1639 (2019) - [j328]Chang-Dong Wang, Zhi-Hong Deng, Jian-Huang Lai, Philip S. Yu:
Serendipitous Recommendation in E-Commerce Using Innovator-Based Collaborative Filtering. IEEE Trans. Cybern. 49(7): 2678-2692 (2019) - [j327]Yongshan Zhang, Jia Wu, Chuan Zhou, Zhihua Cai, Jian Yang, Philip S. Yu:
Multi-View Fusion with Extreme Learning Machine for Clustering. ACM Trans. Intell. Syst. Technol. 10(5): 53:1-53:23 (2019) - [j326]Senzhang Wang, Xiaoming Zhang, Fengxiang Li, Philip S. Yu, Zhiqiu Huang:
Efficient Traffic Estimation With Multi-Sourced Data by Parallel Coupled Hidden Markov Model. IEEE Trans. Intell. Transp. Syst. 20(8): 3010-3023 (2019) - [j325]Zheng Wang, Xiaojun Ye, Chaokun Wang, Philip S. Yu:
Feature Selection via Transferring Knowledge Across Different Classes. ACM Trans. Knowl. Discov. Data 13(2): 22:1-22:29 (2019) - [j324]Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:
A Survey of Parallel Sequential Pattern Mining. ACM Trans. Knowl. Discov. Data 13(3): 25:1-25:34 (2019) - [j323]Chuan Shi, Binbin Hu, Wayne Xin Zhao, Philip S. Yu:
Heterogeneous Information Network Embedding for Recommendation. IEEE Trans. Knowl. Data Eng. 31(2): 357-370 (2019) - [j322]Xi Zhang, Yuan Su, Siyu Qu, Sihong Xie, Binxing Fang, Philip S. Yu:
IAD: Interaction-Aware Diffusion Framework in Social Networks. IEEE Trans. Knowl. Data Eng. 31(7): 1341-1354 (2019) - [j321]Wei Wu, Bin Li, Ling Chen, Chengqi Zhang, Philip S. Yu:
Improved Consistent Weighted Sampling Revisited. IEEE Trans. Knowl. Data Eng. 31(12): 2332-2345 (2019) - [j320]Ji Wang, Weidong Bao, Lei Zheng, Xiaomin Zhu, Philip S. Yu:
An Attention-augmented Deep Architecture for Hard Drive Status Monitoring in Large-scale Storage Systems. ACM Trans. Storage 15(3): 21:1-21:26 (2019) - [j319]Jianguo Chen, Kenli Li, Kashif Bilal, Xu Zhou, Keqin Li, Philip S. Yu:
A Bi-layered Parallel Training Architecture for Large-Scale Convolutional Neural Networks. IEEE Trans. Parallel Distributed Syst. 30(5): 965-976 (2019) - [j318]Chuan Shi, Zhiqiang Zhang, Yugang Ji, Weipeng Wang, Philip S. Yu, Zhiping Shi:
SemRec: a personalized semantic recommendation method based on weighted heterogeneous information networks. World Wide Web 22(1): 153-184 (2019) - [j317]Yunfeng Hou, Ning Yang, Yi Wu, Philip S. Yu:
Explainable recommendation with fusion of aspect information. World Wide Web 22(1): 221-240 (2019) - [c824]Zhi-Hong Deng, Ling Huang, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
DeepCF: A Unified Framework of Representation Learning and Matching Function Learning in Recommender System. AAAI 2019: 61-68 - [c823]Chaozhuo Li, Senzhang Wang, Yukun Wang, Philip S. Yu, Yanbo Liang, Yun Liu, Zhoujun Li:
Adversarial Learning for Weakly-Supervised Social Network Alignment. AAAI 2019: 996-1003 - [c822]Ji Wang, Weidong Bao, Lichao Sun, Xiaomin Zhu, Bokai Cao, Philip S. Yu:
Private Model Compression via Knowledge Distillation. AAAI 2019: 1190-1197 - [c821]Congying Xia, Chenwei Zhang, Tao Yang, Yaliang Li, Nan Du, Xian Wu, Wei Fan, Fenglong Ma, Philip S. Yu:
Multi-grained Named Entity Recognition. ACL (1) 2019: 1430-1440 - [c820]Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, Philip S. Yu:
Joint Slot Filling and Intent Detection via Capsule Neural Networks. ACL (1) 2019: 5259-5267 - [c819]Acquah Hackman, Yu Huang, Philip S. Yu, Vincent S. Tseng:
Mining Emerging High Utility Itemsets over Streaming Database. ADMA 2019: 3-16 - [c818]Zhaokun Zhang, Ning Yang, Philip S. Yu:
How to Reach: Discovering Multi-resolution Paths on Large Scale Networks. APWeb/WAIM (1) 2019: 281-288 - [c817]Yingtong Dou, Weijian Li, Zhirong Liu, Zhenhua Dong, Jiebo Luo, Philip S. Yu:
Uncovering download fraud activities in mobile app markets. ASONAM 2019: 671-678 - [c816]Zhiwei Liu, Lei Zheng, Jiawei Zhang, Jiayu Han, Philip S. Yu:
JSCN: Joint Spectral Convolutional Network for Cross Domain Recommendation. IEEE BigData 2019: 850-859 - [c815]Huanrui Luo, Ning Yang, Philip S. Yu:
Hybrid Deep Embedding for Recommendations with Dynamic Aspect-Level Explanations. IEEE BigData 2019: 870-879 - [c814]Jian Wen, Zhongbao Zhang, Zichang Yin, Li Sun, Sen Su, Philip S. Yu:
DeepBlue: Bi-layered LSTM for tweet popUlarity Estimation. IEEE BigData 2019: 968-977 - [c813]Bowen Dong, Charu C. Aggarwal, Philip S. Yu:
The Link Regression Problem in Graph Streams. IEEE BigData 2019: 1088-1095 - [c812]Yuwei Fu, Yun Xiong, Philip S. Yu, Tianyi Tao, Yangyong Zhu:
Metapath Enhanced Graph Attention Encoder for HINs Representation Learning. IEEE BigData 2019: 1103-1110 - [c811]Gen Li, Li Sun, Zhongbao Zhang, Pengxin Ji, Sen Su, Philip S. Yu:
MC2: Unsupervised Multiple Social Network Alignment. IEEE BigData 2019: 1151-1156 - [c810]Jiahao Liu, Guixiang Ma, Fei Jiang, Chun-Ta Lu, Philip S. Yu, Ann B. Ragin:
Community-preserving Graph Convolutions for Structural and Functional Joint Embedding of Brain Networks. IEEE BigData 2019: 1163-1168 - [c809]Li Sun, Zhongbao Zhang, Pengxin Ji, Jian Wen, Sen Su, Philip S. Yu:
DNA: Dynamic Social Network Alignment. IEEE BigData 2019: 1224-1231 - [c808]Xiaokai Wei, Zhiwei Liu, Lichao Sun, Philip S. Yu:
Meta-path Reduction with Transition Probability Preserving in Heterogeneous Information Network. IEEE BigData 2019: 1245-1250 - [c807]Jiawei Zhang, Bowen Dong, Philip S. Yu:
Deep Diffusive Neural Network based Fake News Detection from Heterogeneous Social Networks. IEEE BigData 2019: 1259-1266 - [c806]Zhongyuan Jiang, Jianfeng Ma, Philip S. Yu:
Walk2Privacy: Limiting target link privacy disclosure against the adversarial link prediction. IEEE BigData 2019: 1381-1388 - [c805]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Philip S. Yu:
Utility-Driven Mining of High Utility Episodes. IEEE BigData 2019: 2644-2653 - [c804]Shen Wang, Philip S. Yu:
Heterogeneous Graph Matching Networks: Application to Unknown Malware Detection. IEEE BigData 2019: 5401-5408 - [c803]Xiaomin Wang, Junsan Zhang, Leiquan Wang, Philip S. Yu, Jie Zhu, Haisheng Li:
Video-level Multi-model Fusion for Action Recognition. CIKM 2019: 159-168 - [c802]Chaozhuo Li, Senzhang Wang, Hao Wang, Yanbo Liang, Philip S. Yu, Zhoujun Li, Wei Wang:
Partially Shared Adversarial Learning For Semi-supervised Multi-platform User Identity Linkage. CIKM 2019: 249-258 - [c801]Chaozhuo Li, Lei Zheng, Senzhang Wang, Feiran Huang, Philip S. Yu, Zhoujun Li:
Multi-Hot Compact Network Embedding. CIKM 2019: 459-468 - [c800]Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, Yanfang Ye:
Temporal Network Embedding with Micro- and Macro-dynamics. CIKM 2019: 469-478 - [c799]Xiancheng Xie, Yun Xiong, Philip S. Yu, Yangyong Zhu:
EHR Coding with Multi-scale Feature Attention and Structured Knowledge Graph Propagation. CIKM 2019: 649-658 - [c798]Ye Liu, Chenwei Zhang, Xiaohui Yan, Yi Chang, Philip S. Yu:
Generative Question Refinement with Deep Reinforcement Learning in Retrieval-based QA System. CIKM 2019: 1643-1652 - [c797]Hsu-Chao Lai, Hong-Han Shuai, De-Nian Yang, Jiun-Long Huang, Wang-Chien Lee, Philip S. Yu:
Social-Aware VR Configuration Recommendation via Multi-Feedback Coupled Tensor Factorization. CIKM 2019: 1773-1782 - [c796]Guixiang Ma, Nesreen K. Ahmed, Theodore L. Willke, Dipanjan Sengupta, Michael W. Cole, Nicholas B. Turk-Browne, Philip S. Yu:
Deep Graph Similarity Learning for Brain Data Analysis. CIKM 2019: 2743-2751 - [c795]Chuan Shi, Philip S. Yu:
Recent Developments of Deep Heterogeneous Information Network Analysis. CIKM 2019: 2973-2974 - [c794]Lin Meng, Yuxiang Ren, Jiawei Zhang, Fanghua Ye, Philip S. Yu:
Deep Heterogeneous Social Network Alignment. CogMI 2019: 43-52 - [c793]He Huang, Changhu Wang, Philip S. Yu, Chang-Dong Wang:
Generative Dual Adversarial Network for Generalized Zero-Shot Learning. CVPR 2019: 801-810 - [c792]Yunbo Wang, Jianjin Zhang, Hongyu Zhu, Mingsheng Long, Jianmin Wang, Philip S. Yu:
Memory in Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity From Spatiotemporal Dynamics. CVPR 2019: 9154-9162 - [c791]Xiancheng Xie, Yun Xiong, Philip S. Yu, Kangan Li, Suhua Zhang, Yangyong Zhu:
Attention-Based Abnormal-Aware Fusion Network for Radiology Report Generation. DASFAA (3) 2019: 448-452 - [c790]Yuan Su, Xi Zhang, Senzhang Wang, Binxing Fang, Tianle Zhang, Philip S. Yu:
Understanding Information Diffusion via Heterogeneous Information Network Embeddings. DASFAA (1) 2019: 501-516 - [c789]Yun Xiong, Yao Zhang, Hanjie Fu, Wei Wang, Yangyong Zhu, Philip S. Yu:
DynGraphGAN: Dynamic Graph Embedding via Generative Adversarial Networks. DASFAA (1) 2019: 536-552 - [c788]Lei Zheng, Chun-Ta Lu, Lifang He, Sihong Xie, He Huang, Chaozhuo Li, Vahid Noroozi, Bowen Dong, Philip S. Yu:
MARS: Memory Attention-Aware Recommender System. DSAA 2019: 11-20 - [c787]Vahid Noroozi, Sara Bahaadini, Lei Zheng, Sihong Xie, Philip S. Yu:
Virtual Adversarial Training for Semi-supervised Verification Tasks. EUSIPCO 2019: 1-5 - [c786]Rong Kang, Yue Cao, Mingsheng Long, Jianmin Wang, Philip S. Yu:
Maximum-Margin Hamming Hashing. ICCV 2019: 8251-8260 - [c785]Tianqing Zhu, Philip S. Yu:
Applying Differential Privacy Mechanism in Artificial Intelligence. ICDCS 2019: 1601-1609 - [c784]Yue Wang, Yao Wan, Chenwei Zhang, Lu Bai, Lixin Cui, Philip S. Yu:
Competitive Multi-agent Deep Reinforcement Learning with Counterfactual Thinking. ICDM 2019: 1366-1371 - [c783]Hui Yan, Siyu Liu, Philip S. Yu:
From Joint Feature Selection and Self-Representation Learning to Robust Multi-view Subspace Clustering. ICDM 2019: 1414-1419 - [c782]Jianjin Zhang, Yunbo Wang, Mingsheng Long, Jianmin Wang, Philip S. Yu:
Z-Order Recurrent Neural Networks for Video Prediction. ICME 2019: 230-235 - [c781]Vahid Noroozi, Sara Bahaadini, Samira Sheikhi, Nooshin Mojab, Philip S. Yu:
Leveraging Semi-Supervised Learning for Fairness using Neural Networks. ICMLA 2019: 50-55 - [c780]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Outlier-Robust Multi-Aspect Streaming Tensor Completion and Factorization. IJCAI 2019: 3187-3194 - [c779]Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai, Philip S. Yu:
Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks. IJCAI 2019: 3238-3245 - [c778]Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li, Jingchao Ni, Lu-An Tang, Jiaping Gui, Zhichun Li, Haifeng Chen, Philip S. Yu:
Heterogeneous Graph Matching Networks for Unknown Malware Detection. IJCAI 2019: 3762-3770 - [c777]Bowen Dong, Charu C. Aggarwal, Philip S. Yu:
Transfer Learning for Network Classification. IJCNN 2019: 1-8 - [c776]Bowen Dong, Jiawei Zhang, Chenwei Zhang, Yang Yang, Philip S. Yu:
Missing Entity Synergistic Completion across Multiple Isomeric Online Knowledge Libraries. IJCNN 2019: 1-8 - [c775]Nooshin Mojab, Vahid Noroozi, Philip S. Yu, Joelle A. Hallak:
Deep Multi-Task Learning for Interpretable Glaucoma Detection. IRI 2019: 167-174 - [c774]Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, Philip S. Yu:
Multi-modal Attention Network Learning for Semantic Source Code Retrieval. ASE 2019: 13-25 - [c773]Jianguo Zhang, Pengcheng Zou, Zhao Li, Yao Wan, Xiuming Pan, Yu Gong, Philip S. Yu:
Multi-Modal Generative Adversarial Network for Short Product Title Generation in Mobile E-Commerce. NAACL-HLT (2) 2019: 64-72 - [c772]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis. NAACL-HLT (1) 2019: 2324-2335 - [c771]Yugang Ji, Chuan Shi, Fuzhen Zhuang, Philip S. Yu:
Integrating Topic Model and Heterogeneous Information Network for Aspect Mining with Rating Bias. PAKDD (1) 2019: 160-171 - [c770]Shen Wang, Zhengzhang Chen, Ding Li, Zhichun Li, Lu-An Tang, Jingchao Ni, Junghwan Rhee, Haifeng Chen, Philip S. Yu:
Attentional Heterogeneous Graph Neural Network: Application to Program Reidentification. SDM 2019: 693-701 - [c769]Lei Zheng, Ziwei Fan, Chun-Ta Lu, Jiawei Zhang, Philip S. Yu:
Gated Spectral Units: Modeling Co-evolving Patterns for Sequential Recommendation. SIGIR 2019: 1077-1080 - [c768]Lei Zheng, Chaozhuo Li, Chun-Ta Lu, Jiawei Zhang, Philip S. Yu:
Deep Distribution Network: Addressing the Data Sparsity Issue for Top-N Recommendation. SIGIR 2019: 1081-1084 - [c767]Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Han-Chieh Chao, Hamido Fujita, Philip S. Yu:
ProUM: High Utility Sequential Pattern Mining. SMC 2019: 767-773 - [c766]Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, Philip S. Yu:
Heterogeneous Graph Attention Network. WWW 2019: 2022-2032 - [c765]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
Open-world Learning and Application to Product Classification. WWW 2019: 3413-3419 - [i178]Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, Philip S. Yu:
SynonymNet: Multi-context Bilateral Matching for Entity Synonyms. CoRR abs/1901.00056 (2019) - [i177]Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu:
A Comprehensive Survey on Graph Neural Networks. CoRR abs/1901.00596 (2019) - [i176]Zhi-Hong Deng, Ling Huang, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
DeepCF: A Unified Framework of Representation Learning and Matching Function Learning in Recommender System. CoRR abs/1901.04704 (2019) - [i175]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
Review Conversational Reading Comprehension. CoRR abs/1902.00821 (2019) - [i174]Binhang Yuan, Chen Wang, Fei Jiang, Mingsheng Long, Philip S. Yu, Yuan Liu:
WaveletFCNN: A Deep Time Series Classification Model for Wind Turbine Blade Icing Detection. CoRR abs/1902.05625 (2019) - [i173]Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Hongzhi Yin, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:
Utility Mining Across Multi-Dimensional Sequences. CoRR abs/1902.09582 (2019) - [i172]Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:
Beyond Frequency: Utility Mining with Varied Item-Specific Minimum Utility. CoRR abs/1902.09584 (2019) - [i171]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Athanasios V. Vasilakos, Philip S. Yu:
Utility-driven Data Analytics on Uncertain Data. CoRR abs/1902.09586 (2019) - [i170]Yunbo Wang, Mingsheng Long, Jianmin Wang, Philip S. Yu:
Spatiotemporal Pyramid Network for Video Action Recognition. CoRR abs/1903.01038 (2019) - [i169]Chaozhuo Li, Senzhang Wang, Philip S. Yu, Zhoujun Li:
Multi-Hot Compact Network Embedding. CoRR abs/1903.03213 (2019) - [i168]Jianping Cao, Senzhang Wang, Danyan Wen, Zhaohui Peng, Philip S. Yu, Fei-Yue Wang:
Mutual Clustering on Comparative Texts via Heterogeneous Information Networks. CoRR abs/1903.03762 (2019) - [i167]Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, Philip S. Yu, Yanfang Ye:
Heterogeneous Graph Attention Network. CoRR abs/1903.07293 (2019) - [i166]Jianguo Zhang, Pengcheng Zou, Zhao Li, Yao Wan, Xiuming Pan, Yu Gong, Philip S. Yu:
Multi-Modal Generative Adversarial Network for Short Product Title Generation in Mobile E-Commerce. CoRR abs/1904.01735 (2019) - [i165]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis. CoRR abs/1904.02232 (2019) - [i164]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Hamido Fujita, Philip S. Yu:
Correlated Utility-based Pattern Mining. CoRR abs/1904.03336 (2019) - [i163]Jianguo Chen, Kenli Li, Qingying Deng, Keqin Li, Philip S. Yu:
Distributed Deep Learning Model for Intelligent Video Surveillance Systems with Edge Computing. CoRR abs/1904.06400 (2019) - [i162]Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Han-Chieh Chao, Hamido Fujita, Philip S. Yu:
ProUM: Projection-based Utility Mining on Sequence Data. CoRR abs/1904.07764 (2019) - [i161]Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:
Fast Utility Mining on Complex Sequences. CoRR abs/1904.12248 (2019) - [i160]Shen Wang, Zhengzhang Chen, Jingchao Ni, Xiao Yu, Zhichun Li, Haifeng Chen, Philip S. Yu:
Adversarial Defense Framework for Graph Neural Network. CoRR abs/1905.03679 (2019) - [i159]Jiawei Zhang, Chenwei Zhang, Bowen Dong, Yang Yang, Philip S. Yu:
Missing Movie Synergistic Completion across Multiple Isomeric Online Movie Knowledge Libraries. CoRR abs/1905.06365 (2019) - [i158]Lichao Sun, Albert C. Chen, Philip S. Yu, Wei Chen:
Self-Activation Influence Maximization. CoRR abs/1906.02296 (2019) - [i157]Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai, Philip S. Yu:
Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks. CoRR abs/1906.04580 (2019) - [i156]Hao Peng, Jianxin Li, Qiran Gong, Senzhang Wang, Lifang He, Bo Li, Lihong Wang, Philip S. Yu:
Hierarchical Taxonomy-Aware and Attentional Graph Capsule RCNNs for Large-Scale Multi-Label Text Classification. CoRR abs/1906.04898 (2019) - [i155]Senzhang Wang, Jiannong Cao, Philip S. Yu:
Deep Learning for Spatio-Temporal Data Mining: A Survey. CoRR abs/1906.04928 (2019) - [i154]Congying Xia, Chenwei Zhang, Tao Yang, Yaliang Li, Nan Du, Xian Wu, Wei Fan, Fenglong Ma, Philip S. Yu:
Multi-Grained Named Entity Recognition. CoRR abs/1906.08449 (2019) - [i153]Yingtong Dou, Weijian Li, Zhirong Liu, Zhenhua Dong, Jiebo Luo, Philip S. Yu:
Uncovering Download Fraud Activities in Mobile App Markets. CoRR abs/1907.03048 (2019) - [i152]Yue Wang, Yao Wan, Chenwei Zhang, Lixin Cui, Lu Bai, Philip S. Yu:
Competitive Multi-Agent Deep Reinforcement Learning with Counterfactual Thinking. CoRR abs/1908.04573 (2019) - [i151]Ye Liu, Chenwei Zhang, Xiaohui Yan, Yi Chang, Philip S. Yu:
Generative Question Refinement with Deep Reinforcement Learning in Retrieval-based QA System. CoRR abs/1908.05604 (2019) - [i150]Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, Yanfang Ye:
Temporal Network Embedding with Micro- and Macro-dynamics. CoRR abs/1909.04246 (2019) - [i149]Chuan Shi, Xiaotian Han, Li Song, Xiao Wang, Senzhang Wang, Junping Du, Philip S. Yu:
Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks. CoRR abs/1909.06627 (2019) - [i148]Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, Philip S. Yu:
Multi-Modal Attention Network Learning for Semantic Source Code Retrieval. CoRR abs/1909.13516 (2019) - [i147]Jianguo Zhang, Kazuma Hashimoto, Chien-Sheng Wu, Yao Wan, Philip S. Yu, Richard Socher, Caiming Xiong:
Find or Classify? Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Tracking. CoRR abs/1910.03544 (2019) - [i146]Shaika Chowdhury, Chenwei Zhang, Philip S. Yu, Yuan Luo:
Mixed Pooling Multi-View Attention Autoencoder for Representation Learning in Healthcare. CoRR abs/1910.06456 (2019) - [i145]Shaika Chowdhury, Chenwei Zhang, Philip S. Yu, Yuan Luo:
Hierarchical Semantic Correspondence Learning for Post-Discharge Patient Mortality Prediction. CoRR abs/1910.06492 (2019) - [i144]Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li, Jingchao Ni, Lu-An Tang, Jiaping Gui, Zhichun Li, Haifeng Chen, Philip S. Yu:
Heterogeneous Graph Matching Networks. CoRR abs/1910.08074 (2019) - [i143]Zhiwei Liu, Lei Zheng, Jiawei Zhang, Jiayu Han, Philip S. Yu:
JSCN: Joint Spectral Convolutional Network for Cross Domain Recommendation. CoRR abs/1910.08219 (2019) - [i142]Li Sun, Zhongbao Zhang, Pengxin Ji, Jian Wen, Sen Su, Philip S. Yu:
DNA: Dynamic Social Network Alignment. CoRR abs/1911.00067 (2019) - [i141]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
A Failure of Aspect Sentiment Classifiers and an Adaptive Re-weighting Solution. CoRR abs/1911.01460 (2019) - [i140]Jiahao Liu, Guixiang Ma, Fei Jiang, Chun-Ta Lu, Philip S. Yu, Ann B. Ragin:
Community-preserving Graph Convolutions for Structural and Functional Joint Embedding of Brain Networks. CoRR abs/1911.03583 (2019) - [i139]Jianguo Chen, Philip S. Yu:
A Domain Adaptive Density Clustering Algorithm for Data with Varying Density Distribution. CoRR abs/1911.10293 (2019) - [i138]Mingtao Lei, Xi Zhang, Lingyang Chu, Zhefeng Wang, Philip S. Yu, Binxing Fang:
Finding Route Hotspots in Large Labeled Networks. CoRR abs/1911.11354 (2019) - [i137]Yue Wang, Chenwei Zhang, Shen Wang, Philip S. Yu, Lu Bai, Lixin Cui, Guandong Xu:
Generative Temporal Link Prediction via Self-tokenized Sequence Modeling. CoRR abs/1911.11486 (2019) - [i136]Shaika Chowdhury, Chenwei Zhang, Philip S. Yu, Yuan Luo:
Med2Meta: Learning Representations of Medical Concepts with Meta-Embeddings. CoRR abs/1912.03366 (2019) - [i135]Guixiang Ma, Nesreen K. Ahmed, Theodore L. Willke, Philip S. Yu:
Deep Graph Similarity Learning: A Survey. CoRR abs/1912.11615 (2019) - [i134]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Philippe Fournier-Viger, Xuan Wang, Philip S. Yu:
Utility-Driven Mining of Trend Information for Intelligent System. CoRR abs/1912.11666 (2019) - [i133]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Philip S. Yu:
Discovering High Utility Episodes in Sequences. CoRR abs/1912.11670 (2019) - [i132]Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Philip S. Yu:
Utility Mining Across Multi-Sequences with Individualized Thresholds. CoRR abs/1912.11673 (2019) - [i131]Vahid Noroozi, Sara Bahaadini, Samira Sheikhi, Nooshin Mojab, Philip S. Yu:
Leveraging Semi-Supervised Learning for Fairness using Neural Networks. CoRR abs/1912.13230 (2019) - 2018
- [j316]Taisong Li, Jiawei Zhang, Philip S. Yu, Yan Zhang, Yonghong Yan:
Deep Dynamic Network Embedding for Link Prediction. IEEE Access 6: 29219-29230 (2018) - [j315]Xi Zhang, Siyu Qu, Jieyun Huang, Binxing Fang, Philip S. Yu:
Stock Market Prediction via Multi-Source Multiple Instance Learning. IEEE Access 6: 50720-50728 (2018) - [j314]Xi Zhang, Yunjia Zhang, Senzhang Wang, Yuntao Yao, Binxing Fang, Philip S. Yu:
Improving stock market prediction via heterogeneous information fusion. Knowl. Based Syst. 143: 236-247 (2018) - [j313]Jiawei Zhang, Philip S. Yu:
Broad Learning: : An Emerging Area in Social Network Analysis. SIGKDD Explor. 20(1): 24-50 (2018) - [j312]Hong-Han Shuai, De-Nian Yang, Chih-Ya Shen, Philip S. Yu, Ming-Syan Chen:
QMSampler: Joint Sampling of Multiple Networks with Quality Guarantee. IEEE Trans. Big Data 4(1): 90-104 (2018) - [j311]Weiwei Shi, Yongxin Zhu, Philip S. Yu, Jiawei Zhang, Tian Huang, Chang Wang, Yufeng Chen:
Effective Prediction of Missing Data on Apache Spark over Multivariable Time Series. IEEE Trans. Big Data 4(4): 473-486 (2018) - [j310]Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang, Xinyu Yang, Julie A. McCann, Philip S. Yu:
LoPub: High-Dimensional Crowdsourced Data Publication With Local Differential Privacy. IEEE Trans. Inf. Forensics Secur. 13(9): 2151-2166 (2018) - [j309]Changping Wang, Chaokun Wang, Gaoyang Guo, Xiaojun Ye, Philip S. Yu:
Efficient Computation of G-Skyline Groups. IEEE Trans. Knowl. Data Eng. 30(4): 674-688 (2018) - [j308]Hong-Han Shuai, Chih-Ya Shen, De-Nian Yang, Yi-Feng Lan, Wang-Chien Lee, Philip S. Yu, Ming-Syan Chen:
A Comprehensive Study on Social Network Mental Disorders Detection via Online Social Media Mining. IEEE Trans. Knowl. Data Eng. 30(7): 1212-1225 (2018) - [j307]Jia Wu, Shirui Pan, Xingquan Zhu, Chengqi Zhang, Philip S. Yu:
Multiple Structure-View Learning for Graph Classification. IEEE Trans. Neural Networks Learn. Syst. 29(7): 3236-3251 (2018) - [j306]Chuan Shi, Jian Liu, Yiding Zhang, Binbin Hu, Shenghua Liu, Philip S. Yu:
MFPR: A Personalized Ranking Recommendation with Multiple Feedback. ACM Trans. Soc. Comput. 1(2): 7:1-7:22 (2018) - [j305]Yang Yang, Feifei Wang, Junni Zhang, Jin Xu, Philip S. Yu:
A topic model for co-occurring normal documents and short texts. World Wide Web 21(2): 487-513 (2018) - [c764]Ye Liu, Lifang He, Bokai Cao, Philip S. Yu, Ann B. Ragin, Alex D. Leow:
Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis. AAAI 2018: 117-124 - [c763]Hu Xu, Sihong Xie, Lei Shu, Philip S. Yu:
Dual Attention Network for Product Compatibility and Function Satisfiability Analysis. AAAI 2018: 6013-6020 - [c762]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
Double Embeddings and CNN-based Sequence Labeling for Aspect Extraction. ACL (2) 2018: 592-598 - [c761]Xiaotian Han, Chuan Shi, Lei Zheng, Philip S. Yu, Jianxin Li, Yuanfu Lu:
Representation Learning with Depth and Breadth for Recommendation Using Multi-view Data. APWeb/WAIM (1) 2018: 181-188 - [c760]Vahid Noroozi, Sara Bahaadini, Lei Zheng, Sihong Xie, Weixiang Shao, Philip S. Yu:
Semi-supervised Deep Representation Learning for Multi-View Problems. IEEE BigData 2018: 56-64 - [c759]Sara Amini, Vahid Noroozi, Sara Bahaadini, Philip S. Yu, Chris Kanich:
DeepFP: A Deep Learning Framework For User Fingerprinting via Mobile Motion Sensors. IEEE BigData 2018: 84-91 - [c758]Shuaijun Ge, Guixiang Ma, Sihong Xie, Philip S. Yu:
Securing Behavior-based Opinion Spam Detection. IEEE BigData 2018: 112-117 - [c757]Yao Wan, Wenqiang Yan, Jianwei Gao, Zhou Zhao, Jian Wu, Philip S. Yu:
Improved Dynamic Memory Network for Dialogue Act Classification with Adversarial Training. IEEE BigData 2018: 841-850 - [c756]Lei Zheng, Yixue Wang, Lifang He, Sihong Xie, Fengjiao Wang, Philip S. Yu:
PER: A Probabilistic Attentional Model for Personalized Text Recommendations. IEEE BigData 2018: 911-920 - [c755]Yue Wang, Chenwei Zhang, Shen Wang, Philip S. Yu, Lu Bai, Lixin Cui:
Market Abnormality Period Detection via Co-movement Attention Model. IEEE BigData 2018: 1514-1523 - [c754]Ye Liu, Jiawei Zhang, Chenwei Zhang, Philip S. Yu:
Data-driven Blockbuster Planning on Online Movie Knowledge Library. IEEE BigData 2018: 1612-1617 - [c753]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Tzung-Pei Hong, Philip S. Yu:
CoUPM: Correlated Utility-based Pattern Mining. IEEE BigData 2018: 2607-2616 - [c752]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Shyue-Liang Wang, Philip S. Yu:
Privacy Preserving Utility Mining: A Survey. IEEE BigData 2018: 2617-2626 - [c751]Chaozhuo Li, Senzhang Wang, Philip S. Yu, Lei Zheng, Xiaoming Zhang, Zhoujun Li, Yanbo Liang:
Distribution Distance Minimization for Unsupervised User Identity Linkage. CIKM 2018: 447-456 - [c750]Hong-Han Shuai, Yen-Chieh Lien, De-Nian Yang, Yi-Feng Lan, Wang-Chien Lee, Philip S. Yu:
Newsfeed Filtering and Dissemination for Behavioral Therapy on Social Network Addictions. CIKM 2018: 597-606 - [c749]Liang Chen, Yang Liu, Zibin Zheng, Philip S. Yu:
Heterogeneous Neural Attentive Factorization Machine for Rating Prediction. CIKM 2018: 833-842 - [c748]Sara Amini, Vahid Noroozi, Amit Pande, Satyajit Gupte, Philip S. Yu, Chris Kanich:
DeepAuth: A Framework for Continuous User Re-authentication in Mobile Apps. CIKM 2018: 2027-2035 - [c747]Sihong Xie, Philip S. Yu:
Next Generation Trustworthy Fraud Detection. CIC 2018: 279-282 - [c746]Xinghua Wang, Zhaohui Peng, Senzhang Wang, Philip S. Yu, Wenjing Fu, Xiaoguang Hong:
Cross-Domain Recommendation for Cold-Start Users via Neighborhood Based Feature Mapping. DASFAA (1) 2018: 158-165 - [c745]Congying Xia, Chenwei Zhang, Xiaohui Yan, Yi Chang, Philip S. Yu:
Zero-shot User Intent Detection via Capsule Neural Networks. EMNLP 2018: 3090-3099 - [c744]Zhenhua Zhang, Leon Stenneth, Ram Marappan, Zaba Sebastian, Philip S. Yu:
Insert beyond the traffic sign recognition: constructing an auto-pilot map for autonomous vehicles. SIGSPATIAL/GIS 2018: 468-471 - [c743]Yue Wang, Chenwei Zhang, Shen Wang, Philip S. Yu, Lu Bai, Lixin Cui:
Deep Co-Investment Network Learning for Financial Assets. ICBK 2018: 41-48 - [c742]Lichao Sun, Lifang He, Zhipeng Huang, Bokai Cao, Congying Xia, Xiaokai Wei, Philip S. Yu:
Joint Embedding of Meta-Path and Meta-Graph for Heterogeneous Information Networks. ICBK 2018: 131-138 - [c741]Ji Wang, Bokai Cao, Philip S. Yu, Lichao Sun, Weidong Bao, Xiaomin Zhu:
Deep Learning towards Mobile Applications. ICDCS 2018: 1385-1393 - [c740]Changping Wang, Chaokun Wang, Gaoyang Guo, Xiaojun Ye, Philip S. Yu:
Efficient Computation of G-Skyline Groups (Extended Abstract). ICDE 2018: 1769-1770 - [c739]He Huang, Bokai Cao, Philip S. Yu, Chang-Dong Wang, Alex D. Leow:
dpMood: Exploiting Local and Periodic Typing Dynamics for Personalized Mood Prediction. ICDM 2018: 157-166 - [c738]Chaozhuo Li, Senzhang Wang, Lifang He, Philip S. Yu, Yanbo Liang, Zhoujun Li:
SSDMV: Semi-Supervised Deep Social Spammer Detection by Multi-view Data Fusion. ICDM 2018: 247-256 - [c737]Lifang He, Chun-Ta Lu, Yong Chen, Jiawei Zhang, Linlin Shen, Philip S. Yu, Fei Wang:
A Self-Organizing Tensor Architecture for Multi-view Clustering. ICDM 2018: 1007-1012 - [c736]Fei Jiang, Lei Zheng, Jin Xu, Philip S. Yu:
FI-GRL: Fast Inductive Graph Representation Learning via Projection-Cost Preservation. ICDM 2018: 1067-1072 - [c735]Jianguo Zhang, Ji Wang, Lifang He, Zhao Li, Philip S. Yu:
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction. ICDM 2018: 1428-1433 - [c734]Limeng Cui, Zhensong Chen, Jiawei Zhang, Lifang He, Yong Shi, Philip S. Yu:
Multi-View Fusion Through Cross-Modal Retrieval. ICIP 2018: 1977-1981 - [c733]Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, Philip S. Yu:
PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning. ICML 2018: 5110-5119 - [c732]Xiaotian Han, Chuan Shi, Senzhang Wang, Philip S. Yu, Li Song:
Aspect-Level Deep Collaborative Filtering via Heterogeneous Information Networks. IJCAI 2018: 3393-3399 - [c731]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
Lifelong Domain Word Embedding via Meta-Learning. IJCAI 2018: 4510-4516 - [c730]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
On Learning Community-specific Similarity Metrics for Cold-start Link Prediction. IJCNN 2018: 1-8 - [c729]Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, Philip S. Yu:
Improving automatic source code summarization via deep reinforcement learning. ASE 2018: 397-407 - [c728]Binbin Hu, Chuan Shi, Wayne Xin Zhao, Philip S. Yu:
Leveraging Meta-path based Context for Top- N Recommendation with A Neural Co-Attention Model. KDD 2018: 1531-1540 - [c727]Xinyue Liu, Xiangnan Kong, Philip S. Yu:
Active Opinion Maximization in Social Networks. KDD 2018: 1840-1849 - [c726]Lichao Sun, Weiran Huang, Philip S. Yu, Wei Chen:
Multi-Round Influence Maximization. KDD 2018: 2249-2258 - [c725]Ke Tu, Peng Cui, Xiao Wang, Philip S. Yu, Wenwu Zhu:
Deep Recursive Network Embedding with Regular Equivalence. KDD 2018: 2357-2366 - [c724]Ji Wang, Jianguo Zhang, Weidong Bao, Xiaomin Zhu, Bokai Cao, Philip S. Yu:
Not Just Privacy: Improving Performance of Private Deep Learning in Mobile Cloud. KDD 2018: 2407-2416 - [c723]Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, Philip S. Yu:
On the Generative Discovery of Structured Medical Knowledge. KDD 2018: 2720-2728 - [c722]Limeng Cui, Zhensong Chen, Jiawei Zhang, Lifang He, Yong Shi, Philip S. Yu:
Multi-view Collective Tensor Decomposition for Cross-modal Hashing. ICMR 2018: 73-81 - [c721]Jindong Wang, Wenjie Feng, Yiqiang Chen, Han Yu, Meiyu Huang, Philip S. Yu:
Visual Domain Adaptation with Manifold Embedded Distribution Alignment. ACM Multimedia 2018: 402-410 - [c720]Zhangjie Cao, Ziping Sun, Mingsheng Long, Jianmin Wang, Philip S. Yu:
Deep Priority Hashing. ACM Multimedia 2018: 1653-1661 - [c719]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
Interaction Content Aware Network Embedding via Co-embedding of Nodes and Edges. PAKDD (2) 2018: 183-195 - [c718]Jindong Wang, Yiqiang Chen, Lisha Hu, Xiaohui Peng, Philip S. Yu:
Stratified Transfer Learning for Cross-domain Activity Recognition. PerCom 2018: 1-10 - [c717]Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, Philip S. Yu:
Spectral collaborative filtering. RecSys 2018: 311-319 - [c716]Fei Jiang, Lifang He, Yi Zheng, Enqiang Zhu, Jin Xu, Philip S. Yu:
On Spectral Graph Embedding: A Non-Backtracking Perspective and Graph Approximation. SDM 2018: 324-332 - [c715]Ya-Wen Teng, Chih-Hua Tai, Philip S. Yu, Ming-Syan Chen:
Revenue Maximization on the Multi-grade Product. SDM 2018: 576-584 - [c714]Shaika Chowdhury, Chenwei Zhang, Philip S. Yu:
Multi-Task Pharmacovigilance Mining from Social Media Posts. WWW 2018: 117-126 - [c713]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
On Exploring Semantic Meanings of Links for Embedding Social Networks. WWW 2018: 479-488 - [c712]Chun-Ta Lu, Lifang He, Hao Ding, Bokai Cao, Philip S. Yu:
Learning from Multi-View Multi-Way Data via Structural Factorization Machines. WWW 2018: 1593-1602 - [r4]Philip S. Yu, Yun Chi:
Association Rule Mining on Streams. Encyclopedia of Database Systems (2nd ed.) 2018 - [r3]Xiangnan Kong, Philip S. Yu:
Graph Classification in Heterogeneous Networks. Encyclopedia of Social Network Analysis and Mining. 2nd Ed. 2018 - [r2]Jiawei Zhang, Philip S. Yu:
Cross-Platform Social Network Analysis. Encyclopedia of Social Network Analysis and Mining. 2nd Ed. 2018 - [i130]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Error-Robust Multi-View Clustering. CoRR abs/1801.00384 (2018) - [i129]Xi Zhang, Yunjia Zhang, Senzhang Wang, Yuntao Yao, Binxing Fang, Philip S. Yu:
Improving Stock Market Prediction via Heterogeneous Information Fusion. CoRR abs/1801.00588 (2018) - [i128]Jindong Wang, Yiqiang Chen, Lisha Hu, Xiaohui Peng, Philip S. Yu:
Stratified Transfer Learning for Cross-domain Activity Recognition. CoRR abs/1801.00820 (2018) - [i127]Fei Jiang, Lifang He, Yi Zheng, Enqiang Zhu, Jin Xu, Philip S. Yu:
On Spectral Graph Embedding: A Non-Backtracking Perspective and Graph Approximation. CoRR abs/1801.05855 (2018) - [i126]Shaika Chowdhury, Chenwei Zhang, Philip S. Yu:
Multi-Task Pharmacovigilance Mining from Social Media Posts. CoRR abs/1801.06294 (2018) - [i125]Lichao Sun, Weiran Huang, Philip S. Yu, Wei Chen:
Multi-Round Influence Maximization (Extended Version). CoRR abs/1802.04189 (2018) - [i124]Xinghua Wang, Zhaohui Peng, Senzhang Wang, Philip S. Yu, Wenjing Fu, Xiaoguang Hong:
Cross-Domain Recommendation for Cold-Start Users via Neighborhood Based Feature Mapping. CoRR abs/1803.01617 (2018) - [i123]He Huang, Philip S. Yu, Changhu Wang:
An Introduction to Image Synthesis with Generative Adversarial Nets. CoRR abs/1803.04469 (2018) - [i122]Bokai Cao, Lei Zheng, Chenwei Zhang, Philip S. Yu, Andrea Piscitello, John Zulueta, Olu Ajilore, Kelly Ryan, Alex D. Leow:
DeepMood: Modeling Mobile Phone Typing Dynamics for Mood Detection. CoRR abs/1803.08986 (2018) - [i121]Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, Philip S. Yu:
PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning. CoRR abs/1804.06300 (2018) - [i120]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
Double Embeddings and CNN-based Sequence Labeling for Aspect Extraction. CoRR abs/1805.04601 (2018) - [i119]Lei Zheng, Chun-Ta Lu, Lifang He, Sihong Xie, Vahid Noroozi, He Huang, Philip S. Yu:
MARS: Memory Attention-Aware Recommender System. CoRR abs/1805.07037 (2018) - [i118]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
Lifelong Domain Word Embedding via Meta-Learning. CoRR abs/1805.09991 (2018) - [i117]Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Vincent S. Tseng, Philip S. Yu:
A Survey of Utility-Oriented Pattern Mining. CoRR abs/1805.10511 (2018) - [i116]Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:
A Survey of Parallel Sequential Pattern Mining. CoRR abs/1805.10515 (2018) - [i115]Yang Yang, Xia Hu, Haoyan Liu, Jiawei Zhang, Zhoujun Li, Philip S. Yu:
Understanding and Monitoring Human Trafficking via Social Sensors: A Sociological Approach. CoRR abs/1805.10617 (2018) - [i114]Yang Yang, Xia Hu, Haoyan Liu, Jiawei Zhang, Zhoujun Li, Philip S. Yu:
r-instance Learning for Missing People Tweets Identification. CoRR abs/1805.10856 (2018) - [i113]Yang Yang, Lei Zheng, Jiawei Zhang, Qingcai Cui, Zhoujun Li, Philip S. Yu:
TI-CNN: Convolutional Neural Networks for Fake News Detection. CoRR abs/1806.00749 (2018) - [i112]Ye Liu, Lifang He, Bokai Cao, Philip S. Yu, Ann B. Ragin, Alex D. Leow:
Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis. CoRR abs/1806.07703 (2018) - [i111]Jindong Wang, Wenjie Feng, Yiqiang Chen, Han Yu, Meiyu Huang, Philip S. Yu:
Visual Domain Adaptation with Manifold Embedded Distribution Alignment. CoRR abs/1807.07258 (2018) - [i110]He Huang, Bokai Cao, Philip S. Yu, Chang-Dong Wang, Alex D. Leow:
dpMood: Exploiting Local and Periodic Typing Dynamics for Personalized Mood Prediction. CoRR abs/1808.09852 (2018) - [i109]Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, Philip S. Yu:
Spectral Collaborative Filtering. CoRR abs/1808.10523 (2018) - [i108]Xi Zhang, Yixuan Li, Senzhang Wang, Binxing Fang, Philip S. Yu:
Enhancing Stock Market Prediction with Extended Coupled Hidden Markov Model over Multi-Sourced Data. CoRR abs/1809.00306 (2018) - [i107]Congying Xia, Chenwei Zhang, Xiaohui Yan, Yi Chang, Philip S. Yu:
Zero-shot User Intent Detection via Capsule Neural Networks. CoRR abs/1809.00385 (2018) - [i106]Zhangjie Cao, Ziping Sun, Mingsheng Long, Jianmin Wang, Philip S. Yu:
Deep Priority Hashing. CoRR abs/1809.01238 (2018) - [i105]Ji Wang, Jianguo Zhang, Weidong Bao, Xiaomin Zhu, Bokai Cao, Philip S. Yu:
Not Just Privacy: Improving Performance of Private Deep Learning in Mobile Cloud. CoRR abs/1809.03428 (2018) - [i104]Ji Wang, Bokai Cao, Philip S. Yu, Lichao Sun, Weidong Bao, Xiaomin Zhu:
Deep Learning Towards Mobile Applications. CoRR abs/1809.03559 (2018) - [i103]Lichao Sun, Lifang He, Zhipeng Huang, Bokai Cao, Congying Xia, Xiaokai Wei, Philip S. Yu:
Joint Embedding of Meta-Path and Meta-Graph for Heterogeneous Information Networks. CoRR abs/1809.04110 (2018) - [i102]Jianguo Zhang, Ji Wang, Lifang He, Zhao Li, Philip S. Yu:
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction. CoRR abs/1809.04188 (2018) - [i101]Yue Wang, Chenwei Zhang, Shen Wang, Philip S. Yu, Lu Bai, Lixin Cui:
Deep Co-investment Network Learning for Financial Assets. CoRR abs/1809.04227 (2018) - [i100]Hu Xu, Bing Liu, Lei Shu, Philip S. Yu:
Learning to Accept New Classes without Training. CoRR abs/1809.06004 (2018) - [i99]Fei Jiang, Lei Zheng, Jin Xu, Philip S. Yu:
FI-GRL: Fast Inductive Graph Representation Learning via Projection-Cost Preservation. CoRR abs/1809.08079 (2018) - [i98]Jianguo Chen, Kenli Li, Kashif Bilal, Xu Zhou, Keqin Li, Philip S. Yu:
A Bi-layered Parallel Training Architecture for Large-scale Convolutional Neural Networks. CoRR abs/1810.07742 (2018) - [i97]Jianguo Chen, Kenli Li, Huigui Rong, Kashif Bilal, Keqin Li, Philip S. Yu:
A Periodicity-based Parallel Time Series Prediction Algorithm in Cloud Computing Environments. CoRR abs/1810.07776 (2018) - [i96]Lifang He, Chun-Ta Lu, Yong Chen, Jiawei Zhang, Linlin Shen, Philip S. Yu, Fei Wang:
A Self-Organizing Tensor Architecture for Multi-View Clustering. CoRR abs/1810.07874 (2018) - [i95]Ye Liu, Jiawei Zhang, Chenwei Zhang, Philip S. Yu:
Data-driven Blockbuster Planning on Online Movie Knowledge Library. CoRR abs/1810.10175 (2018) - [i94]Xiaokai Wei, Zhiwei Liu, Lichao Sun, Philip S. Yu:
Unsupervised Meta-path Reduction on Heterogeneous Information Networks. CoRR abs/1810.12503 (2018) - [i93]Guixiang Ma, Nesreen K. Ahmed, Theodore L. Willke, Dipanjan Sengupta, Michael W. Cole, Nicholas B. Turk-Browne, Philip S. Yu:
Similarity Learning with Higher-Order Proximity for Brain Network Analysis. CoRR abs/1811.02662 (2018) - [i92]Shuaijun Ge, Guixiang Ma, Sihong Xie, Philip S. Yu:
Securing Behavior-based Opinion Spam Detection. CoRR abs/1811.03739 (2018) - [i91]Vahid Noroozi, Sara Bahaadini, Lei Zheng, Sihong Xie, Weixiang Shao, Philip S. Yu:
Semi-supervised Deep Representation Learning for Multi-View Problems. CoRR abs/1811.04480 (2018) - [i90]Jianguo Zhang, Pengcheng Zou, Zhao Li, Yao Wan, Ye Liu, Xiuming Pan, Yu Gong, Philip S. Yu:
Product Title Refinement via Multi-Modal Generative Adversarial Learning. CoRR abs/1811.04498 (2018) - [i89]He Huang, Changhu Wang, Philip S. Yu, Chang-Dong Wang:
Generative Dual Adversarial Network for Generalized Zero-shot Learning. CoRR abs/1811.04857 (2018) - [i88]Yao Wan, Wenqiang Yan, Jianwei Gao, Zhou Zhao, Jian Wu, Philip S. Yu:
Improved Dynamic Memory Network for Dialogue Act Classification with Adversarial Training. CoRR abs/1811.05021 (2018) - [i87]Ji Wang, Weidong Bao, Lichao Sun, Xiaomin Zhu, Bokai Cao, Philip S. Yu:
Private Model Compression via Knowledge Distillation. CoRR abs/1811.05072 (2018) - [i86]Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, Philip S. Yu:
Improving Automatic Source Code Summarization via Deep Reinforcement Learning. CoRR abs/1811.07234 (2018) - [i85]Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Shyue-Liang Wang, Philip S. Yu:
Privacy Preserving Utility Mining: A Survey. CoRR abs/1811.07389 (2018) - [i84]Yunbo Wang, Jianjin Zhang, Hongyu Zhu, Mingsheng Long, Jianmin Wang, Philip S. Yu:
Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics. CoRR abs/1811.07490 (2018) - [i83]Yunbo Wang, Zhiyu Yao, Hongyu Zhu, Mingsheng Long, Jianmin Wang, Philip S. Yu:
Reversing Two-Stream Networks with Decoding Discrepancy Penalty for Robust Action Recognition. CoRR abs/1811.08362 (2018) - [i82]Jianguo Chen, Kenli Li, Kashif Bilal, Ahmed A. Metwally, Keqin Li, Philip S. Yu:
Parallel Protein Community Detection in Large-scale PPI Networks Based on Multi-source Learning. CoRR abs/1811.12160 (2018) - [i81]Shen Wang, Zhengzhang Chen, Ding Li, Lu-An Tang, Jingchao Ni, Zhichun Li, Junghwan Rhee, Haifeng Chen, Philip S. Yu:
Deep Program Reidentification: A Graph Neural Network Solution. CoRR abs/1812.04064 (2018) - [i80]Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, Philip S. Yu:
Joint Slot Filling and Intent Detection via Capsule Neural Networks. CoRR abs/1812.09471 (2018) - [i79]Lichao Sun, Ji Wang, Philip S. Yu, Bo Li:
Adversarial Attack and Defense on Graph Data: A Survey. CoRR abs/1812.10528 (2018) - [i78]Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Philip S. Yu:
HUOPM: High Utility Occupancy Pattern Mining. CoRR abs/1812.10926 (2018) - 2017
- [b3]Chuan Shi, Philip S. Yu:
Heterogeneous Information Network Analysis and Applications. Data Analytics, Springer 2017, ISBN 978-3-319-56211-7, pp. 1-227 - [b2]Tianqing Zhu, Gang Li, Wanlei Zhou, Philip S. Yu:
Differential Privacy and Applications. Advances in Information Security 69, Springer 2017, ISBN 978-3-319-62002-2, pp. 1-222 - [j304]Junxing Zhu, Jiawei Zhang, Chenwei Zhang, Quanyuan Wu, Yan Jia, Bin Zhou, Philip S. Yu:
CHRS: Cold Start Recommendation Across Multiple Heterogeneous Information Networks. IEEE Access 5: 15283-15299 (2017) - [j303]Xiangdong Huang, Jianmin Wang, Philip S. Yu, Jian Bai, Jinrui Zhang:
An experimental study on tuning the consistency of NoSQL systems. Concurr. Comput. Pract. Exp. 29(12) (2017) - [j302]Ning Yang, Lifang He, Zheng Li, Philip S. Yu:
Reducing uncertainty of dynamic heterogeneous information networks: a fusing reconstructing approach. Data Min. Knowl. Discov. 31(3): 879-906 (2017) - [j301]Yu Lei, Philip S. Yu:
Service recommendation based on parallel graph computing. Distributed Parallel Databases 35(3-4): 287-302 (2017) - [j300]Sihong Xie, Philip S. Yu:
Active zero-shot learning: a novel approach to extreme multi-labeled classification. Int. J. Data Sci. Anal. 3(3): 151-160 (2017) - [j299]Yuchi Ma, Ning Yang, Lei Zhang, Philip S. Yu:
Spatial and semantical label inference for social media - A cross-network data fusion approach. Knowl. Inf. Syst. 53(1): 153-177 (2017) - [j298]Aoqian Zhang, Shaoxu Song, Jianmin Wang, Philip S. Yu:
Time Series Data Cleaning: From Anomaly Detection to Anomaly Repairing. Proc. VLDB Endow. 10(10): 1046-1057 (2017) - [j297]Junxing Zhu, Jiawei Zhang, Quanyuan Wu, Yan Jia, Bin Zhou, Xiaokai Wei, Philip S. Yu:
Constrained Active Learning for Anchor Link Prediction Across Multiple Heterogeneous Social Networks. Sensors 17(8): 1786 (2017) - [j296]Guoqiong Liao, Philip S. Yu, Qianhui Zhong, Sihong Xie, Changxuan Wan, Dexi Liu:
Probabilistic cleaning over trajectory events of mobile RFID objects. ACM SIGSPATIAL Special 9(1): 3-10 (2017) - [j295]Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, Philip S. Yu:
A Survey of Heterogeneous Information Network Analysis. IEEE Trans. Knowl. Data Eng. 29(1): 17-37 (2017) - [j294]Tianqing Zhu, Gang Li, Wanlei Zhou, Philip S. Yu:
Differentially Private Data Publishing and Analysis: A Survey. IEEE Trans. Knowl. Data Eng. 29(8): 1619-1638 (2017) - [j293]Shaoxu Song, Yu Gao, Chaokun Wang, Xiaochen Zhu, Jianmin Wang, Philip S. Yu:
Matching Heterogeneous Events with Patterns. IEEE Trans. Knowl. Data Eng. 29(8): 1695-1708 (2017) - [j292]Xi Li, Te Pi, Zhongfei Zhang, Xueyi Zhao, Meng Wang, Xuelong Li, Philip S. Yu:
Learning Bregman Distance Functions for Structural Learning to Rank. IEEE Trans. Knowl. Data Eng. 29(9): 1916-1927 (2017) - [j291]Senzhang Wang, Xiaoming Zhang, Jianping Cao, Lifang He, Leon Stenneth, Philip S. Yu, Zhoujun Li, Zhiqiu Huang:
Computing Urban Traffic Congestions by Incorporating Sparse GPS Probe Data and Social Media Data. ACM Trans. Inf. Syst. 35(4): 40:1-40:30 (2017) - [j290]Yuchi Ma, Ning Yang, Lei Zhang, Philip S. Yu:
Predicting neighbor label distributions in dynamic heterogeneous information networks. World Wide Web 20(6): 1269-1291 (2017) - [j289]Qianyi Zhan, Jiawei Zhang, Philip S. Yu, Junyuan Xie:
Community detection for emerging social networks. World Wide Web 20(6): 1409-1441 (2017) - [c711]Yuan Su, Xi Zhang, Sihong Xie, Philip S. Yu, Binxing Fang:
Efficient Revenue Maximization for Viral Marketing in Social Networks. ADMA 2017: 209-224 - [c710]Qianyi Zhan, Longhai Tan, Sherry Emery, Philip S. Yu, Chongjun Wang:
Community detection on anti-vaping campaign audience. BIBM 2017: 891-894 - [c709]Jiawei Zhang, Philip S. Yu, Charu C. Aggarwal, Limeng Cui:
Real Time Social Attitude Expression Prediction. BigData Congress 2017: 472-479 - [c708]Limeng Cui, Jiawei Zhang, Zhensong Chen, Yong Shi, Philip S. Yu:
Inverse extreme learning machine for learning with label proportions. IEEE BigData 2017: 576-585 - [c707]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Error-robust multi-view clustering. IEEE BigData 2017: 736-745 - [c706]Lei Zheng, Bokai Cao, Vahid Noroozi, Philip S. Yu, Nianzu Ma:
Hierarchical collaborative embedding for context-aware recommendations. IEEE BigData 2017: 867-876 - [c705]Chenwei Zhang, Nan Du, Wei Fan, Yaliang Li, Chun-Ta Lu, Philip S. Yu:
Bringing semantic structures to user intent detection in online medical queries. IEEE BigData 2017: 1019-1026 - [c704]Lichao Sun, Xiaokai Wei, Jiawei Zhang, Lifang He, Philip S. Yu, Witawas Srisa-an:
Contaminant removal for Android malware detection systems. IEEE BigData 2017: 1053-1062 - [c703]Tianqing Zhu, Ping Xiong, Gang Li, Wanlei Zhou, Philip S. Yu:
Differentially private query learning: From data publishing to model publishing. IEEE BigData 2017: 1117-1122 - [c702]Jingyuan Zhang, Chun-Ta Lu, Bokai Cao, Yi Chang, Philip S. Yu:
Connecting emerging relationships from news via tensor factorization. IEEE BigData 2017: 1223-1232 - [c701]Hu Xu, Sihong Xie, Lei Shu, Philip S. Yu:
Product function need recognition via semi-supervised attention network. IEEE BigData 2017: 1369-1374 - [c700]Guixiang Ma, Lifang He, Chun-Ta Lu, Weixiang Shao, Philip S. Yu, Alex D. Leow, Ann B. Ragin:
Multi-view Clustering with Graph Embedding for Connectome Analysis. CIKM 2017: 127-136 - [c699]Jiawei Zhang, Limeng Cui, Philip S. Yu, Yuanhua Lv:
BL-ECD: Broad Learning based Enterprise Community Detection via Hierarchical Structure Fusion. CIKM 2017: 859-868 - [c698]Yuqi Wang, Jiannong Cao, Lifang He, Wengen Li, Lichao Sun, Philip S. Yu:
Coupled Sparse Matrix Factorization for Response Time Prediction in Logistics Services. CIKM 2017: 939-947 - [c697]Junxing Zhu, Jiawei Zhang, Lifang He, Quanyuan Wu, Bin Zhou, Chenwei Zhang, Philip S. Yu:
Broad Learning based Multi-Source Collaborative Recommendation. CIKM 2017: 1409-1418 - [c696]Xiaokai Wei, Bokai Cao, Philip S. Yu:
Unsupervised Feature Selection with Heterogeneous Side Information. CIKM 2017: 2359-2362 - [c695]Fengjiao Wang, Yongzhi Qu, Lei Zheng, Chun-Ta Lu, Philip S. Yu:
Deep and Broad Learning on Content-Aware POI Recommendation. CIC 2017: 369-378 - [c694]Tianchen Zhu, Zhaohui Peng, Senzhang Wang, Philip S. Yu, Xiaoguang Hong:
Measuring the relevance of different-typed objects in weighted signed heterogeneous information networks. CSCWD 2017: 556-561 - [c693]Yunbo Wang, Mingsheng Long, Jianmin Wang, Philip S. Yu:
Spatiotemporal Pyramid Network for Video Action Recognition. CVPR 2017: 2097-2106 - [c692]Lifang He, Chun-Ta Lu, Hao Ding, Shen Wang, Linlin Shen, Philip S. Yu, Ann B. Ragin:
Multi-way Multi-level Kernel Modeling for Neuroimaging Classification. CVPR 2017: 6846-6854 - [c691]Tianhang Song, Zhaohui Peng, Senzhang Wang, Wenjing Fu, Xiaoguang Hong, Philip S. Yu:
Review-Based Cross-Domain Recommendation Through Joint Tensor Factorization. DASFAA (1) 2017: 525-540 - [c690]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
Multi-task Network Embedding. DSAA 2017: 571-580 - [c689]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
Multiple Social Role Embedding. DSAA 2017: 581-589 - [c688]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
Disentangled Link Prediction for Signed Social Networks via Disentangled Representation Learning. DSAA 2017: 676-685 - [c687]Zhangjie Cao, Mingsheng Long, Jianmin Wang, Philip S. Yu:
HashNet: Deep Learning to Hash by Continuation. ICCV 2017: 5609-5618 - [c686]Jiawei Zhang, Charu C. Aggarwal, Philip S. Yu:
Rumor Initiator Detection in Infected Signed Networks. ICDCS 2017: 1900-1909 - [c685]Jun Chen, Chaokun Wang, Jianmin Wang, Philip S. Yu:
Recommendation for Repeat Consumption from User Implicit Feedback. ICDE 2017: 19-20 - [c684]Charu C. Aggarwal, Yao Li, Philip S. Yu, Yuchen Zhao:
On Edge Classification in Networks with Structure and Content. ICDE 2017: 187-190 - [c683]Jiawei Zhang, Philip S. Yu, Yuanhua Lv:
Enterprise Community Detection. ICDE 2017: 219-222 - [c682]Jiawei Zhang, Jianhui Chen, Shi Zhi, Yi Chang, Philip S. Yu, Jiawei Han:
Link Prediction across Aligned Networks with Sparse and Low Rank Matrix Estimation. ICDE 2017: 971-982 - [c681]Jiawei Zhang, Congying Xia, Chenwei Zhang, Limeng Cui, Yanjie Fu, Philip S. Yu:
BL-MNE: Emerging Heterogeneous Social Network Embedding Through Broad Learning with Aligned Autoencoder. ICDM 2017: 605-614 - [c680]Bokai Cao, Mia Mao, Siim Viidu, Philip S. Yu:
HitFraud: A Broad Learning Approach for Collective Fraud Detection in Heterogeneous Information Networks. ICDM 2017: 769-774 - [c679]Tingting Liang, Lifang He, Chun-Ta Lu, Liang Chen, Philip S. Yu, Jian Wu:
A Broad Learning Approach for Context-Aware Mobile Application Recommendation. ICDM 2017: 955-960 - [c678]Guixiang Ma, Chun-Ta Lu, Lifang He, Philip S. Yu, Ann B. Ragin:
Multi-view Graph Embedding with Hub Detection for Brain Network Analysis. ICDM 2017: 967-972 - [c677]Yanchao Sun, Cong Qian, Ning Yang, Philip S. Yu:
Collaborative Inference of Coexisting Information Diffusions. ICDM 2017: 1093-1098 - [c676]Lifang He, Chun-Ta Lu, Guixiang Ma, Shen Wang, LinLin Shen, Philip S. Yu, Ann B. Ragin:
Kernelized Support Tensor Machines. ICML 2017: 1442-1451 - [c675]Zhi-Lin Zhao, Ling Huang, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
Low-Rank and Sparse Matrix Completion for Recommendation. ICONIP (5) 2017: 3-13 - [c674]Tingting Liang, Liang Chen, Xingde Ying, Philip S. Yu, Jian Wu, Zibin Zheng:
Mobile Application Rating Prediction via Feature-Oriented Matrix Factorization. ICWS 2017: 261-268 - [c673]Yu Lei, Shiping Chen, Philip S. Yu:
Heterogeneous Service Information Mining Based on Parallel Computing. ICCC 2017: 120-123 - [c672]Vahid Noroozi, Lei Zheng, Sara Bahaadini, Sihong Xie, Philip S. Yu:
SEVEN: Deep Semi-supervised Verification Networks. IJCAI 2017: 2571-2577 - [c671]Xiaokai Wei, Bokai Cao, Philip S. Yu:
Multi-view unsupervised feature selection by cross-diffused matrix alignment. IJCNN 2017: 494-501 - [c670]Xinyue Liu, Xiangnan Kong, Philip S. Yu:
Collective discovery of brain networks with unknown groups. IJCNN 2017: 3569-3576 - [c669]Bokai Cao, Mia Mao, Siim Viidu, Philip S. Yu:
Collective Fraud Detection Capturing Inter-Transaction Dependency. ADF@KDD 2017: 66-75 - [c668]Shen Wang, Lifang He, Bokai Cao, Chun-Ta Lu, Philip S. Yu, Ann B. Ragin:
Structural Deep Brain Network Mining. KDD 2017: 475-484 - [c667]Bokai Cao, Lei Zheng, Chenwei Zhang, Philip S. Yu, Andrea Piscitello, John Zulueta, Olu Ajilore, Kelly Ryan, Alex D. Leow:
DeepMood: Modeling Mobile Phone Typing Dynamics for Mood Detection. KDD 2017: 747-755 - [c666]Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, Philip S. Yu:
PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs. NIPS 2017: 879-888 - [c665]Mingsheng Long, Zhangjie Cao, Jianmin Wang, Philip S. Yu:
Learning Multiple Tasks with Multilinear Relationship Networks. NIPS 2017: 1594-1603 - [c664]Jian Liu, Chuan Shi, Binbin Hu, Shenghua Liu, Philip S. Yu:
Personalized Ranking Recommendation via Integrating Multiple Feedbacks. PAKDD (2) 2017: 131-143 - [c663]Fengjiao Wang, Chun-Ta Lu, Yongzhi Qu, Philip S. Yu:
Collective Geographical Embedding for Geolocating Social Network Users. PAKDD (1) 2017: 599-611 - [c662]Lichao Sun, Yuqi Wang, Bokai Cao, Philip S. Yu, Witawas Srisa-an, Alex D. Leow:
Sequential Keystroke Behavioral Biometrics for Mobile User Identification via Multi-view Deep Learning. ECML/PKDD (3) 2017: 228-240 - [c661]Xiaokai Wei, Sihong Xie, Bokai Cao, Philip S. Yu:
Rethinking Unsupervised Feature Selection: From Pseudo Labels to Pseudo Must-Links. ECML/PKDD (1) 2017: 272-287 - [c660]Lei Zheng, Jingyuan Zhang, Bokai Cao, Philip S. Yu, Ann B. Ragin:
A novel ensemble approach on regionalized neural networks for brain disorder prediction. SAC 2017: 817-823 - [c659]Bokai Cao, Lifang He, Xiaokai Wei, Mengqi Xing, Philip S. Yu, Heide Klumpp, Alex D. Leow:
t-BNE: Tensor-based Brain Network Embedding. SDM 2017: 189-197 - [c658]Jiawei Zhang, Philip S. Yu, Yuanhua Lv:
Enterprise Employee Training via Project Team Formation. WSDM 2017: 3-12 - [c657]Jiawei Zhang, Jianhui Chen, Junxing Zhu, Yi Chang, Philip S. Yu:
Link Prediction with Cardinality Constraint. WSDM 2017: 121-130 - [c656]Lei Zheng, Vahid Noroozi, Philip S. Yu:
Joint Deep Modeling of Users and Items Using Reviews for Recommendation. WSDM 2017: 425-434 - [c655]Chun-Ta Lu, Lifang He, Weixiang Shao, Bokai Cao, Philip S. Yu:
Multilinear Factorization Machines for Multi-Task Multi-View Learning. WSDM 2017: 701-709 - [c654]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
Embedding of Embedding (EOE): Joint Embedding for Coupled Heterogeneous Networks. WSDM 2017: 741-749 - [c653]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
Embedding Identity and Interest for Social Networks. WWW (Companion Volume) 2017: 859-860 - [c652]Linchuan Xu, Xiaokai Wei, Jiannong Cao, Philip S. Yu:
On Learning Mixed Community-specific Similarity Metrics for Cold-start Link Prediction. WWW (Companion Volume) 2017: 861-862 - [c651]Xiaokai Wei, Linchuan Xu, Bokai Cao, Philip S. Yu:
Cross View Link Prediction by Learning Noise-resilient Representation Consensus. WWW 2017: 1611-1619 - [i77]Yuqing Zhu, Philip S. Yu, Guolei Yi, Wenlong Ma, Mengying Guo, Jianxun Liu:
To Vote Before Decide: A Logless One-Phase Commit Protocol for Highly-Available Datastores. CoRR abs/1701.02408 (2017) - [i76]Lei Zheng, Vahid Noroozi, Philip S. Yu:
Joint Deep Modeling of Users and Items Using Reviews for Recommendation. CoRR abs/1701.04783 (2017) - [i75]Zhangjie Cao, Mingsheng Long, Jianmin Wang, Philip S. Yu:
HashNet: Deep Learning to Hash by Continuation. CoRR abs/1702.00758 (2017) - [i74]Hong-Han Shuai, Yen-Chieh Lien, De-Nian Yang, Yi-Feng Lan, Wang-Chien Lee, Philip S. Yu:
Newsfeed Screening for Behavioral Therapy to Social Network Mental Disorders. CoRR abs/1702.03872 (2017) - [i73]Chun-Ta Lu, Lifang He, Hao Ding, Philip S. Yu:
Learning from Multi-View Structural Data via Structural Factorization Machines. CoRR abs/1704.03037 (2017) - [i72]Xiaokai Wei, Bokai Cao, Philip S. Yu:
Multi-view Unsupervised Feature Selection by Cross-diffused Matrix Alignment. CoRR abs/1705.00825 (2017) - [i71]Hu Xu, Lei Shu, Philip S. Yu:
Supervised Complementary Entity Recognition with Augmented Key-value Pairs of Knowledge. CoRR abs/1705.10030 (2017) - [i70]Wei Wu, Bin Li, Ling Chen, Chengqi Zhang, Philip S. Yu:
Improved Consistent Weighted Sampling Revisited. CoRR abs/1706.01172 (2017) - [i69]Vahid Noroozi, Lei Zheng, Sara Bahaadini, Sihong Xie, Philip S. Yu:
SEVEN: Deep Semi-supervised Verification Networks. CoRR abs/1706.03692 (2017) - [i68]Yanchao Sun, Cong Qian, Ning Yang, Philip S. Yu:
Collaborative Inference of Coexisting Information Diffusions. CoRR abs/1708.06890 (2017) - [i67]Xi Zhang, Yuan Su, Siyu Qu, Sihong Xie, Binxing Fang, Philip S. Yu:
IAD: Interaction-Aware Diffusion Framework in Social Networks. CoRR abs/1709.01773 (2017) - [i66]Tingting Liang, Lifang He, Chun-Ta Lu, Liang Chen, Philip S. Yu, Jian Wu:
A Broad Learning Approach for Context-Aware Mobile Application Recommendation. CoRR abs/1709.03621 (2017) - [i65]Guixiang Ma, Chun-Ta Lu, Lifang He, Philip S. Yu, Ann B. Ragin:
Multi-view Graph Embedding with Hub Detection for Brain Network Analysis. CoRR abs/1709.03659 (2017) - [i64]Bokai Cao, Mia Mao, Siim Viidu, Philip S. Yu:
HitFraud: A Broad Learning Approach for Collective Fraud Detection in Heterogeneous Information Networks. CoRR abs/1709.04129 (2017) - [i63]Tianqing Zhu, Ping Xiong, Gang Li, Wanlei Zhou, Philip S. Yu:
Differentially Private Query Learning: from Data Publishing to Model Publishing. CoRR abs/1710.05095 (2017) - [i62]Chenwei Zhang, Nan Du, Wei Fan, Yaliang Li, Chun-Ta Lu, Philip S. Yu:
Bringing Semantic Structures to User Intent Detection in Online Medical Queries. CoRR abs/1710.08015 (2017) - [i61]Lichao Sun, Yuqi Wang, Bokai Cao, Philip S. Yu, Witawas Srisa-an, Alex D. Leow:
Sequential Keystroke Behavioral Biometrics for Mobile User Identification via Multi-view Deep Learning. CoRR abs/1711.02703 (2017) - [i60]Lichao Sun, Xiaokai Wei, Jiawei Zhang, Lifang He, Philip S. Yu, Witawas Srisa-an:
Contaminant Removal for Android Malware Detection Systems. CoRR abs/1711.02715 (2017) - [i59]Jiawei Zhang, Congying Xia, Chenwei Zhang, Limeng Cui, Yanjie Fu, Philip S. Yu:
BL-MNE: Emerging Heterogeneous Social Network Embedding through Broad Learning with Aligned Autoencoder. CoRR abs/1711.09409 (2017) - [i58]Jiawei Zhang, Limeng Cui, Philip S. Yu, Yuanhua Lv:
BL-ECD: Broad Learning based Enterprise Community Detection via Hierarchical Structure Fusion. CoRR abs/1711.09411 (2017) - [i57]Chuan Shi, Binbin Hu, Wayne Xin Zhao, Philip S. Yu:
Heterogeneous Information Network Embedding for Recommendation. CoRR abs/1711.10730 (2017) - [i56]Hu Xu, Sihong Xie, Lei Shu, Philip S. Yu:
Dual Attention Network for Product Compatibility and Function Satisfiability Analysis. CoRR abs/1712.02016 (2017) - [i55]Hu Xu, Sihong Xie, Lei Shu, Philip S. Yu:
Product Function Need Recognition via Semi-supervised Attention Network. CoRR abs/1712.02186 (2017) - 2016
- [j288]Weiwei Shi, Yongxin Zhu, Philip S. Yu, Tian Huang, Chang Wang, Yishu Mao, Yufeng Chen:
Temporal Dynamic Matrix Factorization for Missing Data Prediction in Large Scale Coevolving Time Series. IEEE Access 4: 6719-6732 (2016) - [j287]Qingbo Hu, Sihong Xie, Shuyang Lin, Senzhang Wang, Philip S. Yu:
Clustering Embedded Approaches for Efficient Information Network Inference. Data Sci. Eng. 1(1): 29-40 (2016) - [j286]Wangqun Lin, Philip S. Yu, Yuchen Zhao, Bo Deng:
Multi-type clustering in heterogeneous information networks. Knowl. Inf. Syst. 48(1): 143-178 (2016) - [j285]Senzhang Wang, Zhao Yan, Xia Hu, Philip S. Yu, Zhoujun Li, Biao Wang:
CPB: a classification-based approach for burst time prediction in cascades. Knowl. Inf. Syst. 49(1): 243-271 (2016) - [j284]Chuan Shi, Yitong Li, Philip S. Yu, Bin Wu:
Constrained-meta-path-based ranking in heterogeneous information network. Knowl. Inf. Syst. 49(2): 719-747 (2016) - [j283]Chuan Shi, Jian Liu, Fuzhen Zhuang, Philip S. Yu, Bin Wu:
Integrating heterogeneous information via flexible regularization framework for recommendation. Knowl. Inf. Syst. 49(3): 835-859 (2016) - [j282]Senzhang Wang, Sihong Xie, Xiaoming Zhang, Zhoujun Li, Philip S. Yu, Yueying He:
Coranking the Future Influence of Multiobjects in Bibliographic Network Through Mutual Reinforcement. ACM Trans. Intell. Syst. Technol. 7(4): 64:1-64:28 (2016) - [j281]Hong-Han Shuai, De-Nian Yang, Philip S. Yu, Ming-Syan Chen:
A Comprehensive Study on Willingness Maximization for Social Activity Planning with Quality Guarantee. IEEE Trans. Knowl. Data Eng. 28(1): 2-16 (2016) - [j280]Vincent S. Tseng, Cheng-Wei Wu, Philippe Fournier-Viger, Philip S. Yu:
Efficient Algorithms for Mining Top-K High Utility Itemsets. IEEE Trans. Knowl. Data Eng. 28(1): 54-67 (2016) - [j279]Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, Philip S. Yu:
Joint Structure Feature Exploration and Regularization for Multi-Task Graph Classification. IEEE Trans. Knowl. Data Eng. 28(3): 715-728 (2016) - [j278]Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
Multi-View Clustering Based on Belief Propagation. IEEE Trans. Knowl. Data Eng. 28(4): 1007-1021 (2016) - [j277]Mingsheng Long, Jianmin Wang, Yue Cao, Jia-Guang Sun, Philip S. Yu:
Deep Learning of Transferable Representation for Scalable Domain Adaptation. IEEE Trans. Knowl. Data Eng. 28(8): 2027-2040 (2016) - [j276]Jun Chen, Chaokun Wang, Jianmin Wang, Philip S. Yu:
Recommendation for Repeat Consumption from User Implicit Feedback. IEEE Trans. Knowl. Data Eng. 28(11): 3083-3097 (2016) - [c650]Yu Lei, Philip S. Yu:
Multi-agent Reinforcement Learning for Service Composition. SCC 2016: 790-793 - [c649]Xiaokai Wei, Bokai Cao, Philip S. Yu:
Unsupervised Feature Selection on Networks: A Generative View. AAAI 2016: 2215-2221 - [c648]Xiaokai Wei, Philip S. Yu:
Unsupervised Feature Selection by Preserving Stochastic Neighbors. AISTATS 2016: 995-1003 - [c647]Jiawei Zhang, Senzhang Wang, Qianyi Zhan, Philip S. Yu:
Intertwined viral marketing in social networks. ASONAM 2016: 239-246 - [c646]Jiawei Zhang, Xiangnan Kong, Philip S. Yu:
Social badge system analysis. ASONAM 2016: 453-460 - [c645]Qianyi Zhan, Jiawei Zhang, Philip S. Yu, Sherry Emery, Junyuan Xie:
Inferring Social Influence of anti-Tobacco mass media campaigns. BIBM 2016: 805-812 - [c644]Yuan Yuan, Sihong Xie, Chun-Ta Lu, Jie Tang, Philip S. Yu:
Interpretable and effective opinion spam detection via temporal patterns mining across websites. IEEE BigData 2016: 96-105 - [c643]Xiaokai Wei, Bokai Cao, Weixiang Shao, Chun-Ta Lu, Philip S. Yu:
Community detection with partially observable links and node attributes. IEEE BigData 2016: 773-782 - [c642]Hu Xu, Sihong Xie, Lei Shu, Philip S. Yu:
CER: Complementary entity recognition via knowledge expansion on large unlabeled product reviews. IEEE BigData 2016: 793-802 - [c641]Jingyuan Zhang, Chun-Ta Lu, Mianwei Zhou, Sihong Xie, Yi Chang, Philip S. Yu:
HEER: Heterogeneous graph embedding for emerging relation detection from news. IEEE BigData 2016: 803-812 - [c640]Weixiang Shao, Lifang He, Chun-Ta Lu, Philip S. Yu:
Online multi-view clustering with incomplete views. IEEE BigData 2016: 1012-1017 - [c639]Chuan Shi, Bowei He, Menghao Zhang, Fuzhen Zhuang, Philip S. Yu, Naiwang Guo:
Expenditure aware rating prediction for recommendation. IEEE BigData 2016: 1018-1025 - [c638]Xiao Pan, Jiawei Zhang, Fengjiao Wang, Philip S. Yu:
DistSD: Distance-based social discovery with personalized posterior screening. IEEE BigData 2016: 1110-1119 - [c637]Weiwei Shi, Yongxin Zhu, Philip S. Yu, Mengyun Liu, Guoxing Wang, Zhiliang Qian, Yong Lian:
Incomplete electrocardiogram time series prediction. BioCAS 2016: 200-203 - [c636]Ning Yang, Philip S. Yu:
Efficient Hidden Trajectory Reconstruction from Sparse Data. CIKM 2016: 821-830 - [c635]Jiawei Zhang, Philip S. Yu, Yuanhua Lv, Qianyi Zhan:
Information Diffusion at Workplace. CIKM 2016: 1673-1682 - [c634]Sihong Xie, Shaoxiong Wang, Philip S. Yu:
Active Zero-Shot Learning. CIKM 2016: 1889-1892 - [c633]Chenwei Zhang, Sihong Xie, Yaliang Li, Jing Gao, Wei Fan, Philip S. Yu:
Multi-source Hierarchical Prediction Consolidation. CIKM 2016: 2251-2256 - [c632]Jiawei Zhang, Philip S. Yu:
Trip Route Planning for Bicycle-Sharing Systems. CIC 2016: 381-390 - [c631]Yu Lei, Junxing Zhang, Philip S. Yu:
Service Recommendation Based on Topics and Trend Prediction. CollaborateCom 2016: 343-352 - [c630]Yang Xu, Xiaoguang Hong, Zhaohui Peng, Guang Yang, Philip S. Yu:
Temporal Recommendation via Modeling Dynamic Interests with Inverted-U-Curves. DASFAA (1) 2016: 313-329 - [c629]Jiawei Zhang, Xiao Pan, Moyin Li, Philip S. Yu:
Bicycle-sharing systems expansion: station re-deployment through crowd planning. SIGSPATIAL/GIS 2016: 2:1-2:10 - [c628]Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, Philip S. Yu:
Joint structure feature exploration and regularization for multi-task graph classification. ICDE 2016: 1474-1475 - [c627]Weixiang Shao, Lifang He, Chun-Ta Lu, Xiaokai Wei, Philip S. Yu:
Online Unsupervised Multi-view Feature Selection. ICDM 2016: 1203-1208 - [c626]Chun-Ta Lu, Sihong Xie, Weixiang Shao, Lifang He, Philip S. Yu:
Item Recommendation for Emerging Online Businesses. IJCAI 2016: 3797-3803 - [c625]Yuan Su, Xi Zhang, Philip S. Yu, Wen Hua, Xiaofang Zhou, Binxing Fang:
Understanding Information Diffusion under Interactions. IJCAI 2016: 3875-3881 - [c624]Zheng Wang, Chaokun Wang, Jisheng Pei, Xiaojun Ye, Philip S. Yu:
Causality Based Propagation History Ranking in Social Networks. IJCAI 2016: 3917-3923 - [c623]Weixiang Shao, Jiawei Zhang, Lifang He, Philip S. Yu:
Multi-source Multi-view Clustering via discrepancy penalty. IJCNN 2016: 2714-2721 - [c622]Qianyi Zhan, Jiawei Zhang, Philip S. Yu, Sherry Emery, Junyuan Xie:
Discover Tipping Users for Cross Network Influencing (Invited Paper). IRI 2016: 67-76 - [c621]Lifang He, Chun-Ta Lu, Jiaqi Ma, Jianping Cao, Linlin Shen, Philip S. Yu:
Joint Community and Structural Hole Spanner Detection via Harmonic Modularity. KDD 2016: 875-884 - [c620]Yue Cao, Mingsheng Long, Jianmin Wang, Qiang Yang, Philip S. Yu:
Deep Visual-Semantic Hashing for Cross-Modal Retrieval. KDD 2016: 1445-1454 - [c619]Senzhang Wang, Lifang He, Leon Stenneth, Philip S. Yu, Zhoujun Li, Zhiqiu Huang:
Estimating Urban Traffic Congestions with Multi-sourced Data. MDM 2016: 82-91 - [c618]Fengjiao Wang, Shuyang Lin, Philip S. Yu:
Collaborative Co-clustering across Multiple Social Media. MDM 2016: 142-151 - [c617]Jiawei Zhang, Xiao Pan, Moyin Li, Philip S. Yu:
Bicycle-Sharing System Analysis and Trip Prediction. MDM 2016: 174-179 - [c616]Jianping Cao, Senzhang Wang, Fengcai Qiao, Hui Wang, Feiyue Wang, Philip S. Yu:
User-Guided Large Attributed Graph Clustering with Multiple Sparse Annotations. PAKDD (1) 2016: 127-138 - [c615]Bokai Cao, Chun-Ta Lu, Xiaokai Wei, Philip S. Yu, Alex D. Leow:
Semi-supervised Tensor Factorization for Brain Network Analysis. ECML/PKDD (1) 2016: 17-32 - [c614]Senzhang Wang, Fengxiang Li, Leon Stenneth, Philip S. Yu:
Enhancing Traffic Congestion Estimation with Social Media by Coupled Hidden Markov Model. ECML/PKDD (2) 2016: 247-264 - [c613]Guixiang Ma, Lifang He, Bokai Cao, Jiawei Zhang, Philip S. Yu, Ann B. Ragin:
Multi-graph Clustering Based on Interior-Node Topology with Applications to Brain Networks. ECML/PKDD (1) 2016: 476-492 - [c612]Jiawei Zhang, Qianyi Zhan, Lifang He, Charu C. Aggarwal, Philip S. Yu:
Trust Hole Identification in Signed Networks. ECML/PKDD (1) 2016: 697-713 - [c611]Jiawei Hu, Zhiqiang Zhang, Jian Liu, Chuan Shi, Philip S. Yu, Bai Wang:
RecExp: A Semantic Recommender System with Explanation Based on Heterogeneous Information Network. RecSys 2016: 401-402 - [c610]Jingyuan Zhang, Bokai Cao, Sihong Xie, Chun-Ta Lu, Philip S. Yu, Ann B. Ragin:
Identifying Connectivity Patterns for Brain Diseases via Multi-side-view Guided Deep Architectures. SDM 2016: 36-44 - [c609]Xiaokai Wei, Bokai Cao, Philip S. Yu:
Nonlinear Joint Unsupervised Feature Selection. SDM 2016: 414-422 - [c608]Sihong Xie, Qingbo Hu, Weixiang Shao, Jingyuan Zhang, Jing Gao, Wei Fan, Philip S. Yu:
Effective Crowd Expertise Modeling via Cross Domain Sparsity and Uncertainty Reduction. SDM 2016: 648-656 - [c607]Guixiang Ma, Lifang He, Chun-Ta Lu, Philip S. Yu, Linlin Shen, Ann B. Ragin:
Spatio-Temporal Tensor Analysis for Whole-Brain fMRI Classification. SDM 2016: 819-827 - [c606]Mingsheng Long, Yue Cao, Jianmin Wang, Philip S. Yu:
Composite Correlation Quantization for Efficient Multimodal Retrieval. SIGIR 2016: 579-588 - [c605]Yu Lei, Philip S. Yu:
Service topic model with probability distance. UCC 2016: 202-207 - [c604]Guoqiong Liao, Xiaoting Yang, Sihong Xie, Philip S. Yu, Changxuan Wan:
Two-Phase Mining for Frequent Closed Episodes. WAIM (1) 2016: 55-66 - [c603]Bokai Cao, Hucheng Zhou, Guoqiang Li, Philip S. Yu:
Multi-view Machines. WSDM 2016: 427-436 - [c602]Qingbo Hu, Sihong Xie, Jiawei Zhang, Qiang Zhu, Songtao Guo, Philip S. Yu:
HeteroSales: Utilizing Heterogeneous Social Networks to Identify the Next Enterprise Customer. WWW 2016: 41-50 - [c601]Hong-Han Shuai, Chih-Ya Shen, De-Nian Yang, Yi-Feng Lan, Wang-Chien Lee, Philip S. Yu, Ming-Syan Chen:
Mining Online Social Data for Detecting Social Network Mental Disorders. WWW 2016: 275-285 - [c600]Jiawei Zhang, Philip S. Yu:
PCT: Partial Co-Alignment of Social Networks. WWW 2016: 749-759 - [c599]Chenwei Zhang, Wei Fan, Nan Du, Philip S. Yu:
Mining User Intentions from Medical Queries: A Neural Network Based Heterogeneous Jointly Modeling Approach. WWW 2016: 1373-1384 - [p24]Jiawei Zhang, Qianyi Zhan, Philip S. Yu:
Concurrent Alignment of Multiple Anonymized Social Networks with Generic Stable Matching. Theoretical Information Reuse and Integration 2016: 173-196 - [e35]James Joshi, George Karypis, Ling Liu, Xiaohua Hu, Ronay Ak, Yinglong Xia, Weijia Xu, Aki-Hiro Sato, Sudarsan Rachuri, Lyle H. Ungar, Philip S. Yu, Rama Govindaraju, Toyotaro Suzumura:
2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington DC, USA, December 5-8, 2016. IEEE Computer Society 2016, ISBN 978-1-4673-9005-7 [contents] - [e34]Wei Fan, Albert Bifet, Jesse Read, Qiang Yang, Philip S. Yu:
Proceedings of the 5th International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, BigMine 2016, San Francisco, CA, USA, August 14, 2016. JMLR Workshop and Conference Proceedings 53, JMLR.org 2016 [contents] - [i54]Jiawei Zhang, Xiao Pan, Moyin Li, Philip S. Yu:
Bicycle-Sharing System Analysis and Trip Prediction. CoRR abs/1604.00664 (2016) - [i53]Weixiang Shao, Jiawei Zhang, Lifang He, Philip S. Yu:
Multi-Source Multi-View Clustering via Discrepancy Penalty. CoRR abs/1604.04029 (2016) - [i52]Han Zhang, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
Modularity in Complex Multilayer Networks with Multiple Aspects: A Static Perspective. CoRR abs/1605.06190 (2016) - [i51]Han Zhang, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
Community Detection Using Multilayer Edge Mixture Model. CoRR abs/1605.07055 (2016) - [i50]Jiawei Zhang, Xiangnan Kong, Philip S. Yu:
Badge System Analysis and Design. CoRR abs/1607.00537 (2016) - [i49]Jiawei Zhang, Senzhang Wang, Qianyi Zhan, Philip S. Yu:
Intertwined Viral Marketing through Online Social Networks. CoRR abs/1607.00542 (2016) - [i48]Chenwei Zhang, Sihong Xie, Yaliang Li, Jing Gao, Wei Fan, Philip S. Yu:
Multi-source Hierarchical Prediction Consolidation. CoRR abs/1608.03344 (2016) - [i47]Weixiang Shao, Lifang He, Chun-Ta Lu, Xiaokai Wei, Philip S. Yu:
Online Unsupervised Multi-view Feature Selection. CoRR abs/1609.08286 (2016) - [i46]Chuan Shi, Bowei He, Menghao Zhang, Fuzhen Zhuang, Philip S. Yu:
Expenditure Aware Rating Prediction for Recommendation. CoRR abs/1610.05464 (2016) - [i45]Weixiang Shao, Lifang He, Chun-Ta Lu, Philip S. Yu:
Online Multi-view Clustering with Incomplete Views. CoRR abs/1611.00481 (2016) - [i44]Hu Xu, Sihong Xie, Lei Shu, Philip S. Yu:
CER: Complementary Entity Recognition via Knowledge Expansion on Large Unlabeled Product Reviews. CoRR abs/1612.01039 (2016) - [i43]Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang, Xinyu Yang, Julie A. McCann, Philip S. Yu:
LoPub: High-Dimensional Crowdsourced Data Publication with Local Differential Privacy. CoRR abs/1612.04350 (2016) - [i42]Hu Xu, Lei Shu, Jingyuan Zhang, Philip S. Yu:
Mining Compatible/Incompatible Entities from Question and Answering via Yes/No Answer Classification using Distant Label Expansion. CoRR abs/1612.04499 (2016) - 2015
- [j275]Bokai Cao, Xiangnan Kong, Jingyuan Zhang, Philip S. Yu, Ann B. Ragin:
Identifying HIV-induced subgraph patterns in brain networks with side information. Brain Informatics 2(4): 211-223 (2015) - [j274]Bokai Cao, Xiangnan Kong, Philip S. Yu:
A review of heterogeneous data mining for brain disorder identification. Brain Informatics 2(4): 253-264 (2015) - [j273]Xiangdong Huang, Jianmin Wang, Yu Zhong, Shaoxu Song, Philip S. Yu:
Optimizing data partition for scaling out NoSQL cluster. Concurr. Comput. Pract. Exp. 27(18): 5793-5809 (2015) - [j272]Longbing Cao, Philip S. Yu, Vipin Kumar:
Nonoccurring Behavior Analytics: A New Area. IEEE Intell. Syst. 30(6): 4-11 (2015) - [j271]Zongda Wu, Jie Shi, Chenglang Lu, Enhong Chen, Guandong Xu, Guiling Li, Sihong Xie, Philip S. Yu:
Constructing plausible innocuous pseudo queries to protect user query intention. Inf. Sci. 325: 215-226 (2015) - [j270]Aaron M. Cohen, Neil R. Smalheiser, Marian S. McDonagh, Clement T. Yu, Clive E. Adams, John M. Davis, Philip S. Yu:
Automated confidence ranked classification of randomized controlled trial articles: an aid to evidence-based medicine. J. Am. Medical Informatics Assoc. 22(3): 707-717 (2015) - [j269]Yanshan Xiao, Bo Liu, Philip S. Yu, Zhifeng Hao:
A robust one-class transfer learning method with uncertain data. Knowl. Inf. Syst. 44(2): 407-438 (2015) - [j268]Charu C. Aggarwal, Yao Li, Philip S. Yu:
On the anonymizability of graphs. Knowl. Inf. Syst. 45(3): 571-588 (2015) - [j267]Jalal S. Alowibdi, Ugo A. Buy, Philip S. Yu, Sohaib Ghani, Mohamed F. Mokbel:
Deception detection in Twitter. Soc. Netw. Anal. Min. 5(1): 32:1-32:16 (2015) - [j266]Vincent S. Tseng, Cheng-Wei Wu, Philippe Fournier-Viger, Philip S. Yu:
Efficient Algorithms for Mining the Concise and Lossless Representation of High Utility Itemsets. IEEE Trans. Knowl. Data Eng. 27(3): 726-739 (2015) - [j265]Mingsheng Long, Jianmin Wang, Jia-Guang Sun, Philip S. Yu:
Domain Invariant Transfer Kernel Learning. IEEE Trans. Knowl. Data Eng. 27(6): 1519-1532 (2015) - [j264]Yun Xiong, Yangyong Zhu, Philip S. Yu:
Top-k Similarity Join in Heterogeneous Information Networks. IEEE Trans. Knowl. Data Eng. 27(6): 1710-1723 (2015) - [j263]Liang Hong, Lei Zou, Xiang Lian, Philip S. Yu:
Subgraph Matching with Set Similarity in a Large Graph Database. IEEE Trans. Knowl. Data Eng. 27(9): 2507-2521 (2015) - [j262]Jing Wang, Clement T. Yu, Philip S. Yu, Bing Liu, Weiyi Meng:
Diversionary Comments under Blog Posts. ACM Trans. Web 9(4): 18:1-18:34 (2015) - [j261]Mingxuan Yuan, Lei Chen, Philip S. Yu, Hong Mei:
Privacy preserving graph publication in a distributed environment. World Wide Web 18(5): 1481-1517 (2015) - [c598]Senzhang Wang, Zhao Yan, Xia Hu, Philip S. Yu, Zhoujun Li:
Burst Time Prediction in Cascades. AAAI 2015: 325-331 - [c597]Ya-Wen Teng, Chih-Hua Tai, Philip S. Yu, Ming-Syan Chen:
Modeling and Utilizing Dynamic Influence Strength for Personalized Promotion. ASONAM 2015: 57-64 - [c596]Qianyi Zhan, Sherry Emery, Philip S. Yu:
How TV advertising and social network help tobacco control campaigns influence more. BCB 2015: 622-625 - [c595]Philip S. Yu, Jiawei Zhang:
MCD: Mutual Clustering across Multiple Social Networks. BigData Congress 2015: 762-771 - [c594]Bokai Cao, Francine Chen, Dhiraj Joshi, Philip S. Yu:
Inferring crowd-sourced venues for tweets. IEEE BigData 2015: 639-648 - [c593]Sihong Xie, Qingbo Hu, Jingyuan Zhang, Jing Gao, Wei Fan, Philip S. Yu:
Robust crowd bias correction via dual knowledge transfer from multiple overlapping sources. IEEE BigData 2015: 815-820 - [c592]Qinlong Guo, Lijie Wen, Jianmin Wang, Zhiqiang Yan, Philip S. Yu:
Mining Invisible Tasks in Non-free-choice Constructs. BPM 2015: 109-125 - [c591]Bokai Cao, Liang Zhan, Xiangnan Kong, Philip S. Yu, Nathalie Vizueta, Lori L. Altshuler, Alex D. Leow:
Identification of Discriminative Subgraph Patterns in fMRI Brain Networks in Bipolar Affective Disorder. BIH 2015: 105-114 - [c590]Xiaobing Han, Yanfei Zhong, Lifang He, Philip S. Yu, Liangpei Zhang:
The Unsupervised Hierarchical Convolutional Sparse Auto-Encoder for Neuroimaging Data Classification. BIH 2015: 156-166 - [c589]Chih-Ya Shen, Hong-Han Shuai, De-Nian Yang, Yi-Feng Lan, Wang-Chien Lee, Philip S. Yu, Ming-Syan Chen:
Forming Online Support Groups for Internet and Behavior Related Addictions. CIKM 2015: 163-172 - [c588]Chuan Shi, Zhiqiang Zhang, Ping Luo, Philip S. Yu, Yading Yue, Bin Wu:
Semantic Path based Personalized Recommendation on Weighted Heterogeneous Information Networks. CIKM 2015: 453-462 - [c587]Jingyuan Zhang, Luo Jie, Altaf Rahman, Sihong Xie, Yi Chang, Philip S. Yu:
Learning Entity Types from Query Logs via Graph-Based Modeling. CIKM 2015: 603-612 - [c586]Jiawei Zhang, Yuanhua Lv, Philip S. Yu:
Enterprise Social Link Recommendation. CIKM 2015: 841-850 - [c585]Qingbo Hu, Guan Wang, Philip S. Yu:
Public Information Sharing Behaviors Analysis over Different Social Media. CIC 2015: 62-69 - [c584]Senzhang Wang, Honghui Zhang, Jiawei Zhang, Xiaoming Zhang, Philip S. Yu, Zhoujun Li:
Inferring Diffusion Networks with Sparse Cascades by Structure Transfer. DASFAA (1) 2015: 405-421 - [c583]Sihong Xie, Qingbo Hu, Jingyuan Zhang, Philip S. Yu:
An effective and economic bi-level approach to ranking and rating spam detection. DSAA 2015: 1-10 - [c582]Sihong Xie, Jing Wang, Mohammad Shafkat Amin, Baoshi Yan, Anmol Bhasin, Clement T. Yu, Philip S. Yu:
A context-aware approach to detection of short irrelevant texts. DSAA 2015: 1-10 - [c581]Yi Xu, Zhongfei (Mark) Zhang, Yaqing Zhang, Philip S. Yu:
Sensor network partitioning based on homogeneity. DSAA 2015: 1-10 - [c580]Ke Wang, Chao Han, Ada Wai-Chee Fu, Raymond Chi-Wing Wong, Philip S. Yu:
Reconstruction Privacy: Enabling Statistical Learning. EDBT 2015: 469-480 - [c579]Senzhang Wang, Lifang He, Leon Stenneth, Philip S. Yu, Zhoujun Li:
Citywide traffic congestion estimation with social media. SIGSPATIAL/GIS 2015: 34:1-34:10 - [c578]Charu C. Aggarwal, Philip S. Yu:
On historical diagnosis of sensor streams. ICDE 2015: 185-194 - [c577]Yi-Ling Chen, Ming-Syan Chen, Philip S. Yu:
Ensemble of Diverse Sparsifications for Link Prediction in Large-Scale Networks. ICDM 2015: 51-60 - [c576]Yi Xu, Yilin Zhu, Zhongfei Zhang, Yaqing Zhang, Philip S. Yu:
Convex Approximation to the Integral Mixture Models Using Step Functions. ICDM 2015: 479-488 - [c575]Jiawei Zhang, Philip S. Yu:
Multiple Anonymized Social Networks Alignment. ICDM 2015: 599-608 - [c574]Bokai Cao, Xiangnan Kong, Jingyuan Zhang, Philip S. Yu, Ann B. Ragin:
Mining Brain Networks Using Multiple Side Views for Neurological Disorder Identification. ICDM 2015: 709-714 - [c573]Liang Chen, Qi Yu, Philip S. Yu, Jian Wu:
WS-HFS: A Heterogeneous Feature Selection Framework for Web Services Mining. ICWS 2015: 193-200 - [c572]Qingbo Hu, Sihong Xie, Shuyang Lin, Senzhang Wang, Philip S. Yu:
CENI: A Hybrid Framework for Efficiently Inferring Information Networks. ICWSM 2015: 618-621 - [c571]Jiawei Zhang, Philip S. Yu:
Integrated Anchor and Social Link Predictions across Social Networks. IJCAI 2015: 2125-2132 - [c570]Jiawei Zhang, Weixiang Shao, Senzhang Wang, Xiangnan Kong, Philip S. Yu:
PNA: Partial Network Alignment with Generic Stable Matching. IRI 2015: 166-173 - [c569]Wei Fan, Albert Bifet, Qiang Yang, Philip S. Yu:
Preface. BigMine 2015: 4 - [c568]Ya-Wen Teng, Chih-Hua Tai, Philip S. Yu, Ming-Syan Chen:
An Effective Marketing Strategy for Revenue Maximization with a Quantity Constraint. KDD 2015: 1175-1184 - [c567]Jiawei Zhang, Philip S. Yu, Yuanhua Lv:
Organizational Chart Inference. KDD 2015: 1435-1444 - [c566]Yutao Zhang, Jie Tang, Zhilin Yang, Jian Pei, Philip S. Yu:
COSNET: Connecting Heterogeneous Social Networks with Local and Global Consistency. KDD 2015: 1485-1494 - [c565]Hong-Han Shuai, De-Nian Yang, Philip S. Yu, Ming-Syan Chen:
Scale-Adaptive Group Optimization for Social Activity Planning. PAKDD (1) 2015: 45-57 - [c564]Qianyi Zhan, Jiawei Zhang, Senzhang Wang, Philip S. Yu, Junyuan Xie:
Influence Maximization Across Partially Aligned Heterogenous Social Networks. PAKDD (1) 2015: 58-69 - [c563]Shuyang Lin, Qingbo Hu, Guan Wang, Philip S. Yu:
Understanding Community Effects on Information Diffusion. PAKDD (1) 2015: 82-95 - [c562]Weixiang Shao, Lifang He, Philip S. Yu:
Clustering on Multi-source Incomplete Data via Tensor Modeling and Factorization. PAKDD (2) 2015: 485-497 - [c561]Weixiang Shao, Lifang He, Philip S. Yu:
Multiple Incomplete Views Clustering via Weighted Nonnegative Matrix Factorization with L2, 1 Regularization. ECML/PKDD (1) 2015: 318-334 - [c560]Shuyang Lin, Qingbo Hu, Jingyuan Zhang, Philip S. Yu:
Discovering Audience Groups and Group-Specific Influencers. ECML/PKDD (2) 2015: 559-575 - [c559]Xiaokai Wei, Sihong Xie, Philip S. Yu:
Efficient Partial Order Preserving Unsupervised Feature Selection on Networks. SDM 2015: 82-90 - [c558]Jiawei Zhang, Philip S. Yu:
Community Detection for Emerging Networks. SDM 2015: 127-135 - [c557]Qingbo Hu, Sihong Xie, Shuyang Lin, Wei Fan, Philip S. Yu:
Frameworks to Encode User Preferences for Inferring Topic-sensitive Information Networks. SDM 2015: 442-450 - [c556]Bowen Dong, Sihong Xie, Jing Gao, Wei Fan, Philip S. Yu:
OnlineCM: Real-time Consensus Classification with Missing Values. SDM 2015: 685-693 - [c555]Yuchi Ma, Ning Yang, Chuan Li, Lei Zhang, Philip S. Yu:
Predicting Neighbor Distribution in Heterogeneous Information Networks. SDM 2015: 784-791 - [c554]Fengjiao Wang, Guan Wang, Shuyang Lin, Philip S. Yu:
Concurrent goal-oriented co-clustering generation in social networks. ICSC 2015: 350-357 - [c553]Shaoxu Song, Aoqian Zhang, Jianmin Wang, Philip S. Yu:
SCREEN: Stream Data Cleaning under Speed Constraints. SIGMOD Conference 2015: 827-841 - [c552]Dong Huang, Shuguo Han, Xiaoli Li, Philip S. Yu:
Orthogonal mechanism for answering batch queries with differential privacy. SSDBM 2015: 24:1-24:10 - [c551]Xiangdong Huang, Jianmin Wang, Yu Zhong, Philip S. Yu:
Optimizing Data Partition for NoSQL Cluster. UIC/ATC/ScalCom 2015: 962-969 - [c550]Qian Wang, Zhaohui Peng, Senzhang Wang, Philip S. Yu, Qingzhong Li, Xiaoguang Hong:
cluTM: Content and Link Integrated Topic Model on Heterogeneous Information Networks. WAIM 2015: 207-218 - [e33]Longbing Cao, Yifeng Zeng, Bo An, Andreas L. Symeonidis, Vladimir Gorodetsky, Frans Coenen, Philip S. Yu:
Agents and Data Mining Interaction - 10th International Workshop, ADMI 2014, Paris, France, May 5-9, 2014, Revised Selected Papers. Lecture Notes in Computer Science 9145, Springer 2015, ISBN 978-3-319-20229-7 [contents] - [e32]Chengqi Zhang, Wei Huang, Yong Shi, Philip S. Yu, Yangyong Zhu, Yingjie Tian, Peng Zhang, Jing He:
Data Science - Second International Conference, ICDS 2015 Sydney, Australia, August 8-9, 2015. Proceedings. Lecture Notes in Computer Science 9208, Springer 2015, ISBN 978-3-319-24473-0 [contents] - [i41]Hong-Han Shuai, De-Nian Yang, Philip S. Yu, Ming-Syan Chen:
Scale-Adaptive Group Optimization for Social Activity Planning. CoRR abs/1502.06819 (2015) - [i40]Hong-Han Shuai, De-Nian Yang, Chih-Ya Shen, Philip S. Yu, Ming-Syan Chen:
QMSampler: Joint Sampling of Multiple Networks with Quality Guarantee. CoRR abs/1502.07439 (2015) - [i39]Qingbo Hu, Sihong Xie, Shuyang Lin, Senzhang Wang, Philip S. Yu:
CENI: a Hybrid Framework for Efficiently Inferring Information Networks. CoRR abs/1503.04927 (2015) - [i38]Mingsheng Long, Jianmin Wang, Philip S. Yu:
Compositional Correlation Quantization for Large-Scale Multimodal Search. CoRR abs/1504.04818 (2015) - [i37]Ya-Wen Teng, Chih-Hua Tai, Philip S. Yu, Ming-Syan Chen:
An Effective Marketing Strategy for Revenue Maximization with a Quantity Constraint. CoRR abs/1505.06286 (2015) - [i36]Bokai Cao, Hucheng Zhou, Philip S. Yu:
Multi-view Machines. CoRR abs/1506.01110 (2015) - [i35]Yuchi Ma, Ning Yang, Chuan Li, Lei Zhang, Philip S. Yu:
Predicting Neighbor Distribution in Heterogeneous Information Networks. CoRR abs/1506.01760 (2015) - [i34]Jiawei Zhang, Weixiang Shao, Senzhang Wang, Xiangnan Kong, Philip S. Yu:
Partial Network Alignment with Anchor Meta Path and Truncated Generic Stable Matching. CoRR abs/1506.05164 (2015) - [i33]Jiawei Zhang, Philip S. Yu:
Mutual Community Detection across Multiple Partially Aligned Social Networks. CoRR abs/1506.05529 (2015) - [i32]Jiawei Zhang, Philip S. Yu, Yuanhua Lv:
Organizational Chart Inference. CoRR abs/1507.06841 (2015) - [i31]Bokai Cao, Xiangnan Kong, Philip S. Yu:
A review of heterogeneous data mining for brain disorders. CoRR abs/1508.01023 (2015) - [i30]Bokai Cao, Xiangnan Kong, Jingyuan Zhang, Philip S. Yu, Ann B. Ragin:
Mining Brain Networks using Multiple Side Views for Neurological Disorder Identification. CoRR abs/1508.04554 (2015) - [i29]Chuan Shi, Jian Liu, Fuzhen Zhuang, Philip S. Yu, Bin Wu:
Integrating Heterogeneous Information via Flexible Regularization Framework for Recommendation. CoRR abs/1511.03759 (2015) - [i28]Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, Philip S. Yu:
A Survey of Heterogeneous Information Network Analysis. CoRR abs/1511.04854 (2015) - 2014
- [j260]James Zijun Wang, Yuanyuan Zhang, Liang Dong, Lin Li, Pradip K. Srimani, Philip S. Yu:
G-Bean: an ontology-graph based web tool for biomedical literature retrieval. BMC Bioinform. 15(S-12): S1 (2014) - [j259]Chuan Shi, Philip S. Yu, Zhenyu Yan, Yue Huang, Bai Wang:
Comparison and Selection of objective Functions in multiobjective Community Detection. Comput. Intell. 30(3): 562-582 (2014) - [j258]Mingxuan Yuan, Lei Chen, Philip S. Yu, Hong Mei:
Protect You More Than Blank: Anti-Learning Sensitive User Information in the Social Networks. J. Comput. Sci. Technol. 29(5): 762-776 (2014) - [j257]Bo Liu, Yanshan Xiao, Philip S. Yu, Zhifeng Hao, Longbing Cao:
An efficient orientation distance-based discriminative feature extraction method for multi-classification. Knowl. Inf. Syst. 39(2): 409-433 (2014) - [j256]Charu C. Aggarwal, Yan Xie, Philip S. Yu:
A framework for dynamic link prediction in heterogeneous networks. Stat. Anal. Data Min. 7(1): 14-33 (2014) - [j255]Xiaoxiao Shi, Jean-François Paiement, David Grangier, Philip S. Yu:
GBC: Gradient boosting consensus model for heterogeneous data. Stat. Anal. Data Min. 7(3): 161-174 (2014) - [j254]Xuebo Song, Lin Li, Pradip K. Srimani, Philip S. Yu, James Z. Wang:
Measure the Semantic Similarity of GO Terms Using Aggregate Information Content. IEEE ACM Trans. Comput. Biol. Bioinform. 11(3): 468-476 (2014) - [j253]Chong-Jing Sun, Philip S. Yu, Xiangnan Kong, Yan Fu:
Privacy Preserving Social Network Publication Against Mutual Friend Attacks. Trans. Data Priv. 7(2): 71-97 (2014) - [j252]Chuan Shi, Xiangnan Kong, Di Fu, Philip S. Yu, Bin Wu:
Multi-Label Classification Based on Multi-Objective Optimization. ACM Trans. Intell. Syst. Technol. 5(2): 35:1-35:22 (2014) - [j251]Chih-Hua Tai, Philip S. Yu, De-Nian Yang, Ming-Syan Chen:
Structural Diversity for Resisting Community Identification in Published Social Networks. IEEE Trans. Knowl. Data Eng. 26(1): 235-252 (2014) - [j250]Bo Liu, Yanshan Xiao, Philip S. Yu, Longbing Cao, Yun Zhang, Zhifeng Hao:
Uncertain One-Class Learning and Concept Summarization Learning on Uncertain Data Streams. IEEE Trans. Knowl. Data Eng. 26(2): 468-484 (2014) - [j249]Chih-Hua Tai, Peng-Jui Tseng, Philip S. Yu, Ming-Syan Chen:
Identity Protection in Sequential Releases of Dynamic Networks. IEEE Trans. Knowl. Data Eng. 26(3): 635-651 (2014) - [j248]Mingsheng Long, Jianmin Wang, Guiguang Ding, Sinno Jialin Pan, Philip S. Yu:
Adaptation Regularization: A General Framework for Transfer Learning. IEEE Trans. Knowl. Data Eng. 26(5): 1076-1089 (2014) - [j247]Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu:
On the Use of Side Information for Mining Text Data. IEEE Trans. Knowl. Data Eng. 26(6): 1415-1429 (2014) - [j246]Bo Liu, Yanshan Xiao, Philip S. Yu, Zhifeng Hao, Longbing Cao:
An Efficient Approach for Outlier Detection with Imperfect Data Labels. IEEE Trans. Knowl. Data Eng. 26(7): 1602-1616 (2014) - [j245]Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu:
NEIWalk: Community Discovery in Dynamic Content-Based Networks. IEEE Trans. Knowl. Data Eng. 26(7): 1734-1748 (2014) - [j244]Jia Wu, Xingquan Zhu, Chengqi Zhang, Philip S. Yu:
Bag Constrained Structure Pattern Mining for Multi-Graph Classification. IEEE Trans. Knowl. Data Eng. 26(10): 2382-2396 (2014) - [j243]Chuan Shi, Xiangnan Kong, Yue Huang, Philip S. Yu, Bin Wu:
HeteSim: A General Framework for Relevance Measure in Heterogeneous Networks. IEEE Trans. Knowl. Data Eng. 26(10): 2479-2492 (2014) - [j242]Rui Chen, Benjamin C. M. Fung, Philip S. Yu, Bipin C. Desai:
Correlated network data publication via differential privacy. VLDB J. 23(4): 653-676 (2014) - [c549]Wangqun Lin, Yuchen Zhao, Philip S. Yu, Bo Deng:
An Effective Approach on Overlapping Structures Discovery for Co-clustering. APWeb 2014: 56-67 - [c548]Jalal S. Alowibdi, Ugo A. Buy, Philip S. Yu, Leon Stenneth:
Detecting deception in Online Social Networks. ASONAM 2014: 383-390 - [c547]Songchang Jin, Jiawei Zhang, Philip S. Yu, Shuqiang Yang, Aiping Li:
Synergistic partitioning in multiple large scale social networks. IEEE BigData 2014: 281-290 - [c546]Chun-Ta Lu, Hong-Han Shuai, Philip S. Yu:
Identifying Your Customers in Social Networks. CIKM 2014: 391-400 - [c545]Chuan Shi, Ran Wang, Yitong Li, Philip S. Yu, Bin Wu:
Ranking-based Clustering on General Heterogeneous Information Networks by Network Projection. CIKM 2014: 699-708 - [c544]Jingyuan Zhang, Xiangnan Kong, Roger Jie Luo, Yi Chang, Philip S. Yu:
NCR: A Scalable Network-Based Approach to Co-Ranking in Question-and-Answer Sites. CIKM 2014: 709-718 - [c543]Qingbo Hu, Guan Wang, Philip S. Yu:
Transferring influence: Supervised learning for efficient influence maximization across networks. CollaborateCom 2014: 45-54 - [c542]Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, Philip S. Yu:
Transfer Joint Matching for Unsupervised Domain Adaptation. CVPR 2014: 1410-1417 - [c541]Qingbo Hu, Guan Wang, Philip S. Yu:
Assessing the longevity of online videos: A new insight of a video's quality. DSAA 2014: 1-10 - [c540]Philip S. Yu, Masaru Kitsuregawa, Hiroshi Motoda, Bart Goethals, Minyi Guo, Longbing Cao, George Karypis, Irwin King, Wei Wang:
Welcome from DSAA 2014 chairs. DSAA 2014: 9-10 - [c539]Yan Xie, Philip S. Yu:
Storage efficient graph search by composite dynamic-and-static indexing of a single network. DSAA 2014: 59-65 - [c538]Charu C. Aggarwal, Philip S. Yu:
A Condensation Approach to Privacy Preserving Data Mining. EDBT 2014: 607 - [c537]Xiaochen Zhu, Shaoxu Song, Jianmin Wang, Philip S. Yu, Jiaguang Sun:
Matching heterogeneous events with patterns. ICDE 2014: 376-387 - [c536]Fengjiao Wang, Guan Wang, Philip S. Yu:
Why Checkins: Exploring User Motivation on Location Based Social Networks. ICDM Workshops 2014: 27-34 - [c535]Bokai Cao, Lifang He, Xiangnan Kong, Philip S. Yu, Zhifeng Hao, Ann B. Ragin:
Tensor-Based Multi-view Feature Selection with Applications to Brain Diseases. ICDM 2014: 40-49 - [c534]Bokai Cao, Xiangnan Kong, Philip S. Yu:
Collective Prediction of Multiple Types of Links in Heterogeneous Information Networks. ICDM 2014: 50-59 - [c533]Jingyuan Zhang, Xiaoxiao Shi, Xiangnan Kong, Hong-Han Shuai, Philip S. Yu:
Discovering Organizational Correlations from Twitter. ICDM Workshops 2014: 243-250 - [c532]Shuyang Lin, Qingbo Hu, Fengjiao Wang, Philip S. Yu:
Steering Information Diffusion Dynamically against User Attention Limitation. ICDM 2014: 330-339 - [c531]Ke Wu, Kun Zhang, Wei Fan, Andrea Edwards, Philip S. Yu:
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection. ICDM 2014: 600-609 - [c530]Lifang He, Hong-Han Shuai, Xiangnan Kong, Zhifeng Hao, Xiaowei Yang, Philip S. Yu:
Low-Density Cut Based Tree Decomposition for Large-Scale SVM Problems. ICDM 2014: 839-844 - [c529]Shan-Hung Wu, Hao-Heng Chien, Kuan-Hua Lin, Philip S. Yu:
Learning the Consistent Behavior of Common Users for Target Node Prediction across Social Networks. ICML 2014: 298-306 - [c528]Chunming Liu, Longbing Cao, Philip S. Yu:
Coupled fuzzy k-nearest neighbors classification of imbalanced non-IID categorical data. IJCNN 2014: 1122-1129 - [c527]Chunming Liu, Longbing Cao, Philip S. Yu:
A hybrid coupled k-nearest neighbor algorithm on imbalance data. IJCNN 2014: 2011-2018 - [c526]Wei Fan, Albert Bifet, Qiang Yang, Philip S. Yu:
Preface. BigMine 2014 - [c525]Sihong Xie, Jing Gao, Wei Fan, Deepak S. Turaga, Philip S. Yu:
Class-distribution regularized consensus maximization for alleviating overfitting in model combination. KDD 2014: 303-312 - [c524]Senzhang Wang, Xia Hu, Philip S. Yu, Zhoujun Li:
MMRate: inferring multi-aspect diffusion networks with multi-pattern cascades. KDD 2014: 1246-1255 - [c523]Jiawei Zhang, Philip S. Yu, Zhi-Hua Zhou:
Meta-path based multi-network collective link prediction. KDD 2014: 1286-1295 - [c522]Guoqiong Liao, Philip S. Yu, Qianhui Zhong, Sihong Xie, Zhen Shen, Changxuan Wan, Dexi Liu:
Trajectory Event Cleaning for Mobile RFID Objects. MDM (1) 2014: 137-145 - [c521]Meng-Fen Chiang, Chien-Cheng Chen, Wen-Chih Peng, Philip S. Yu:
Mining Mobility Evolution from Check-In Datasets. MDM (1) 2014: 195-204 - [c520]Li-Jia Li, Xiangnan Kong, Philip S. Yu:
Visual Recognition by Exploiting Latent Social Links in Image Collections. MMM (1) 2014: 121-132 - [c519]Lifang He, Xiangnan Kong, Philip S. Yu, Xiaowei Yang, Ann B. Ragin, Zhifeng Hao:
DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages. SDM 2014: 127-135 - [c518]Peng Peng, Raymond Chi-Wing Wong, Philip S. Yu:
Learning on Probabilistic Labels. SDM 2014: 307-315 - [c517]Ning Yang, Xiangnan Kong, Fengjiao Wang, Philip S. Yu:
When and Where: Predicting Human Movements Based on Social Spatial-Temporal Events. SDM 2014: 515-523 - [c516]Senzhang Wang, Sihong Xie, Xiaoming Zhang, Zhoujun Li, Philip S. Yu, Xinyu Shu:
Future Influence Ranking of Scientific Literature. SDM 2014: 749-757 - [c515]Xiangnan Kong, Zhaoming Wu, Li-Jia Li, Ruofei Zhang, Philip S. Yu, Hang Wu, Wei Fan:
Large-Scale Multi-Label Learning with Incomplete Label Assignments. SDM 2014: 920-928 - [c514]Yitong Li, Chuan Shi, Philip S. Yu, Qing Chen:
HRank: A Path Based Ranking Method in Heterogeneous Information Network. WAIM 2014: 553-565 - [c513]Jiawei Zhang, Xiangnan Kong, Philip S. Yu:
Transferring heterogeneous links across location-based social networks. WSDM 2014: 303-312 - [c512]Chun-Ta Lu, Sihong Xie, Xiangnan Kong, Philip S. Yu:
Inferring the impacts of social media on crowdfunding. WSDM 2014: 573-582 - [c511]Qingbo Hu, Guan Wang, Philip S. Yu:
Deriving latent social impulses to determine longevous videos. WWW (Companion Volume) 2014: 297-298 - [p23]Charu C. Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, Philip S. Yu:
Active Learning: A Survey. Data Classification: Algorithms and Applications 2014: 571-606 - [p22]Jalal S. Alowibdi, Ugo A. Buy, Philip S. Yu:
Say It with Colors: Language-Independent Gender Classification on Twitter. Online Social Media Analysis and Visualization 2014: 47-62 - [e31]Longbing Cao, Yifeng Zeng, Andreas L. Symeonidis, Vladimir Gorodetsky, Jörg P. Müller, Philip S. Yu:
Agents and Data Mining Interaction - 9th International Workshop, ADMI 2013, Saint Paul, MN, USA, May 6-7, 2013, Revised Selected Papers. Lecture Notes in Computer Science 8316, Springer 2014, ISBN 978-3-642-55191-8 [contents] - [e30]Wei Fan, Albert Bifet, Qiang Yang, Philip S. Yu:
Proceedings of the 3rd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, BigMine 2014, New York City, USA, August 24, 2014. JMLR Workshop and Conference Proceedings 36, JMLR.org 2014 [contents] - [i27]Chong-Jing Sun, Philip S. Yu, Xiangnan Kong, Yan Fu:
Privacy Preserving Social Network Publication Against Mutual Friend Attacks. CoRR abs/1401.3201 (2014) - [i26]Yitong Li, Chuan Shi, Philip S. Yu, Qing Chen:
HRank: A Path based Ranking Framework in Heterogeneous Information Network. CoRR abs/1403.7315 (2014) - [i25]Ning Yang, Xiangnan Kong, Fengjiao Wang, Philip S. Yu:
When and Where: Predicting Human Movements Based on Social Spatial-Temporal Events. CoRR abs/1407.1450 (2014) - [i24]Xiangnan Kong, Zhaoming Wu, Li-Jia Li, Ruofei Zhang, Philip S. Yu, Hang Wu, Wei Fan:
Large-Scale Multi-Label Learning with Incomplete Label Assignments. CoRR abs/1407.1538 (2014) - [i23]Senzhang Wang, Sihong Xie, Xiaoming Zhang, Zhoujun Li, Philip S. Yu, Xinyu Shu:
Future Influence Ranking of Scientific Literature. CoRR abs/1407.1772 (2014) - [i22]Lifang He, Xiangnan Kong, Philip S. Yu, Ann B. Ragin, Zhifeng Hao, Xiaowei Yang:
DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages. CoRR abs/1407.8289 (2014) - [i21]Jingyuan Zhang, Xiaoxiao Shi, Xiangnan Kong, Hong-Han Shuai, Philip S. Yu:
Discovering Organizational Correlations from Twitter. CoRR abs/1410.6001 (2014) - 2013
- [j241]Bai-En Shie, Philip S. Yu, Vincent S. Tseng:
Mining interesting user behavior patterns in mobile commerce environments. Appl. Intell. 38(3): 418-435 (2013) - [j240]Longbing Cao, Philip S. Yu, Hiroshi Motoda, Graham J. Williams:
Special issue on behavior computing. Knowl. Inf. Syst. 37(2): 245-249 (2013) - [j239]Hong-Han Shuai, De-Nian Yang, Philip S. Yu, Ming-Syan Chen:
Willingness Optimization for Social Group Activity. Proc. VLDB Endow. 7(4): 253-264 (2013) - [j238]Xiangnan Kong, Philip S. Yu:
Brain network analysis: a data mining perspective. SIGKDD Explor. 15(2): 30-38 (2013) - [j237]Jongsung Kim, Philip S. Yu, Nasrullah Memon:
Social network and high performance in smart communications. J. Supercomput. 66(2): 611-613 (2013) - [j236]Yizhou Sun, Brandon Norick, Jiawei Han, Xifeng Yan, Philip S. Yu, Xiao Yu:
PathSelClus: Integrating Meta-Path Selection with User-Guided Object Clustering in Heterogeneous Information Networks. ACM Trans. Knowl. Discov. Data 7(3): 11:1-11:23 (2013) - [j235]Mingxuan Yuan, Lei Chen, Philip S. Yu, Ting Yu:
Protecting Sensitive Labels in Social Network Data Anonymization. IEEE Trans. Knowl. Data Eng. 25(3): 633-647 (2013) - [j234]Xiaoxiao Shi, Qi Liu, Wei Fan, Philip S. Yu:
Transfer across Completely Different Feature Spaces via Spectral Embedding. IEEE Trans. Knowl. Data Eng. 25(4): 906-918 (2013) - [j233]Vincent S. Tseng, Bai-En Shie, Cheng-Wei Wu, Philip S. Yu:
Efficient Algorithms for Mining High Utility Itemsets from Transactional Databases. IEEE Trans. Knowl. Data Eng. 25(8): 1772-1786 (2013) - [j232]Shaoxu Song, Lei Chen, Philip S. Yu:
Comparable dependencies over heterogeneous data. VLDB J. 22(2): 253-274 (2013) - [j231]Miao Qiao, Hong Cheng, Lu Qin, Jeffrey Xu Yu, Philip S. Yu, Lijun Chang:
Computing weight constraint reachability in large networks. VLDB J. 22(3): 275-294 (2013) - [c510]Yun Xiong, Yangyong Zhu, Philip S. Yu, Jian Pei:
Towards Cohesive Anomaly Mining. AAAI 2013: 984-990 - [c509]Mingxuan Yuan, Lei Chen, Philip S. Yu, Hong Mei:
Privacy Preserving Graph Publication in a Distributed Environment. APWeb 2013: 75-87 - [c508]Jalal S. Alowibdi, Ugo A. Buy, Philip S. Yu:
Language independent gender classification on Twitter. ASONAM 2013: 739-743 - [c507]Yuanyuan Zhang, Liang Dong, Lin Li, Pradip K. Srimani, Philip S. Yu, James Z. Wang:
G-Bean: An ontology-graph based web tool for biomedical literature retrieval. BIBM 2013: 623 - [c506]Xiangnan Kong, Jiawei Zhang, Philip S. Yu:
Inferring anchor links across multiple heterogeneous social networks. CIKM 2013: 179-188 - [c505]Guoqiong Liao, Yuchen Zhao, Sihong Xie, Philip S. Yu:
An effective latent networks fusion based model for event recommendation in offline ephemeral social networks. CIKM 2013: 1655-1660 - [c504]Shuyang Lin, Xiangnan Kong, Philip S. Yu:
Predicting trends in social networks via dynamic activeness model. CIKM 2013: 1661-1666 - [c503]Qingbo Hu, Guan Wang, Shuyang Lin, Philip S. Yu:
Silence behavior mining on online social networks. CollaborateCom 2013: 231-240 - [c502]Mingsheng Long, Guiguang Ding, Jianmin Wang, Jiaguang Sun, Yuchen Guo, Philip S. Yu:
Transfer Sparse Coding for Robust Image Representation. CVPR 2013: 407-414 - [c501]Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, Philip S. Yu:
Transfer Feature Learning with Joint Distribution Adaptation. ICCV 2013: 2200-2207 - [c500]Shirui Pan, Xingquan Zhu, Chengqi Zhang, Philip S. Yu:
Graph stream classification using labeled and unlabeled graphs. ICDE 2013: 398-409 - [c499]Yuqing Zhu, Philip S. Yu, Jianmin Wang:
RECODS: Replica consistency-on-demand store. ICDE 2013: 1360-1363 - [c498]Hong-Han Shuai, De-Nian Yang, Philip S. Yu, Chih-Ya Shen, Ming-Syan Chen:
On Pattern Preserving Graph Generation. ICDM 2013: 677-686 - [c497]Chong-Jing Sun, Philip S. Yu, Xiangnan Kong, Yan Fu:
Privacy Preserving Social Network Publication against Mutual Friend Attacks. ICDM Workshops 2013: 883-890 - [c496]Zhung-Xun Liao, Shou-Chung Li, Wen-Chih Peng, Philip S. Yu, Te-Chuan Liu:
On the Feature Discovery for App Usage Prediction in Smartphones. ICDM 2013: 1127-1132 - [c495]Weixiang Shao, Xiaoxiao Shi, Philip S. Yu:
Clustering on Multiple Incomplete Datasets via Collective Kernel Learning. ICDM 2013: 1181-1186 - [c494]Sihong Xie, Xiangnan Kong, Jing Gao, Wei Fan, Philip S. Yu:
Multilabel Consensus Classification. ICDM 2013: 1241-1246 - [c493]Jiawei Zhang, Xiangnan Kong, Philip S. Yu:
Predicting Social Links for New Users across Aligned Heterogeneous Social Networks. ICDM 2013: 1289-1294 - [c492]Jalal S. Alowibdi, Ugo A. Buy, Philip S. Yu:
Empirical Evaluation of Profile Characteristics for Gender Classification on Twitter. ICMLA (1) 2013: 365-369 - [c491]Xuebo Song, Lin Li, Pradip K. Srimani, Philip S. Yu, James Z. Wang:
Measure the Semantic Similarity of GO Terms Using Aggregate Information Content. ISBRA 2013: 224-236 - [c490]Shuyang Lin, Fengjiao Wang, Qingbo Hu, Philip S. Yu:
Extracting social events for learning better information diffusion models. KDD 2013: 365-373 - [c489]Cheng-Wei Wu, Yu-Feng Lin, Philip S. Yu, Vincent S. Tseng:
Mining high utility episodes in complex event sequences. KDD 2013: 536-544 - [c488]Xiangnan Kong, Bokai Cao, Philip S. Yu:
Multi-label classification by mining label and instance correlations from heterogeneous information networks. KDD 2013: 614-622 - [c487]Yuchen Zhao, Guan Wang, Philip S. Yu, Shaobo Liu, Simon Zhang:
Inferring social roles and statuses in social networks. KDD 2013: 695-703 - [c486]Meng-Fen Chiang, Yung-Hsiang Lin, Wen-Chih Peng, Philip S. Yu:
Inferring distant-time location in low-sampling-rate trajectories. KDD 2013: 1454-1457 - [c485]Jun Zhang, Chaokun Wang, Yuanchi Ning, Yichi Liu, Jianmin Wang, Philip S. Yu:
LAFT-Explorer: inferring, visualizing and predicting how your social network expands. KDD 2013: 1510-1513 - [c484]Bo Xu, Ouri Wolfson, Jie Yang, Leon Stenneth, Philip S. Yu, Peter C. Nelson:
Real-Time Street Parking Availability Estimation. MDM (1) 2013: 16-25 - [c483]Meng-Fen Chiang, Wen-Yuan Zhu, Wen-Chih Peng, Philip S. Yu:
Distant-Time Location Prediction in Low-Sampling-Rate Trajectories. MDM (1) 2013: 117-126 - [c482]Zhung-Xun Liao, Wen-Chih Peng, Philip S. Yu:
Mining Usage Traces of Mobile Apps for Dynamic Preference Prediction. PAKDD (1) 2013: 339-353 - [c481]Bo Liu, Philip S. Yu, Yanshan Xiao, Zhifeng Hao:
One-Class Transfer Learning with Uncertain Data. PAKDD (1) 2013: 471-483 - [c480]Ran Wang, Chuan Shi, Philip S. Yu, Bin Wu:
Integrating Clustering and Ranking on Hybrid Heterogeneous Information Network. PAKDD (1) 2013: 583-594 - [c479]Xiangnan Kong, Ann B. Ragin, Xue Wang, Philip S. Yu:
Discriminative Feature Selection for Uncertain Graph Classification. SDM 2013: 82-93 - [c478]Philip S. Yu, Yuchen Zhao:
On Graph Stream Clustering with Side Information. SDM 2013: 139-150 - [c477]Jian-Huang Lai, Chang-Dong Wang, Philip S. Yu:
Dynamic Community Detection in Weighted Graph Streams. SDM 2013: 151-161 - [c476]Longbing Cao, Jinjiu Li, Can Wang, Philip S. Yu:
Efficient Selection of Globally Optimal Rules on Large Imbalanced Data Based on Rule Coverage Relationship Analysis. SDM 2013: 216-224 - [c475]Wei Fan, Xiaoxiao Shi, Philip S. Yu:
Dynamic Shaker Detection from Evolving Entities. SDM 2013: 350-358 - [c474]Leon Stenneth, Philip S. Yu:
Monitoring and mining GPS traces in transit space. SDM 2013: 359-368 - [c473]Karthik Subbian, Charu C. Aggarwal, Jaideep Srivastava, Philip S. Yu:
Community Detection with Prior Knowledge. SDM 2013: 405-413 - [c472]Zhifeng Hao, Bo Liu, Yanshan Xiao, Philip S. Yu:
MODS: Multiple One-class Data Streams Learning from Homogeneous Data. SDM 2013: 722-730 - [c471]Longbing Cao, Zhifeng Hao, Bo Liu, Yanshan Xiao, Philip S. Yu:
Robust Textual Data Streams Mining Based on Continuous Transfer Learning. SDM 2013: 731-739 - [c470]Jun Zhang, Chaokun Wang, Philip S. Yu, Jianmin Wang:
Learning latent friendship propagation networks with interest awareness for link prediction. SIGIR 2013: 63-72 - [c469]Cheng Long, Raymond Chi-Wing Wong, Philip S. Yu, Minhao Jiang:
On optimal worst-case matching. SIGMOD Conference 2013: 845-856 - [c468]Yu-Chieh Lin, Philip S. Yu, Ming-Syan Chen:
Guide Query in Social Networks. WAIM 2013: 533-544 - [c467]Jun Zhang, Chaokun Wang, Jianmin Wang, Philip S. Yu:
LaFT-tree: perceiving the expansion trace of one's circle of friends in online social networks. WSDM 2013: 597-606 - [c466]Yuchen Zhao, Neel Sundaresan, Zeqian Shen, Philip S. Yu:
Anatomy of a web-scale resale market: a data mining approach. WWW 2013: 1533-1544 - [p21]Hong Cheng, Jiawei Han, Xifeng Yan, Philip S. Yu:
Efficient Direct Mining of Selective Discriminative Patterns for Classification. Contrast Data Mining 2013: 39-58 - [p20]Spiros Papadimitriou, Jimeng Sun, Christos Faloutsos, Philip S. Yu:
Dimensionality Reduction and Filtering on Time Series Sensor Streams. Managing and Mining Sensor Data 2013: 103-141 - [e29]Longbing Cao, Yifeng Zeng, Andreas L. Symeonidis, Vladimir Gorodetsky, Philip S. Yu, Munindar P. Singh:
Agents and Data Mining Interaction - 8th International Workshop, ADMI 2012, Valencia, Spain, June 4-5, 2012, Revised Selected Papers. Lecture Notes in Computer Science 7607, Springer 2013, ISBN 978-3-642-36287-3 [contents] - [e28]Wei Fan, Albert Bifet, Qiang Yang, Philip S. Yu:
Proceedings of the 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, BigMine 2013, Chicago, IL, USA, August 11, 2013. ACM 2013, ISBN 978-1-4503-2324-6 [contents] - [e27]Longbing Cao, Hiroshi Motoda, Jaideep Srivastava, Ee-Peng Lim, Irwin King, Philip S. Yu, Wolfgang Nejdl, Guandong Xu, Gang Li, Ya Zhang:
Behavior and Social Computing, International Workshop on Behavior and Social Informatics, BSI 2013, Gold Coast, QLD, Australia, April 14-17, 2013 and International Workshop on Behavior and Social Informatics and Computing, BSIC 2013, Beijing, China, August 3-9, 2013, Revised Selected Papers. Lecture Notes in Computer Science 8178, Springer 2013, ISBN 978-3-319-04047-9 [contents] - [i20]Xiangnan Kong, Philip S. Yu, Xue Wang, Ann B. Ragin:
Discriminative Feature Selection for Uncertain Graph Classification. CoRR abs/1301.6626 (2013) - [i19]Yuchen Zhao, Philip S. Yu:
On Graph Stream Clustering with Side Information. CoRR abs/1301.6780 (2013) - [i18]Chih-Hua Tai, Philip S. Yu, De-Nian Yang, Ming-Syan Chen:
Structural Diversity for Resisting Community Identification in Published Social Networks. CoRR abs/1302.3033 (2013) - [i17]Hong-Han Shuai, De-Nian Yang, Philip S. Yu, Chih-Ya Shen, Ming-Syan Chen:
Pattern Based Graph Generator. CoRR abs/1303.0157 (2013) - [i16]Hong-Han Shuai, De-Nian Yang, Philip S. Yu, Ming-Syan Chen:
Willingness Optimization for Social Group Activity. CoRR abs/1305.1502 (2013) - [i15]Xiangnan Kong, Bokai Cao, Philip S. Yu, Ying Ding, David J. Wild:
Meta Path-Based Collective Classification in Heterogeneous Information Networks. CoRR abs/1305.4433 (2013) - [i14]Guoqiong Liao, Yuchen Zhao, Sihong Xie, Philip S. Yu:
Latent Networks Fusion based Model for Event Recommendation in Offline Ephemeral Social Networks. CoRR abs/1308.1118 (2013) - [i13]Shuyang Lin, Xiangnan Kong, Philip S. Yu:
Predicting Trends in Social Networks via Dynamic Activeness Model. CoRR abs/1308.1995 (2013) - [i12]Chuan Shi, Xiangnan Kong, Yue Huang, Philip S. Yu, Bin Wu:
HeteSim: A General Framework for Relevance Measure in Heterogeneous Networks. CoRR abs/1309.7393 (2013) - [i11]Zhung-Xun Liao, Shou-Chung Li, Wen-Chih Peng, Philip S. Yu:
On the Feature Discovery for App Usage Prediction in Smartphones. CoRR abs/1309.7982 (2013) - [i10]Weixiang Shao, Xiaoxiao Shi, Philip S. Yu:
Clustering on Multiple Incomplete Datasets via Collective Kernel Learning. CoRR abs/1310.1177 (2013) - [i9]Jiawei Zhang, Xiangnan Kong, Philip S. Yu:
Predicting Social Links for New Users across Aligned Heterogeneous Social Networks. CoRR abs/1310.3492 (2013) - [i8]Sihong Xie, Xiangnan Kong, Jing Gao, Wei Fan, Philip S. Yu:
Multilabel Consensus Classification. CoRR abs/1310.4252 (2013) - [i7]Qingbo Hu, Guan Wang, Philip S. Yu:
Deriving Latent Social Impulses to Determine Longevous Videos. CoRR abs/1312.7036 (2013) - 2012
- [b1]Longbing Cao, Philip S. Yu:
Behavior Computing - Modeling, Analysis, Mining and Decision. Springer 2012, ISBN 978-1-4471-2968-4, pp. I-XVI, 1-374 - [j230]Longbing Cao, Gerhard Weiss, Philip S. Yu:
A brief introduction to agent mining. Auton. Agents Multi Agent Syst. 25(3): 419-424 (2012) - [j229]Fei Wang, Hanghang Tong, Philip S. Yu, Charu C. Aggarwal:
Guest editorial: special issue on data mining technologies for computational social science. Data Min. Knowl. Discov. 25(3): 415-419 (2012) - [j228]Charu C. Aggarwal, Philip S. Yu:
On the network effect in Web 2.0 applications. Electron. Commer. Res. Appl. 11(2): 142-151 (2012) - [j227]Bai-En Shie, Philip S. Yu, Vincent S. Tseng:
Efficient algorithms for mining maximal high utility itemsets from data streams with different models. Expert Syst. Appl. 39(17): 12947-12960 (2012) - [j226]Hanghang Tong, Spiros Papadimitriou, Christos Faloutsos, Philip S. Yu, Tina Eliassi-Rad:
Gateway finder in large graphs: problem definitions and fast solutions. Inf. Retr. 15(3-4): 391-411 (2012) - [j225]Zhouzhou He, Zhongfei (Mark) Zhang, Philip S. Yu:
Overlapping community detection combining content and link. J. Zhejiang Univ. Sci. C 13(11): 828-839 (2012) - [j224]Zhengzheng Xing, Jian Pei, Philip S. Yu:
Early classification on time series. Knowl. Inf. Syst. 31(1): 105-127 (2012) - [j223]Xiangnan Kong, Philip S. Yu:
gMLC: a multi-label feature selection framework for graph classification. Knowl. Inf. Syst. 31(2): 281-305 (2012) - [j222]Yongxin Tong, Lei Chen, Yurong Cheng, Philip S. Yu:
Mining Frequent Itemsets over Uncertain Databases. Proc. VLDB Endow. 5(11): 1650-1661 (2012) - [j221]Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu:
Mining Knowledge from Interconnected Data: A Heterogeneous Information Network Analysis Approach. Proc. VLDB Endow. 5(12): 2022-2023 (2012) - [j220]Nitin Agarwal, Huan Liu, Lei Tang, Philip S. Yu:
Modeling blogger influence in a community. Soc. Netw. Anal. Min. 2(2): 139-162 (2012) - [j219]Leon Stenneth, Philip S. Yu:
Mobile Systems Privacy: 'MobiPriv' A Robust System for Snapshot or Continuous Querying Location Based Mobile Systems. Trans. Data Priv. 5(1): 333-376 (2012) - [j218]Guan Wang, Sihong Xie, Bing Liu, Philip S. Yu:
Identify Online Store Review Spammers via Social Review Graph. ACM Trans. Intell. Syst. Technol. 3(4): 61:1-61:21 (2012) - [j217]Tianbing Xu, Zhongfei Zhang, Philip S. Yu, Bo Long:
Generative Models for Evolutionary Clustering. ACM Trans. Knowl. Discov. Data 6(2): 7:1-7:27 (2012) - [j216]Longbing Cao, Yuming Ou, Philip S. Yu:
Coupled Behavior Analysis with Applications. IEEE Trans. Knowl. Data Eng. 24(8): 1378-1392 (2012) - [j215]Frederic T. Stahl, Mohamed Medhat Gaber, Paul Aldridge, David May, Han Liu, Max Bramer, Philip S. Yu:
Homogeneous and Heterogeneous Distributed Classification for Pocket Data Mining. Trans. Large Scale Data Knowl. Centered Syst. 5: 183-205 (2012) - [j214]Meng-Fen Chiang, Wen-Chih Peng, Philip S. Yu:
Exploring latent browsing graph for question answering recommendation. World Wide Web 15(5-6): 603-630 (2012) - [c465]Wenxuan Gao, Lijia Ma, Christopher Brown, Matthew Slattery, Philip S. Yu, Robert L. Grossman, Kevin P. White:
Discovering geometric patterns in genomic data. BCB 2012: 147-154 - [c464]Guan Wang, Qingbo Hu, Philip S. Yu:
Influence and similarity on heterogeneous networks. CIKM 2012: 1462-1466 - [c463]Xiangnan Kong, Philip S. Yu, Ying Ding, David J. Wild:
Meta path-based collective classification in heterogeneous information networks. CIKM 2012: 1567-1571 - [c462]Jing Wang, Clement T. Yu, Philip S. Yu, Bing Liu, Weiyi Meng:
Diversionary comments under political blog posts. CIKM 2012: 1789-1793 - [c461]Ghim-Eng Yap, Xiaoli Li, Philip S. Yu:
Effective Next-Items Recommendation via Personalized Sequential Pattern Mining. DASFAA (2) 2012: 48-64 - [c460]Amin Milani Fard, Ke Wang, Philip S. Yu:
Limiting link disclosure in social network analysis through subgraph-wise perturbation. EDBT 2012: 109-119 - [c459]Chuan Shi, Xiangnan Kong, Philip S. Yu, Sihong Xie, Bin Wu:
Relevance search in heterogeneous networks. EDBT 2012: 180-191 - [c458]Charu C. Aggarwal, Wangqun Lin, Philip S. Yu:
Searching by corpus with fingerprints. EDBT 2012: 348-359 - [c457]Zhung-Xun Liao, Wen-Chih Peng, Philip S. Yu:
A profile-based framework for interaction prediction. GrC 2012: 265-270 - [c456]Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu:
On Text Clustering with Side Information. ICDE 2012: 894-904 - [c455]Yu Peng, Raymond Chi-Wing Wong, Liangliang Ye, Philip S. Yu:
Attribute-Based Subsequence Matching and Mining. ICDE 2012: 989-1000 - [c454]Jiawei Han, Yizhou Sun, Xifeng Yan, Philip S. Yu:
Mining Knowledge from Data: An Information Network Analysis Approach. ICDE 2012: 1214-1217 - [c453]Xiaoxiao Shi, Philip S. Yu:
Dimensionality Reduction on Heterogeneous Feature Space. ICDM 2012: 635-644 - [c452]Yu-Wei Chu, Chih-Hua Tai, Ming-Syan Chen, Philip S. Yu:
Privacy-Preserving SimRank over Distributed Information Network. ICDM 2012: 840-845 - [c451]Cheng-Wei Wu, Bai-En Shie, Vincent S. Tseng, Philip S. Yu:
Mining top-K high utility itemsets. KDD 2012: 78-86 - [c450]Guan Wang, Yuchen Zhao, Xiaoxiao Shi, Philip S. Yu:
Magnet community identification on social networks. KDD 2012: 588-596 - [c449]Sihong Xie, Guan Wang, Shuyang Lin, Philip S. Yu:
Review spam detection via temporal pattern discovery. KDD 2012: 823-831 - [c448]Yizhou Sun, Brandon Norick, Jiawei Han, Xifeng Yan, Philip S. Yu, Xiao Yu:
Integrating meta-path selection with user-guided object clustering in heterogeneous information networks. KDD 2012: 1348-1356 - [c447]Yongxin Tong, Lei Chen, Philip S. Yu:
UFIMT: an uncertain frequent itemset mining toolbox. KDD 2012: 1508-1511 - [c446]Chuan Shi, Chong Zhou, Xiangnan Kong, Philip S. Yu, Gang Liu, Bai Wang:
HeteRecom: a semantic-based recommendation systemin heterogeneous networks. KDD 2012: 1552-1555 - [c445]Leon Stenneth, Ouri Wolfson, Bo Xu, Philip S. Yu:
PhonePark: Street Parking Using Mobile Phones. MDM 2012: 278-279 - [c444]Xiaoxiao Shi, Jean-François Paiement, David Grangier, Philip S. Yu:
Learning from Heterogeneous Sources via Gradient Boosting Consensus. SDM 2012: 224-235 - [c443]Chuan Shi, Xiangnan Kong, Philip S. Yu, Bai Wang:
Multi-Objective Multi-Label Classification. SDM 2012: 355-366 - [c442]Charu C. Aggarwal, Yan Xie, Philip S. Yu:
On Dynamic Link Inference in Heterogeneous Networks. SDM 2012: 415-426 - [c441]Xiaoxiao Shi, Xiangnan Kong, Philip S. Yu:
Transfer Significant Subgraphs across Graph Databases. SDM 2012: 552-563 - [c440]Charu C. Aggarwal, Shuyang Lin, Philip S. Yu:
On Influential Node Discovery in Dynamic Social Networks. SDM 2012: 636-647 - [c439]Sihong Xie, Wei Fan, Philip S. Yu:
An Iterative and Re-weighting Framework for Rejection and Uncertainty Resolution in Crowdsourcing. SDM 2012: 1107-1118 - [c438]Wangqun Lin, Xiangnan Kong, Philip S. Yu, Quanyuan Wu, Yan Jia, Chuan Li:
Community detection in incomplete information networks. WWW 2012: 341-350 - [c437]Sihong Xie, Guan Wang, Shuyang Lin, Philip S. Yu:
Review spam detection via time series pattern discovery. WWW (Companion Volume) 2012: 635-636 - [e26]Longbing Cao, Ana L. C. Bazzan, Andreas L. Symeonidis, Vladimir Gorodetsky, Gerhard Weiss, Philip S. Yu:
Agents and Data Mining Interaction - 7th International Workshop on Agents and Data Mining Interation, ADMI 2011, Taipei, Taiwan, May 2-6, 2011, Revised Selected Papers. Lecture Notes in Computer Science 7103, Springer 2012, ISBN 978-3-642-27608-8 [contents] - [e25]Wei Fan, Albert Bifet, Qiang Yang, Philip S. Yu:
Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, BigMine 2012, Beijing, China, August 12, 2012. ACM 2012, ISBN 978-1-4503-1547-0 [contents] - [i6]Yongxin Tong, Lei Chen, Yurong Cheng, Philip S. Yu:
Mining Frequent Itemsets over Uncertain Databases. CoRR abs/1208.0292 (2012) - [i5]Yu-Wei Chu, Chih-Hua Tai, Ming-Syan Chen, Philip S. Yu:
Implementation of Privacy-preserving SimRank over Distributed Information Network. CoRR abs/1210.0151 (2012) - [i4]Yuqing Zhu, Philip S. Yu, Jianmin Wang:
Latency Bounding by Trading off Consistency in NoSQL Store: A Staging and Stepwise Approach. CoRR abs/1212.1046 (2012) - 2011
- [j213]Lien-Chin Chen, Philip S. Yu, Vincent S. Tseng:
WF-MSB: A weighted fuzzy-based biclustering method for gene expression data. Int. J. Data Min. Bioinform. 5(1): 89-109 (2011) - [j212]Henrique Andrade, Bugra Gedik, Kun-Lung Wu, Philip S. Yu:
Processing high data rate streams in System S. J. Parallel Distributed Comput. 71(2): 145-156 (2011) - [j211]Xingquan Zhu, Wei Ding, Philip S. Yu, Chengqi Zhang:
One-class learning and concept summarization for data streams. Knowl. Inf. Syst. 28(3): 523-553 (2011) - [j210]Feida Zhu, Qiang Qu, David Lo, Xifeng Yan, Jiawei Han, Philip S. Yu:
Mining Top-K Large Structural Patterns in a Massive Network. Proc. VLDB Endow. 4(11): 807-818 (2011) - [j209]Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, Tianyi Wu:
PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks. Proc. VLDB Endow. 4(11): 992-1003 (2011) - [j208]Chuan Li, Philip S. Yu, Lei Zhao, Yan Xie, Wangqun Lin:
InfoNetOLAPer: Integrating InfoNetWarehouse and InfoNetCube with InfoNetOLAP. Proc. VLDB Endow. 4(12): 1422-1425 (2011) - [j207]Raymond Chi-Wing Wong, Ada Wai-Chee Fu, Ke Wang, Philip S. Yu, Jian Pei:
Can the Utility of Anonymized Data be Used for Privacy Breaches? ACM Trans. Knowl. Discov. Data 5(3): 16:1-16:24 (2011) - [j206]Bugra Gedik, Kun-Lung Wu, Ling Liu, Philip S. Yu:
Load Shedding in Mobile Systems with MobiQual. IEEE Trans. Knowl. Data Eng. 23(2): 248-265 (2011) - [j205]Ja-Hwung Su, Wei-Jyun Huang, Philip S. Yu, Vincent S. Tseng:
Efficient Relevance Feedback for Content-Based Image Retrieval by Mining User Navigation Patterns. IEEE Trans. Knowl. Data Eng. 23(3): 360-372 (2011) - [j204]Eric Hsueh-Chan Lu, Vincent S. Tseng, Philip S. Yu:
Mining Cluster-Based Temporal Mobile Sequential Patterns in Location-Based Service Environments. IEEE Trans. Knowl. Data Eng. 23(6): 914-927 (2011) - [j203]Jiefeng Cheng, Jeffrey Xu Yu, Philip S. Yu:
Graph Pattern Matching: A Join/Semijoin Approach. IEEE Trans. Knowl. Data Eng. 23(7): 1006-1021 (2011) - [j202]Raymond Chi-Wing Wong, M. Tamer Özsu, Ada Wai-Chee Fu, Philip S. Yu, Lian Liu, Yubao Liu:
Maximizing bichromatic reverse nearest neighbor for L p -norm in two- and three-dimensional spaces. VLDB J. 20(6): 893-919 (2011) - [j201]Di Wu, Yiping Ke, Jeffrey Xu Yu, Philip S. Yu, Lei Chen:
Leadership discovery when data correlatively evolve. World Wide Web 14(1): 1-25 (2011) - [c436]Philip S. Yu:
Information Networks Mining and Analysis. APWeb 2011: 1-2 - [c435]Yi Xu, Zhongfei Zhang, Philip S. Yu, Bo Long:
Pattern change discovery between high dimensional data sets. CIKM 2011: 1097-1106 - [c434]Xiaoxiao Shi, Yao Li, Philip S. Yu:
Collective prediction with latent graphs. CIKM 2011: 1127-1136 - [c433]Yan Xie, Philip S. Yu:
CP-index: on the efficient indexing of large graphs. CIKM 2011: 1795-1804 - [c432]Chuan Shi, Philip S. Yu, Yanan Cai, Zhenyu Yan, Bin Wu:
On selection of objective functions in multi-objective community detection. CIKM 2011: 2301-2304 - [c431]Xiangnan Kong, Philip S. Yu:
An ensemble-based approach to fast classification of multi-label data streams. CollaborateCom 2011: 95-104 - [c430]Xiaoli Li, Aloysius Tan, Philip S. Yu, See-Kiong Ng:
ECODE: Event-Based Community Detection from Social Networks. DASFAA (1) 2011: 22-37 - [c429]Bai-En Shie, Hui-Fang Hsiao, Vincent S. Tseng, Philip S. Yu:
Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments. DASFAA (1) 2011: 224-238 - [c428]Qiang Qu, Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, Hongyan Li:
Efficient Topological OLAP on Information Networks. DASFAA (1) 2011: 389-403 - [c427]Leon Stenneth, Ouri Wolfson, Philip S. Yu, Bo Xu:
Transportation mode detection using mobile phones and GIS information. GIS 2011: 54-63 - [c426]Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu:
Outlier detection in graph streams. ICDE 2011: 399-409 - [c425]Shaoxu Song, Lei Chen, Philip S. Yu:
On data dependencies in dataspaces. ICDE 2011: 470-481 - [c424]Xuezhi Wang, Jie Tang, Hong Cheng, Philip S. Yu:
ADANA: Active Name Disambiguation. ICDM 2011: 794-803 - [c423]Cheng-Wei Wu, Philippe Fournier-Viger, Philip S. Yu, Vincent S. Tseng:
Efficient Mining of a Concise and Lossless Representation of High Utility Itemsets. ICDM 2011: 824-833 - [c422]Yuchen Zhao, Xiangnan Kong, Philip S. Yu:
Positive and Unlabeled Learning for Graph Classification. ICDM 2011: 962-971 - [c421]Charu C. Aggarwal, Yao Li, Philip S. Yu:
On the Hardness of Graph Anonymization. ICDM 2011: 1002-1007 - [c420]Chih-Hua Tai, Peng-Jui Tseng, Philip S. Yu, Ming-Syan Chen:
Identities Anonymization in Dynamic Social Networks. ICDM 2011: 1224-1229 - [c419]Guan Wang, Sihong Xie, Bing Liu, Philip S. Yu:
Review Graph Based Online Store Review Spammer Detection. ICDM 2011: 1242-1247 - [c418]Frederic T. Stahl, Mohamed Medhat Gaber, Max Bramer, Philip S. Yu:
Distributed hoeffding trees for pocket data mining. HPCS 2011: 686-692 - [c417]Frederic T. Stahl, Mohamed Medhat Gaber, Han Liu, Max Bramer, Philip S. Yu:
Distributed Classification for Pocket Data Mining. ISMIS 2011: 336-345 - [c416]Noman Mohammed, Rui Chen, Benjamin C. M. Fung, Philip S. Yu:
Differentially private data release for data mining. KDD 2011: 493-501 - [c415]Xiangnan Kong, Wei Fan, Philip S. Yu:
Dual active feature and sample selection for graph classification. KDD 2011: 654-662 - [c414]Xiaoxiao Shi, Wei Fan, Jianping Zhang, Philip S. Yu:
Discovering shakers from evolving entities via cascading graph inference. KDD 2011: 1001-1009 - [c413]Charu C. Aggarwal, Yan Xie, Philip S. Yu:
On dynamic data-driven selection of sensor streams. KDD 2011: 1226-1234 - [c412]Chih-Hua Tai, Philip S. Yu, De-Nian Yang, Ming-Syan Chen:
Privacy-preserving social network publication against friendship attacks. KDD 2011: 1262-1270 - [c411]Bai-En Shie, Hui-Fang Hsiao, Philip S. Yu, Vincent S. Tseng:
Discovering Valuable User Behavior Patterns in Mobile Commerce Environments. PAKDD Workshops 2011: 77-88 - [c410]Chuan Shi, Xiangnan Kong, Philip S. Yu, Bai Wang:
Multi-label Ensemble Learning. ECML/PKDD (3) 2011: 223-239 - [c409]Chih-Hua Tai, Philip S. Yu, De-Nian Yang, Ming-Syan Chen:
Structural Diversity for Privacy in Publishing Social Networks. SDM 2011: 35-46 - [c408]Zhengzheng Xing, Jian Pei, Philip S. Yu, Ke Wang:
Extracting Interpretable Features for Early Classification on Time Series. SDM 2011: 247-258 - [c407]Charu C. Aggarwal, Yan Xie, Philip S. Yu:
Towards Community Detection in Locally Heterogeneous Networks. SDM 2011: 391-402 - [c406]Xiangnan Kong, Xiaoxiao Shi, Philip S. Yu:
Multi-Label Collective Classification. SDM 2011: 618-629 - [c405]Bo Liu, Yanshan Xiao, Longbing Cao, Philip S. Yu:
One-Class-Based Uncertain Data Stream Learning. SDM 2011: 992-1003 - 2010
- [j200]Bhuvan Bamba, Ling Liu, Philip S. Yu:
A motion-aware safe period-based framework for spatial alarm processing. Comput. Syst. Sci. Eng. 25(3) (2010) - [j199]Benjamin C. M. Fung, Ke Wang, Rui Chen, Philip S. Yu:
Privacy-preserving data publishing: A survey of recent developments. ACM Comput. Surv. 42(4): 14:1-14:53 (2010) - [j198]Ja-Hwung Su, Hsin-Ho Yeh, Philip S. Yu, Vincent S. Tseng:
Music Recommendation Using Content and Context Information Mining. IEEE Intell. Syst. 25(1): 16-26 (2010) - [j197]Huan Liu, Philip S. Yu, Nitin Agarwal, Torsten Suel:
Guest Editors' Introduction: Social Computing in the Blogosphere. IEEE Internet Comput. 14(2): 12-14 (2010) - [j196]Charu C. Aggarwal, Philip S. Yu:
On clustering massive text and categorical data streams. Knowl. Inf. Syst. 24(2): 171-196 (2010) - [j195]Bo Long, Zhongfei Zhang, Philip S. Yu:
A general framework for relation graph clustering. Knowl. Inf. Syst. 24(3): 393-413 (2010) - [j194]Charu C. Aggarwal, Yao Li, Philip S. Yu, Ruoming Jin:
On Dense Pattern Mining in Graph Streams. Proc. VLDB Endow. 3(1): 975-984 (2010) - [j193]Mingxuan Yuan, Lei Chen, Philip S. Yu:
Personalized Privacy Protection in Social Networks. Proc. VLDB Endow. 4(2): 141-150 (2010) - [j192]Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel, Alexander J. Smola, Le Song, Philip S. Yu, Xifeng Yan, Karsten M. Borgwardt:
Discriminative frequent subgraph mining with optimality guarantees. Stat. Anal. Data Min. 3(5): 302-318 (2010) - [j191]Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu:
A framework for clustering massive graph streams. Stat. Anal. Data Min. 3(6): 399-416 (2010) - [j190]Xiaoxiao Shi, Philip S. Yu:
Limitations of matrix completion via trace norm minimization. SIGKDD Explor. 12(2): 16-20 (2010) - [j189]Ning Zhong, Gregory Piatetsky-Shapiro, Yiyu Yao, Philip S. Yu:
ACM TKDD Special Issue on Knowledge Discovery for Web Intelligence. ACM Trans. Knowl. Discov. Data 5(1): 1:1 (2010) - [j188]Chengqi Zhang, Philip S. Yu, David A. Bell:
Introduction to the Domain-Driven Data Mining Special Section. IEEE Trans. Knowl. Data Eng. 22(6): 753-754 (2010) - [j187]Michail Vlachos, Suleyman Serdar Kozat, Philip S. Yu:
Optimal distance bounds for fast search on compressed time-series query logs. ACM Trans. Web 4(2): 6:1-6:28 (2010) - [j186]Claudio Lucchese, Michail Vlachos, Deepak Rajan, Philip S. Yu:
Rights protection of trajectory datasets with nearest-neighbor preservation. VLDB J. 19(4): 531-556 (2010) - [c404]Yuchen Zhao, Charu C. Aggarwal, Philip S. Yu:
On wavelet decomposition of uncertain time series data sets. CIKM 2010: 129-138 - [c403]Bo Liu, Yanshan Xiao, Longbing Cao, Philip S. Yu:
Orientation distance-based discriminative feature extraction for multi-class classification. CIKM 2010: 909-918 - [c402]Leon Stenneth, Philip S. Yu:
Global privacy and transportation mode homogeneity anonymization in location based mobile systems with continuous queries. CollaborateCom 2010: 1-10 - [c401]Di Wu, Yiping Ke, Jeffrey Xu Yu, Philip S. Yu, Lei Chen:
Detecting Leaders from Correlated Time Series. DASFAA (1) 2010: 352-367 - [c400]Lu Liu, Feida Zhu, Chen Chen, Xifeng Yan, Jiawei Han, Philip S. Yu, Shiqiang Yang:
Mining Diversity on Networks. DASFAA (1) 2010: 384-398 - [c399]Xiangnan Kong, Philip S. Yu:
Multi-label Feature Selection for Graph Classification. ICDM 2010: 274-283 - [c398]Bo Liu, Jie Yin, Yanshan Xiao, Longbing Cao, Philip S. Yu:
Exploiting Local Data Uncertainty to Boost Global Outlier Detection. ICDM 2010: 304-313 - [c397]Bo Liu, Yanshan Xiao, Longbing Cao, Philip S. Yu:
Vote-Based LELC for Positive and Unlabeled Textual Data Streams. ICDM Workshops 2010: 951-958 - [c396]Xiaoxiao Shi, Wei Fan, Philip S. Yu:
Efficient Semi-supervised Spectral Co-clustering with Constraints. ICDM 2010: 1043-1048 - [c395]Xiaoxiao Shi, Qi Liu, Wei Fan, Philip S. Yu, Ruixin Zhu:
Transfer Learning on Heterogenous Feature Spaces via Spectral Transformation. ICDM 2010: 1049-1054 - [c394]Raymond Chi-Wing Wong, Ada Wai-Chee Fu, Ke Wang, Yabo Xu, Jian Pei, Philip S. Yu:
Probabilistic Inference Protection on Anonymized Data. ICDM 2010: 1127-1132 - [c393]Yan Xie, Philip S. Yu:
Max-Clique: A Top-Down Graph-Based Approach to Frequent Pattern Mining. ICDM 2010: 1139-1144 - [c392]Chuan Shi, Yanan Cai, Philip S. Yu, Zhenyu Yan, Bin Wu:
A Comparison of Objective Functions in Network Community Detection. ICDM Workshops 2010: 1234-1241 - [c391]Frederic T. Stahl, Mohamed Medhat Gaber, Max Bramer, Philip S. Yu:
Pocket Data Mining: Towards Collaborative Data Mining in Mobile Computing Environments. ICTAI (2) 2010: 323-330 - [c390]Aaron M. Cohen, Clive E. Adams, John M. Davis, Clement T. Yu, Philip S. Yu, Weiyi Meng, Lorna Duggan, Marian McDonagh, Neil R. Smalheiser:
Evidence-based medicine, the essential role of systematic reviews, and the need for automated text mining tools. IHI 2010: 376-380 - [c389]Longbing Cao, Yuming Ou, Philip S. Yu, Gang Wei:
Detecting abnormal coupled sequences and sequence changes in group-based manipulative trading behaviors. KDD 2010: 85-94 - [c388]Vincent S. Tseng, Cheng-Wei Wu, Bai-En Shie, Philip S. Yu:
UP-Growth: an efficient algorithm for high utility itemset mining. KDD 2010: 253-262 - [c387]Chih-Hua Tai, Philip S. Yu, Ming-Syan Chen:
k-Support anonymity based on pseudo taxonomy for outsourcing of frequent itemset mining. KDD 2010: 473-482 - [c386]Xiangnan Kong, Philip S. Yu:
Semi-supervised feature selection for graph classification. KDD 2010: 793-802 - [c385]Hanghang Tong, Spiros Papadimitriou, Christos Faloutsos, Philip S. Yu, Tina Eliassi-Rad:
BASSET: Scalable Gateway Finder in Large Graphs. PAKDD (2) 2010: 449-463 - [c384]Bai-En Shie, Vincent S. Tseng, Philip S. Yu:
Online mining of temporal maximal utility itemsets from data streams. SAC 2010: 1622-1626 - [c383]Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu:
On Clustering Graph Streams. SDM 2010: 478-489 - [c382]Charu C. Aggarwal, Philip S. Yu:
On Classification of High-Cardinality Data Streams. SDM 2010: 802-813 - [c381]Xiaoxiao Shi, Qi Liu, Wei Fan, Qiang Yang, Philip S. Yu:
Predictive Modeling with Heterogeneous Sources. SDM 2010: 814-825 - [c380]Jiawei Han, Yizhou Sun, Xifeng Yan, Philip S. Yu:
Mining knowledge from databases: an information network analysis approach. SIGMOD Conference 2010: 1251-1252 - [c379]Leon Stenneth, Philip S. Yu, Ouri Wolfson:
Mobile systems location privacy: "MobiPriv" a robust k anonymous system. WiMob 2010: 54-63 - [p19]Zhongfei Zhang, Bo Long, Zhen Guo, Tianbing Xu, Philip S. Yu:
Machine Learning Approaches to Link-Based Clustering. Link Mining 2010: 3-44 - [p18]Xiaoxin Yin, Jiawei Han, Philip S. Yu:
Scalable Link-Based Similarity Computation and Clustering. Link Mining 2010: 45-71 - [p17]Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, Christos Faloutsos:
Community Evolution and Change Point Detection in Time-Evolving Graphs. Link Mining 2010: 73-104 - [p16]Xin Li, Bing Liu, Philip S. Yu:
Time Sensitive Ranking with Application to Publication Search. Link Mining 2010: 187-209 - [p15]Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, Christos Faloutsos:
Proximity Tracking on Dynamic Bipartite Graphs: Problem Definitions and Fast Solutions. Link Mining 2010: 211-236 - [p14]Xiaoxin Yin, Jiawei Han, Philip S. Yu:
Veracity Analysis and Object Distinction. Link Mining 2010: 283-304 - [p13]Chen Chen, Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, Raghu Ramakrishnan:
InfoNetOLAP: OLAP and Mining of Information Networks. Link Mining 2010: 411-438 - [p12]Haixun Wang, Philip S. Yu, Jiawei Han:
Mining Concept-Drifting Data Streams. Data Mining and Knowledge Discovery Handbook 2010: 789-802 - [e24]Philip S. Yu, Jiawei Han, Christos Faloutsos:
Link Mining: Models, Algorithms, and Applications. Springer 2010, ISBN 978-1-4419-6514-1 [contents] - [e23]Longbing Cao, Ana L. C. Bazzan, Vladimir Gorodetsky, Pericles A. Mitkas, Gerhard Weiss, Philip S. Yu:
Agents and Data Mining Interaction, 6th International Workshop on Agents and Data Mining Interaction, ADMI 2010, Toronto, ON, Canada, May 11, 2010, Revised Selected Papers. Lecture Notes in Computer Science 5980, Springer 2010, ISBN 978-3-642-15419-5 [contents] - [e22]Ashok N. Srivastava, Nitesh V. Chawla, Philip S. Yu, Paul Melby:
Proceedings of the 2010 Conference on Intelligent Data Understanding, CIDU 2010, October 5-6, 2010, Mountain View, California, USA. NASA Ames Research Center 2010 [contents]
2000 – 2009
- 2009
- [j185]Longbing Cao, Philip S. Yu:
Behavior Informatics: An Informatics Perspective for Behavior Studies. IEEE Intell. Informatics Bull. 10(1): 6-11 (2009) - [j184]Vagelis Hristidis, Oscar Valdivia, Michail Vlachos, Philip S. Yu:
Information discovery across multiple streams. Inf. Sci. 179(19): 3268-3285 (2009) - [j183]Suleyman Serdar Kozat, Michail Vlachos, Claudio Lucchese, Helga Van Herle, Philip S. Yu:
Embedding and Retrieving Private Metadata in Electrocardiograms. J. Medical Syst. 33(4): 241-259 (2009) - [j182]Gang Luo, Kun-Lung Wu, Philip S. Yu:
Answering linear optimization queries with an approximate stream index. Knowl. Inf. Syst. 20(1): 95-121 (2009) - [j181]Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, Philip S. Yu:
Graph OLAP: a multi-dimensional framework for graph data analysis. Knowl. Inf. Syst. 21(1): 41-63 (2009) - [j180]Zhidian Du, Lin Li, Chin-Fu Chen, Philip S. Yu, James Z. Wang:
G-SESAME: web tools for GO-term-based gene similarity analysis and knowledge discovery. Nucleic Acids Res. 37(Web-Server-Issue): 345-349 (2009) - [j179]Charu C. Aggarwal, Yan Xie, Philip S. Yu:
GConnect: A Connectivity Index for Massive Disk-resident Graphs. Proc. VLDB Endow. 2(1): 862-873 (2009) - [j178]Raymond Chi-Wing Wong, M. Tamer Özsu, Philip S. Yu, Ada Wai-Chee Fu, Lian Liu:
Efficient Method for Maximizing Bichromatic Reverse Nearest Neighbor. Proc. VLDB Endow. 2(1): 1126-1137 (2009) - [j177]Huan Liu, John J. Salerno, Michael Young, Rakesh Agrawal, Philip S. Yu:
Introduction to special issue on social computing, behavioral modeling, and prediction. ACM Trans. Knowl. Discov. Data 3(2): 6:1-6:3 (2009) - [j176]Li Wan, Wee Keong Ng, Xuan-Hong Dang, Philip S. Yu, Kuan Zhang:
Density-based clustering of data streams at multiple resolutions. ACM Trans. Knowl. Discov. Data 3(3): 14:1-14:28 (2009) - [j175]Charu C. Aggarwal, Philip S. Yu:
A Survey of Uncertain Data Algorithms and Applications. IEEE Trans. Knowl. Data Eng. 21(5): 609-623 (2009) - [j174]Michail Vlachos, Aris Anagnostopoulos, Olivier Verscheure, Philip S. Yu:
Online pairing of VoIP conversations. VLDB J. 18(1): 77-98 (2009) - [j173]Bugra Gedik, Rajesh Bordawekar, Philip S. Yu:
CellJoin: a parallel stream join operator for the cell processor. VLDB J. 18(2): 501-519 (2009) - [c378]Mi-Yen Yeh, Kun-Lung Wu, Philip S. Yu, Ming-Syan Chen:
PROUD: a probabilistic approach to processing similarity queries over uncertain data streams. EDBT 2009: 684-695 - [c377]Jiawei Han, Xifeng Yan, Philip S. Yu:
Scalable OLAP and mining of information networks. EDBT 2009: 1159 - [c376]Bhuvan Bamba, Ling Liu, Arun Iyengar, Philip S. Yu:
Distributed Processing of Spatial Alarms: A Safe Region-Based Approach. ICDCS 2009: 207-214 - [c375]Dina Thomas, Rajesh Bordawekar, Charu C. Aggarwal, Philip S. Yu:
On Efficient Query Processing of Stream Counts on the Cell Processor. ICDE 2009: 748-759 - [c374]Shuguo Han, Wee Keong Ng, Philip S. Yu:
Privacy-Preserving Singular Value Decomposition. ICDE 2009: 1267-1270 - [c373]Henrique Andrade, Bugra Gedik, Kun-Lung Wu, Philip S. Yu:
Scale-Up Strategies for Processing High-Rate Data Streams in System S. ICDE 2009: 1375-1378 - [c372]Nitin Agarwal, Huan Liu, Shankara B. Subramanya, John J. Salerno, Philip S. Yu:
Connecting Sparsely Distributed Similar Bloggers. ICDM 2009: 11-20 - [c371]Wenxuan Gao, Robert L. Grossman, Philip S. Yu, Yunhong Gu:
Why Naive Ensembles Do Not Work in Cloud Computing. ICDM Workshops 2009: 282-289 - [c370]Jia-Ching Ying, Vincent S. Tseng, Philip S. Yu:
Efficient Incremental Mining of Qualified Web Traversal Patterns without Scanning Original Databases. ICDM Workshops 2009: 338-343 - [c369]Zhengzheng Xing, Jian Pei, Philip S. Yu:
Early Prediction on Time Series: A Nearest Neighbor Approach. IJCAI 2009: 1297-1302 - [c368]Michail Vlachos, Suleyman Serdar Kozat, Philip S. Yu:
Optimal Distance Bounds on Time-Series Data. SDM 2009: 109-120 - [c367]Xiaoli Li, Philip S. Yu, Bing Liu, See-Kiong Ng:
Positive Unlabeled Learning for Data Stream Classification. SDM 2009: 259-270 - [c366]Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel, Alexander J. Smola, Le Song, Philip S. Yu, Xifeng Yan, Karsten M. Borgwardt:
Near-optimal Supervised Feature Selection among Frequent Subgraphs. SDM 2009: 1076-1087 - [c365]Charu C. Aggarwal, Philip S. Yu:
Online Auctions: There Can Be Only One. CEC 2009: 176-181 - [e21]Longbing Cao, Vladimir Gorodetsky, Jiming Liu, Gerhard Weiss, Philip S. Yu:
Agents and Data Mining Interaction, 4th International Workshop, ADMI 2009, Budapest, Hungary, May 10-15, 2009, Revised Selected Papers. Lecture Notes in Computer Science 5680, Springer 2009, ISBN 978-3-642-03602-6 [contents] - [e20]Wei Wang, Hillol Kargupta, Sanjay Ranka, Philip S. Yu, Xindong Wu:
ICDM 2009, The Ninth IEEE International Conference on Data Mining, Miami, Florida, USA, 6-9 December 2009. IEEE Computer Society 2009, ISBN 978-0-7695-3895-2 [contents] - [e19]Yücel Saygin, Jeffrey Xu Yu, Hillol Kargupta, Wei Wang, Sanjay Ranka, Philip S. Yu, Xindong Wu:
ICDM Workshops 2009, IEEE International Conference on Data Mining Workshops, Miami, Florida, USA, 6 December 2009. IEEE Computer Society 2009, ISBN 978-0-7695-3902-7 [contents] - [r1]Philip S. Yu, Yun Chi:
Association Rule Mining on Streams. Encyclopedia of Database Systems 2009: 136-139 - [i3]Raymond Chi-Wing Wong, Ada Wai-Chee Fu, Ke Wang, Yabo Xu, Philip S. Yu:
Can the Utility of Anonymized Data be used for Privacy Breaches? CoRR abs/0905.1755 (2009) - [i2]Raymond Chi-Wing Wong, Ada Wai-Chee Fu, Ke Wang, Yabo Xu, Jian Pei, Philip S. Yu:
Anonymization with Worst-Case Distribution-Based Background Knowledge. CoRR abs/0909.1127 (2009) - 2008
- [j172]Michail Vlachos, Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Correlating burst events on streaming stock market data. Data Min. Knowl. Discov. 16(1): 109-133 (2008) - [j171]Charu C. Aggarwal, Philip S. Yu:
A framework for condensation-based anonymization of string data. Data Min. Knowl. Discov. 16(3): 251-275 (2008) - [j170]Jing Gao, Bolin Ding, Wei Fan, Jiawei Han, Philip S. Yu:
Classifying Data Streams with Skewed Class Distributions and Concept Drifts. IEEE Internet Comput. 12(6): 37-49 (2008) - [j169]Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael S. Steinbach, David J. Hand, Dan Steinberg:
Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1): 1-37 (2008) - [j168]Mi-Yen Yeh, Kun-Lung Wu, Philip S. Yu, Ming-Syan Chen:
LeeWave: level-wise distribution of wavelet coefficients for processing kNN queries over distributed streams. Proc. VLDB Endow. 1(1): 586-597 (2008) - [j167]Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, Christos Faloutsos:
Fast Monitoring Proximity and Centrality on Time-evolving Bipartite Graphs. Stat. Anal. Data Min. 1(3): 142-156 (2008) - [j166]Jimeng Sun, Dacheng Tao, Spiros Papadimitriou, Philip S. Yu, Christos Faloutsos:
Incremental tensor analysis: Theory and applications. ACM Trans. Knowl. Discov. Data 2(3): 11:1-11:37 (2008) - [j165]Xiaoxin Yin, Jiawei Han, Philip S. Yu:
Truth Discovery with Multiple Conflicting Information Providers on the Web. IEEE Trans. Knowl. Data Eng. 20(6): 796-808 (2008) - [j164]Charu C. Aggarwal, Philip S. Yu:
On static and dynamic methods for condensation-based privacy-preserving data mining. ACM Trans. Database Syst. 33(1): 2:1-2:39 (2008) - [j163]Kirsten Hildrum, Fred Douglis, Joel L. Wolf, Philip S. Yu, Lisa Fleischer, Akshay Katta:
Storage optimization for large-scale distributed stream-processing systems. ACM Trans. Storage 3(4): 5:1-5:28 (2008) - [j162]Xiaohui Gu, Zhen Wen, Philip S. Yu, Zon-Yin Shae:
peerTalk: A Peer-to-Peer Multiparty Voice-over-IP System. IEEE Trans. Parallel Distributed Syst. 19(4): 515-528 (2008) - [j161]Ming-Jyh Hsieh, Wei-Guang Teng, Ming-Syan Chen, Philip S. Yu:
DAWN: an efficient framework of DCT for data with error estimation. VLDB J. 17(4): 683-702 (2008) - [c364]Bo Long, Zhongfei (Mark) Zhang, Philip S. Yu, Tianbing Xu:
Clustering on Complex Graphs. AAAI 2008: 659-664 - [c363]Gang Luo, Philip S. Yu:
Content-based filtering for efficient online materialized view maintenance. CIKM 2008: 163-172 - [c362]Gang Luo, Rong Yan, Philip S. Yu:
Real-time new event detection for video streams. CIKM 2008: 379-388 - [c361]Haixun Wang, Jian Yin, Chang-Shing Perng, Philip S. Yu:
Dual encryption for query integrity assurance. CIKM 2008: 863-872 - [c360]Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, Philip S. Yu:
Fast computing reachability labelings for large graphs with high compression rate. EDBT 2008: 193-204 - [c359]Michail Vlachos, Claudio Lucchese, Deepak Rajan, Philip S. Yu:
Ownership protection of shape datasets with geodesic distance preservation. EDBT 2008: 276-286 - [c358]Bhuvan Bamba, Ling Liu, Philip S. Yu, Gong Zhang, Myungcheol Doo:
Scalable Processing of Spatial Alarms. HiPC 2008: 232-244 - [c357]Xiaohui Gu, Spiros Papadimitriou, Philip S. Yu, Shu-Ping Chang:
Toward Predictive Failure Management for Distributed Stream Processing Systems. ICDCS 2008: 825-832 - [c356]Charu C. Aggarwal, Philip S. Yu:
A Framework for Clustering Uncertain Data Streams. ICDE 2008: 150-159 - [c355]Hong Cheng, Xifeng Yan, Jiawei Han, Philip S. Yu:
Direct Discriminative Pattern Mining for Effective Classification. ICDE 2008: 169-178 - [c354]Bugra Gedik, Kun-Lung Wu, Philip S. Yu:
Efficient Construction of Compact Shedding Filters for Data Stream Processing. ICDE 2008: 396-405 - [c353]Charu C. Aggarwal, Philip S. Yu:
LOCUST: An Online Analytical Processing Framework for High Dimensional Classification of Data Streams. ICDE 2008: 426-435 - [c352]Junyi Xie, Jun Yang, Yuguo Chen, Haixun Wang, Philip S. Yu:
A Sampling-Based Approach to Information Recovery. ICDE 2008: 476-485 - [c351]Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu, Haixun Wang:
Fast Graph Pattern Matching. ICDE 2008: 913-922 - [c350]Shixi Chen, Haixun Wang, Shuigeng Zhou, Philip S. Yu:
Stop Chasing Trends: Discovering High Order Models in Evolving Data. ICDE 2008: 923-932 - [c349]Bugra Gedik, Kun-Lung Wu, Philip S. Yu, Ling Liu:
MobiQual: QoS-aware Load Shedding in Mobile CQ Systems. ICDE 2008: 1121-1130 - [c348]Claudio Lucchese, Michail Vlachos, Deepak Rajan, Philip S. Yu:
Rights Protection of Trajectory Datasets. ICDE 2008: 1349-1351 - [c347]Xiaohui Gu, Spiros Papadimitriou, Philip S. Yu, Shu-Ping Chang:
Online Failure Forecast for Fault-Tolerant Data Stream Processing. ICDE 2008: 1388-1390 - [c346]Charu C. Aggarwal, Philip S. Yu:
On High Dimensional Indexing of Uncertain Data. ICDE 2008: 1460-1461 - [c345]Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, Philip S. Yu:
Graph OLAP: Towards Online Analytical Processing on Graphs. ICDM 2008: 103-112 - [c344]Tianbing Xu, Zhongfei (Mark) Zhang, Philip S. Yu, Bo Long:
Dirichlet Process Based Evolutionary Clustering. ICDM 2008: 648-657 - [c343]Tianbing Xu, Zhongfei (Mark) Zhang, Philip S. Yu, Bo Long:
Evolutionary Clustering by Hierarchical Dirichlet Process with Hidden Markov State. ICDM 2008: 658-667 - [c342]Xin Li, Bing Liu, Philip S. Yu:
Time Sensitive Ranking with Application to Publication Search. ICDM 2008: 893-898 - [c341]Bo Liu, Longbing Cao, Philip S. Yu, Chengqi Zhang:
Multi-Space-Mapped SVMs for Multi-class Classification. ICDM 2008: 911-916 - [c340]Stephen J. H. Yang, Jia Zhang, Angus F. M. Huang, Jeffrey J. P. Tsai, Philip S. Yu:
A Context-Driven Content Adaptation Planner for Improving Mobile Internet Accessibility. ICWS 2008: 88-95 - [c339]Wei Fan, Kun Zhang, Hong Cheng, Jing Gao, Xifeng Yan, Jiawei Han, Philip S. Yu, Olivier Verscheure:
Direct mining of discriminative and essential frequent patterns via model-based search tree. KDD 2008: 230-238 - [c338]Hanghang Tong, Spiros Papadimitriou, Jimeng Sun, Philip S. Yu, Christos Faloutsos:
Colibri: fast mining of large static and dynamic graphs. KDD 2008: 686-694 - [c337]Yabo Xu, Ke Wang, Ada Wai-Chee Fu, Philip S. Yu:
Anonymizing transaction databases for publication. KDD 2008: 767-775 - [c336]Jiangtao Ren, Zhengyuan Qiu, Wei Fan, Hong Cheng, Philip S. Yu:
Forward Semi-supervised Feature Selection. PAKDD 2008: 970-976 - [c335]Spiros Papadimitriou, Jimeng Sun, Christos Faloutsos, Philip S. Yu:
Hierarchical, Parameter-Free Community Discovery. ECML/PKDD (2) 2008: 170-187 - [c334]Charu C. Aggarwal, Philip S. Yu:
Outlier Detection with Uncertain Data. SDM 2008: 483-493 - [c333]Jiangtao Ren, Xiaoxiao Shi, Wei Fan, Philip S. Yu:
Type-Independent Correction of Sample Selection Bias via Structural Discovery and Re-balancing. SDM 2008: 565-576 - [c332]Charu C. Aggarwal, Philip S. Yu:
On Indexing High Demensional Data with Uncertainty. SDM 2008: 621-631 - [c331]Zhengzheng Xing, Jian Pei, Guozhu Dong, Philip S. Yu:
Mining Sequence Classifiers for Early Prediction. SDM 2008: 644-655 - [c330]Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, Christos Faloutsos:
Proximity Tracking on Time-Evolving Bipartite Graphs. SDM 2008: 704-715 - [c329]Bo Long, Philip S. Yu, Zhongfei (Mark) Zhang:
A General Model for Multiple View Unsupervised Learning. SDM 2008: 822-833 - [c328]Xifeng Yan, Hong Cheng, Jiawei Han, Philip S. Yu:
Mining significant graph patterns by leap search. SIGMOD Conference 2008: 433-444 - [c327]Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, Myungcheol Doo:
SPADE: the system s declarative stream processing engine. SIGMOD Conference 2008: 1123-1134 - [c326]Deepak Rajan, Philip S. Yu:
Temperature-Aware Scheduling: When is System-Throttling Good Enough? WAIM 2008: 397-404 - [c325]Nitin Agarwal, Huan Liu, Lei Tang, Philip S. Yu:
Identifying the influential bloggers in a community. WSDM 2008: 207-218 - [c324]Xiaowen Ding, Bing Liu, Philip S. Yu:
A holistic lexicon-based approach to opinion mining. WSDM 2008: 231-240 - [p11]Nitin Agarwal, Huan Liu, John J. Salerno, Philip S. Yu:
Searching for "Familiar Strangers" on Blogosphere. Next Generation of Data Mining 2008 - [p10]Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu:
Mining Frequent Approximate Sequential Patterns. Next Generation of Data Mining 2008 - [p9]Charu C. Aggarwal, Philip S. Yu:
Privacy-Preserving Data Mining: A Survey. Handbook of Database Security 2008: 431-460 - [p8]Charu C. Aggarwal, Philip S. Yu:
An Introduction to Privacy-Preserving Data Mining. Privacy-Preserving Data Mining 2008: 1-9 - [p7]Charu C. Aggarwal, Philip S. Yu:
A General Survey of Privacy-Preserving Data Mining Models and Algorithms. Privacy-Preserving Data Mining 2008: 11-52 - [p6]Charu C. Aggarwal, Philip S. Yu:
A Survey of Randomization Methods for Privacy-Preserving Data Mining. Privacy-Preserving Data Mining 2008: 137-156 - [p5]Hong Cheng, Philip S. Yu, Jiawei Han:
Approximate Frequent Itemset Mining In the Presence of Random Noise. Soft Computing for Knowledge Discovery and Data Mining 2008: 363-389 - [e18]Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeev Motwani, Vipin Kumar:
Next Generation of Data Mining. Chapman and Hall / CRC Data Mining and Knowledge Discovery Series, CRC Press / Chapman and Hall / Taylor & Francis 2008, ISBN 978-1-4200-8586-0 [contents] - [e17]Charu C. Aggarwal, Philip S. Yu:
Privacy-Preserving Data Mining - Models and Algorithms. Advances in Database Systems 34, Springer 2008, ISBN 978-0-387-70991-8 [contents] - 2007
- [j160]James Zijun Wang, Zhidian Du, Rapeeporn Payattakool, Philip S. Yu, Chin-Fu Chen:
A new method to measure the semantic similarity of GO terms. Bioinform. 23(10): 1274-1281 (2007) - [j159]Xiaoxin Yin, Jiawei Han, Philip S. Yu:
CrossClus: user-guided multi-relational clustering. Data Min. Knowl. Discov. 15(3): 321-348 (2007) - [j158]Longbing Cao, Chengqi Zhang, Qiang Yang, David A. Bell, Michail Vlachos, Bahar Taneri, Eamonn J. Keogh, Philip S. Yu, Ning Zhong, Mafruz Zaman Ashrafi, David Taniar, Eugene Dubossarsky, Warwick Graco:
Domain-Driven, Actionable Knowledge Discovery. IEEE Intell. Syst. 22(4): 78-88 (2007) - [j157]Xingzhi Sun, Philip S. Yu:
Hiding Sensitive Frequent Itemsets by a Border-Based Approach. J. Comput. Sci. Eng. 1(1): 74-94 (2007) - [j156]Ke Wang, Benjamin C. M. Fung, Philip S. Yu:
Handicapping attacker's confidence: an alternative to k -anonymization. Knowl. Inf. Syst. 11(3): 345-368 (2007) - [j155]Bugra Gedik, Kun-Lung Wu, Philip S. Yu, Ling Liu:
CPU load shedding for binary stream joins. Knowl. Inf. Syst. 13(3): 271-303 (2007) - [j154]Longbing Cao, Chengqi Zhang, Yanchang Zhao, Philip S. Yu, Graham Williams:
DDDM2007: Domain Driven Data Mining. SIGKDD Explor. 9(2): 84-86 (2007) - [j153]Benjamin C. M. Fung, Ke Wang, Philip S. Yu:
Anonymizing Classification Data for Privacy Preservation. IEEE Trans. Knowl. Data Eng. 19(5): 711-725 (2007) - [j152]Bugra Gedik, Kun-Lung Wu, Philip S. Yu, Ling Liu:
GrubJoin: An Adaptive, Multi-Way, Windowed Stream Join with Time Correlation-Aware CPU Load Shedding. IEEE Trans. Knowl. Data Eng. 19(10): 1363-1380 (2007) - [j151]Ming-Jyh Hsieh, Ming-Syan Chen, Philip S. Yu:
Approximate Query Processing in Cube Streams. IEEE Trans. Knowl. Data Eng. 19(11): 1557-1570 (2007) - [j150]James Zijun Wang, Philip S. Yu:
Fragmental Proxy Caching for Streaming Multimedia Objects. IEEE Trans. Multim. 9(1): 147-156 (2007) - [j149]Bugra Gedik, Ling Liu, Philip S. Yu:
ASAP: An Adaptive Sampling Approach to Data Collection in Sensor Networks. IEEE Trans. Parallel Distributed Syst. 18(12): 1766-1783 (2007) - [c323]Bo Long, Zhongfei (Mark) Zhang, Philip S. Yu:
Graph Partitioning Based on Link Distributions. AAAI 2007: 578-583 - [c322]Jian Pei, Man Ki Mag Lau, Philip S. Yu:
TS-Trees: A Non-Alterable Search Tree Index for Trustworthy Databases on Write-Once-Read-Many (WORM) Storage. AINA 2007: 54-61 - [c321]James Zijun Wang, Zhidian Du, Philip S. Yu, Chin-Fu Chen:
An Efficient Online Tool to Search Top-N Genes with Similar Biological Functions in Gene Ontology Database. BIBM 2007: 406-411 - [c320]Deepak Rajan, Philip S. Yu:
On Temperature-Aware Scheduling for Single-Processor Systems. HiPC 2007: 342-355 - [c319]Xiaohui Gu, Philip S. Yu, Haixun Wang:
Adaptive Load Diffusion for Multiway Windowed Stream Joins. ICDE 2007: 146-155 - [c318]Bugra Gedik, Ling Liu, Kun-Lung Wu, Philip S. Yu:
Lira: Lightweight, Region-aware Load Shedding in Mobile CQ Systems. ICDE 2007: 286-295 - [c317]Bugra Gedik, Kun-Lung Wu, Philip S. Yu, Ling Liu:
A Load Shedding Framework and Optimizations for M-way Windowed Stream Joins. ICDE 2007: 536-545 - [c316]Haoliang Jiang, Haixun Wang, Philip S. Yu, Shuigeng Zhou:
GString: A Novel Approach for Efficient Search in Graph Databases. ICDE 2007: 566-575 - [c315]Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, Hong Cheng:
Mining Colossal Frequent Patterns by Core Pattern Fusion. ICDE 2007: 706-715 - [c314]Xiaoxin Yin, Jiawei Han, Philip S. Yu:
Object Distinction: Distinguishing Objects with Identical Names. ICDE 2007: 1242-1246 - [c313]Gang Luo, Kun-Lung Wu, Philip S. Yu:
SAO: A Stream Index for Answering Linear Optimization Queries. ICDE 2007: 1302-1306 - [c312]Bo Long, Xiaoyun Xu, Zhongfei (Mark) Zhang, Philip S. Yu:
Community Learning by Graph Approximation. ICDM 2007: 232-241 - [c311]Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu:
Efficient Discovery of Frequent Approximate Sequential Patterns. ICDM 2007: 751-756 - [c310]Xiaohui Gu, Philip S. Yu:
Toward Self-Managed Media Stream Processing Service Overlays. ICME 2007: 2054-2057 - [c309]Bo Long, Zhongfei (Mark) Zhang, Xiaoyun Wu, Philip S. Yu:
Relational clustering by symmetric convex coding. ICML 2007: 569-576 - [c308]Xiaohui Gu, Zhen Wen, Philip S. Yu:
BridgeNet: An Adaptive Multi-Source Stream Dissemination Overlay Network. INFOCOM 2007: 2586-2590 - [c307]Kirsten Hildrum, Fred Douglis, Joel L. Wolf, Philip S. Yu, Lisa Fleischer, Akshay Katta:
Storage Optimization for Large-Scale Distributed Stream Processing Systems. IPDPS 2007: 1-8 - [c306]Xifeng Yan, Michael R. Mehan, Yu Huang, Michael S. Waterman, Philip S. Yu, Xianghong Jasmine Zhou:
A graph-based approach to systematically reconstruct human transcriptional regulatory modules. ISMB/ECCB (Supplement of Bioinformatics) 2007: 577-586 - [c305]Charu C. Aggarwal, Philip S. Yu:
On string classification in data streams. KDD 2007: 36-45 - [c304]Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Huan Liu, Philip S. Yu:
Time-dependent event hierarchy construction. KDD 2007: 300-309 - [c303]Bo Long, Zhongfei (Mark) Zhang, Philip S. Yu:
A probabilistic framework for relational clustering. KDD 2007: 470-479 - [c302]Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, Philip S. Yu:
GraphScope: parameter-free mining of large time-evolving graphs. KDD 2007: 687-696 - [c301]Xiaoxin Yin, Jiawei Han, Philip S. Yu:
Truth discovery with multiple conflicting information providers on the web. KDD 2007: 1048-1052 - [c300]Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu:
gPrune: A Constraint Pushing Framework for Graph Pattern Mining. PAKDD 2007: 388-400 - [c299]Michail Vlachos, Bahar Taneri, Eamonn J. Keogh, Philip S. Yu:
Visual Exploration of Genomic Data. PKDD 2007: 613-620 - [c298]Jing Gao, Wei Fan, Jiawei Han, Philip S. Yu:
A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions. SDM 2007: 3-14 - [c297]Charu C. Aggarwal, Philip S. Yu:
On Privacy-Preservation of Text and Sparse Binary Data with Sketches. SDM 2007: 57-67 - [c296]Charu C. Aggarwal, Philip S. Yu:
On Anonymization of String Data. SDM 2007: 419-424 - [c295]Vagelis Hristidis, Oscar Valdivia, Michail Vlachos, Philip S. Yu:
A System for Keyword Search on Textual Streams. SDM 2007: 503-508 - [c294]Hao He, Haixun Wang, Jun Yang, Philip S. Yu:
BLINKS: ranked keyword searches on graphs. SIGMOD Conference 2007: 305-316 - [c293]Gang Luo, Chunqiang Tang, Philip S. Yu:
Resource-adaptive real-time new event detection. SIGMOD Conference 2007: 497-508 - [c292]Bugra Gedik, Philip S. Yu, Rajesh Bordawekar:
Executing Stream Joins on the Cell Processor. VLDB 2007: 363-374 - [c291]Spiros Papadimitriou, Feifei Li, George Kollios, Philip S. Yu:
Time Series Compressibility and Privacy. VLDB 2007: 459-470 - [c290]Chen Chen, Xifeng Yan, Philip S. Yu, Jiawei Han, Dong-Qing Zhang, Xiaohui Gu:
Towards Graph Containment Search and Indexing. VLDB 2007: 926-937 - [c289]Peixiang Zhao, Jeffrey Xu Yu, Philip S. Yu:
Graph Indexing: Tree + Delta >= Graph. VLDB 2007: 938-949 - [c288]Kun-Lung Wu, Philip S. Yu, Bugra Gedik, Kirsten Hildrum, Charu C. Aggarwal, Eric Bouillet, Wei Fan, David George, Xiaohui Gu, Gang Luo, Haixun Wang:
Challenges and Experience in Prototyping a Multi-Modal Stream Analytic and Monitoring Application on System S. VLDB 2007: 1185-1196 - [c287]Bugra Gedik, Rajesh Bordawekar, Philip S. Yu:
CellSort: High Performance Sorting on the Cell Processor. VLDB 2007: 1286-1207 - [c286]Claudia Canali, Michele Colajanni, Riccardo Lancellotti, Philip S. Yu:
A Distributed Infrastructure Supporting Personalized Services for the Mobile Web. WiMob 2007: 66 - [p4]Charu C. Aggarwal, Jiawei Han, Jianyong Wang, Philip S. Yu:
On Clustering Massive Data Streams: A Summarization Paradigm. Data Streams - Models and Algorithms 2007: 9-38 - [p3]Charu C. Aggarwal, Philip S. Yu:
A Survey of Synopsis Construction in Data Streams. Data Streams - Models and Algorithms 2007: 169-207 - 2006
- [j148]Michail Vlachos, Philip S. Yu, Vittorio Castelli, Christopher Meek:
Structural Periodic Measures for Time-Series Data. Data Min. Knowl. Discov. 12(1): 1-28 (2006) - [j147]Mohamed Medhat Gaber, Philip S. Yu:
Detection and Classification of Changes in Evolving Data Streams. Int. J. Inf. Technol. Decis. Mak. 5(4): 659-670 (2006) - [j146]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Query indexing with containment-encoded intervals for efficient stream processing. Knowl. Inf. Syst. 9(1): 62-90 (2006) - [j145]Yun Chi, Haixun Wang, Philip S. Yu, Richard R. Muntz:
Catch the moment: maintaining closed frequent itemsets over a data stream sliding window. Knowl. Inf. Syst. 10(3): 265-294 (2006) - [j144]Mohamed Medhat Gaber, Philip S. Yu:
A Holistic Approach for Resource-aware Adaptive Data Stream Mining. New Gener. Comput. 25(1): 95-115 (2006) - [j143]Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Hongjun Lu, Philip S. Yu:
Text Classification without Negative Examples Revisit. IEEE Trans. Knowl. Data Eng. 18(1): 6-20 (2006) - [j142]Charu C. Aggarwal, Jiawei Han, Jianyong Wang, Philip S. Yu:
A Framework for On-Demand Classification of Evolving Data Streams. IEEE Trans. Knowl. Data Eng. 18(5): 577-589 (2006) - [j141]Bugra Gedik, Kun-Lung Wu, Philip S. Yu, Ling Liu:
Processing Moving Queries over Moving Objects Using Motion-Adaptive Indexes. IEEE Trans. Knowl. Data Eng. 18(5): 651-668 (2006) - [j140]Xiaoxin Yin, Jiawei Han, Jiong Yang, Philip S. Yu:
Efficient Classification across Multiple Database Relations: A CrossMine Approach. IEEE Trans. Knowl. Data Eng. 18(6): 770-783 (2006) - [j139]Jian Pei, Haixun Wang, Jian Liu, Ke Wang, Jianyong Wang, Philip S. Yu:
Discovering Frequent Closed Partial Orders from Strings. IEEE Trans. Knowl. Data Eng. 18(11): 1467-1481 (2006) - [j138]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Incremental Processing of Continual Range Queries over Moving Objects. IEEE Trans. Knowl. Data Eng. 18(11): 1560-1575 (2006) - [j137]Xifeng Yan, Feida Zhu, Philip S. Yu, Jiawei Han:
Feature-based similarity search in graph structures. ACM Trans. Database Syst. 31(4): 1418-1453 (2006) - [c285]Ke Wang, Yabo Xu, Rong She, Philip S. Yu:
Classification Spanning Private Databases. AAAI 2006: 293-298 - [c284]Xin Li, Bing Liu, Philip S. Yu:
Mining Community Structure of Named Entities from Web Pages and Blogs. AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs 2006: 108-114 - [c283]Vagelis Hristidis, Oscar Valdivia, Michail Vlachos, Philip S. Yu:
Continuous keyword search on multiple text streams. CIKM 2006: 802-803 - [c282]Michail Vlachos, Deepak S. Turaga, Philip S. Yu:
Resource Adaptive Periodicity Estimation of Streaming Data. EDBT 2006: 23-40 - [c281]Gang Luo, Jeffrey F. Naughton, Philip S. Yu:
Multi-query SQL Progress Indicators. EDBT 2006: 921-941 - [c280]Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, Philip S. Yu:
Fast Computation of Reachability Labeling for Large Graphs. EDBT 2006: 961-979 - [c279]Deepak S. Turaga, Michail Vlachos, Spiros Papadimitriou, Philip S. Yu:
Slide: Streaming and Load-Adaptive Periodicity Estimation. ICASSP (3) 2006: 1000-1003 - [c278]Haixun Wang, Hao He, Jun Yang, Philip S. Yu, Jeffrey Xu Yu:
Dual Labeling: Answering Graph Reachability Queries in Constant Time. ICDE 2006: 75 - [c277]Xifeng Yan, Feida Zhu, Jiawei Han, Philip S. Yu:
Searching Substructures with Superimposed Distance. ICDE 2006: 88 - [c276]Jiawei Han, Xifeng Yan, Philip S. Yu:
Mining, Indexing, and Similarity Search in Graphs and Complex Structures. ICDE 2006: 106 - [c275]Spiros Papadimitriou, Jimeng Sun, Philip S. Yu:
Local Correlation Tracking in Time Series. ICDM 2006: 456-465 - [c274]Deepak Rajan, Philip S. Yu:
Discovering Partial Orders in Binary Data. ICDM 2006: 510-521 - [c273]Olivier Verscheure, Michail Vlachos, Aris Anagnostopoulos, Pascal Frossard, Eric Bouillet, Philip S. Yu:
Finding "Who Is Talking to Whom" in VoIP Networks via Progressive Stream Clustering. ICDM 2006: 667-677 - [c272]Peng Wang, Haixun Wang, Wei Wang, Baile Shi, Philip S. Yu:
LOCI: Load Shedding through Class-Preserving Data Acquisition. ICDM 2006: 701-710 - [c271]Hong Cheng, Philip S. Yu, Jiawei Han:
AC-Close: Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery. ICDM 2006: 839-844 - [c270]Jimeng Sun, Spiros Papadimitriou, Philip S. Yu:
Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams. ICDM 2006: 1076-1080 - [c269]Bo Long, Zhongfei (Mark) Zhang, Xiaoyun Wu, Philip S. Yu:
Spectral clustering for multi-type relational data. ICML 2006: 585-592 - [c268]Aris Anagnostopoulos, Michail Vlachos, Marios Hadjieleftheriou, Eamonn J. Keogh, Philip S. Yu:
Global distance-based segmentation of trajectories. KDD 2006: 34-43 - [c267]Wei Fan, Joe McCloskey, Philip S. Yu:
A general framework for accurate and fast regression by data summarization in random decision trees. KDD 2006: 136-146 - [c266]Bo Long, Xiaoyun Wu, Zhongfei (Mark) Zhang, Philip S. Yu:
Unsupervised learning on k-partite graphs. KDD 2006: 317-326 - [c265]Haixun Wang, Jian Yin, Jian Pei, Philip S. Yu, Jeffrey Xu Yu:
Suppressing model overfitting in mining concept-drifting data streams. KDD 2006: 736-741 - [c264]Chao Liu, Chen Chen, Jiawei Han, Philip S. Yu:
GPLAG: detection of software plagiarism by program dependence graph analysis. KDD 2006: 872-881 - [c263]Xiaohui Gu, Zhen Wen, Ching-Yung Lin, Philip S. Yu:
ViCo: an adaptive distributed video correlation system. ACM Multimedia 2006: 559-568 - [c262]Michail Vlachos, Spiros Papadimitriou, Zografoula Vagena, Philip S. Yu:
RIVA: Indexing and Visualization of High-Dimensional Data Via Dimension Reorderings. PKDD 2006: 407-420 - [c261]Xin Li, Bing Liu, Philip S. Yu:
Discovering Overlapping Communities of Named Entities. PKDD 2006: 593-600 - [c260]Mohamed Medhat Gaber, Philip S. Yu:
A framework for resource-aware knowledge discovery in data streams: a holistic approach with its application to clustering. SAC 2006: 649-656 - [c259]Charu C. Aggarwal, Philip S. Yu:
A Framework for Clustering Massive Text and Categorical Data Streams. SDM 2006: 479-483 - [c258]Spiros Papadimitriou, Philip S. Yu:
Optimal multi-scale patterns in time series streams. SIGMOD Conference 2006: 647-658 - [c257]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
On Range Query Indexing for Efficient Stream Processing. SUTC (1) 2006: 530-539 - [c256]Xiaoxin Yin, Jiawei Han, Philip S. Yu:
LinkClus: Efficient Clustering via Heterogeneous Semantic Links. VLDB 2006: 427-438 - [c255]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
On-Demand Index for Efficient Structural Joins. WAIM 2006: 1-12 - [e16]Philip S. Yu, Vassilis J. Tsotras, Edward A. Fox, Bing Liu:
Proceedings of the 2006 ACM CIKM International Conference on Information and Knowledge Management, Arlington, Virginia, USA, November 6-11, 2006. ACM 2006, ISBN 1-59593-433-2 [contents] - [e15]Olfa Nasraoui, Osmar R. Zaïane, Myra Spiliopoulou, Bamshad Mobasher, Brij M. Masand, Philip S. Yu:
Advances in Web Mining and Web Usage Analysis, 7th International Workshop on Knowledge Discovery on the Web, WebKDD 2005, Chicago, IL, USA, August 21, 2005. Revised Papers. Lecture Notes in Computer Science 4198, Springer 2006, ISBN 3-540-46346-1 [contents] - 2005
- [j136]Charu C. Aggarwal, Jiawei Han, Jianyong Wang, Philip S. Yu:
On High Dimensional Projected Clustering of Data Streams. Data Min. Knowl. Discov. 10(3): 251-273 (2005) - [j135]Jiong Yang, Haixun Wang, Wei Wang, Philip S. Yu:
An Improved Biclustering Method for Analyzing Gene Expression Profiles. Int. J. Artif. Intell. Tools 14(5): 771-790 (2005) - [j134]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Efficient Processing of Continual Range Queries for Location-Aware Mobile Services. Inf. Syst. Frontiers 7(4-5): 435-448 (2005) - [j133]Haixun Wang, Chang-Shing Perng, Sheng Ma, Philip S. Yu:
Demand-driven frequent itemset mining using pattern structures. Knowl. Inf. Syst. 8(1): 82-102 (2005) - [j132]Olfa Nasraoui, Osmar R. Zaïane, Myra Spiliopoulou, Bamshad Mobasher, Brij M. Masand, Philip S. Yu:
WebKDD 2005: web mining and web usage analysis post-workshop report. SIGKDD Explor. 7(2): 139-142 (2005) - [j131]Xifeng Yan, Philip S. Yu, Jiawei Han:
Graph indexing based on discriminative frequent structure analysis. ACM Trans. Database Syst. 30(4): 960-993 (2005) - [j130]Charu C. Aggarwal, Philip S. Yu:
An effective and efficient algorithm for high-dimensional outlier detection. VLDB J. 14(2): 211-221 (2005) - [c254]Michail Vlachos, Zografoula Vagena, Philip S. Yu, Vassilis Athitsos:
Rotation invariant indexing of shapes and line drawings. CIKM 2005: 131-138 - [c253]Bugra Gedik, Kun-Lung Wu, Philip S. Yu, Ling Liu:
Adaptive load shedding for windowed stream joins. CIKM 2005: 171-178 - [c252]Ming-Jyh Hsieh, Ming-Syan Chen, Philip S. Yu:
Integrating DCT and DWT for approximating cube streams. CIKM 2005: 179-186 - [c251]Hao He, Haixun Wang, Jun Yang, Philip S. Yu:
Compact reachability labeling for graph-structured data. CIKM 2005: 594-601 - [c250]Philip S. Yu:
Data Stream Mining and Resource Adaptive Computation. DASFAA 2005: 1 - [c249]Xiaohui Gu, Philip S. Yu, Klara Nahrstedt:
Optimal Component Composition for Scalable Stream Processing. ICDCS 2005: 773-782 - [c248]Benjamin C. M. Fung, Ke Wang, Philip S. Yu:
Top-Down Specialization for Information and Privacy Preservation. ICDE 2005: 205-216 - [c247]Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Hongjun Lu, Philip S. Yu:
Text Classification without Labeled Negative Documents. ICDE 2005: 594-605 - [c246]Haixun Wang, Jian Pei, Philip S. Yu:
Online Mining of Data Streams: Applications, Techniques and Progress. ICDE 2005: 1146 - [c245]Wei Fan, Ed Greengrass, Joe McCloskey, Philip S. Yu, Kevin Drummey:
Effective Estimation of Posterior Probabilities: Explaining the Accuracy of Randomized Decision Tree Approaches. ICDM 2005: 154-161 - [c244]Bo Long, Zhongfei (Mark) Zhang, Philip S. Yu:
Combining Multiple Clusterings by Soft Correspondence. ICDM 2005: 282-289 - [c243]Xingzhi Sun, Philip S. Yu:
A Border-Based Approach for Hiding Sensitive Frequent Itemsets. ICDM 2005: 426-433 - [c242]Ke Wang, Benjamin C. M. Fung, Philip S. Yu:
Template-Based Privacy Preservation in Classification Problems. ICDM 2005: 466-473 - [c241]Wei Fan, Ian Davidson, Bianca Zadrozny, Philip S. Yu:
An Improved Categorization of Classifier's Sensitivity on Sample Selection Bias. ICDM 2005: 605-608 - [c240]Kirsten Hildrum, Philip S. Yu:
Focused Community Discovery. ICDM 2005: 641-644 - [c239]Jian Pei, Jian Liu, Haixun Wang, Ke Wang, Philip S. Yu, Jianyong Wang:
Efficiently Mining Frequent Closed Partial Orders. ICDM 2005: 753-756 - [c238]Charu C. Aggarwal, David P. Olshefski, Debanjan Saha, Zon-Yin Shae, Philip S. Yu:
CSR: Speaker Recognition from Compressed VoIP Packet Stream. ICME 2005: 970-973 - [c237]Philip S. Yu:
Mining Evolving Streams with Resource Adaptive Computation. ISM 2005: 4 - [c236]Charu C. Aggarwal, Philip S. Yu:
On Clustering Techniques for Change Diagnosis in Data Streams. WEBKDD 2005: 139-157 - [c235]Xiaoxin Yin, Jiawei Han, Philip S. Yu:
Cross-relational clustering with user's guidance. KDD 2005: 344-353 - [c234]Bo Long, Zhongfei (Mark) Zhang, Philip S. Yu:
Co-clustering by block value decomposition. KDD 2005: 635-640 - [c233]Haixun Wang, Jian Pei, Philip S. Yu:
Pattern-based similarity search for microarray data. KDD 2005: 814-819 - [c232]Xiaohui Gu, Philip S. Yu:
Adaptive Load Diffusion for Stream Joins. Middleware 2005: 411-420 - [c231]Xiaohui Gu, Zhen Wen, Philip S. Yu, Zon-Yin Shae:
Supporting multi-party voice-over-IP services with peer-to-peer stream processing. ACM Multimedia 2005: 303-306 - [c230]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
On Incremental Processing of Continual Range Queries for Location-Aware Services and Applications. MobiQuitous 2005: 261-269 - [c229]Michail Vlachos, Zografoula Vagena, Vittorio Castelli, Philip S. Yu:
A Multi-metric Index for Euclidean and Periodic Matching. PKDD 2005: 355-367 - [c228]Michail Vlachos, Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Fast Burst Correlation of Financial Data. PKDD 2005: 368-379 - [c227]Claudia Canali, Valeria Cardellini, Michele Colajanni, Riccardo Lancellotti, Philip S. Yu:
A Two-Level Distributed Architecture for Efficient Web Content Adaptation and Delivery. SAINT 2005: 132-139 - [c226]Charu C. Aggarwal, Philip S. Yu:
Online Analysis of Community Evolution in Data Streams. SDM 2005: 56-67 - [c225]Charu C. Aggarwal, Philip S. Yu:
On Variable Constraints in Privacy Preserving Data Mining. SDM 2005: 115-125 - [c224]Chao Liu, Xifeng Yan, Hwanjo Yu, Jiawei Han, Philip S. Yu:
Mining Behavior Graphs for "Backtrace" of Noncrashing Bugs. SDM 2005: 286-297 - [c223]Yun Chi, Philip S. Yu, Haixun Wang, Richard R. Muntz:
Loadstar: A Load Shedding Scheme for Classifying Data Streams. SDM 2005: 346-357 - [c222]Michail Vlachos, Philip S. Yu, Vittorio Castelli:
On Periodicity Detection and Structural Periodic Similarity. SDM 2005: 449-460 - [c221]Rong She, Ke Wang, Yabo Xu, Philip S. Yu:
Pushing Feature Selection Ahead Of Join. SDM 2005: 536-540 - [c220]Zheng Sun, Philip S. Yu, Xiang-Yang Li:
Iterative Mining for Rules with Constrained Antecedents. SDM 2005: 551-555 - [c219]Ke Wang, Yabo Xu, Philip S. Yu, Rong She:
Building Decision Trees on Records Linked through Key References. SDM 2005: 576-580 - [c218]Haixun Wang, Chang-Shing Perng, Philip S. Yu:
Near-Neighbor Search in Pattern Distance Spaces. SDM 2005: 586-590 - [c217]Xifeng Yan, Philip S. Yu, Jiawei Han:
Substructure Similarity Search in Graph Databases. SIGMOD Conference 2005: 766-777 - [c216]Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Philip S. Yu, Hongjun Lu:
Parameter Free Bursty Events Detection in Text Streams. VLDB 2005: 181-192 - [c215]Yun Chi, Haixun Wang, Philip S. Yu:
Loadstar: Load Shedding in Data Stream Mining. VLDB 2005: 1303-1305 - [c214]Philip S. Yu, Xin Li, Bing Liu:
Adding the Temporal Dimension to Search - A Case Study in Publication Search. Web Intelligence 2005: 543-549 - [c213]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Efficient structural joins with on-the-fly indexing. WWW (Special interest tracks and posters) 2005: 1028-1029 - [p2]Haixun Wang, Philip S. Yu, Jiawei Han:
Mining Data Streams. The Data Mining and Knowledge Discovery Handbook 2005: 777-792 - 2004
- [j129]Jiong Yang, Wei Wang, Philip S. Yu:
Mining Surprising Periodic Patterns. Data Min. Knowl. Discov. 9(2): 189-216 (2004) - [j128]Melissa J. Buco, Rong N. Chang, Laura Z. Luan, Christopher Ward, Joel L. Wolf, Philip S. Yu:
Utility computing SLA management based upon business objectives. IBM Syst. J. 43(1): 159-178 (2004) - [j127]Wei Wang, Jiong Yang, Philip S. Yu:
WAR: Weighted Association Rules for Item Intensities. Knowl. Inf. Syst. 6(2): 203-229 (2004) - [j126]Jiong Yang, Wei Wang, Philip S. Yu:
Discovering High-Order Periodic Patterns. Knowl. Inf. Syst. 6(3): 243-268 (2004) - [j125]Charu C. Aggarwal, Stephen C. Gates, Philip S. Yu:
On Using Partial Supervision for Text Categorization. IEEE Trans. Knowl. Data Eng. 16(2): 245-255 (2004) - [j124]Kun-Lung Wu, Philip S. Yu, Joel L. Wolf:
Segmentation of multimedia streams for proxy caching. IEEE Trans. Multim. 6(5): 770-780 (2004) - [c212]Bing Liu, Xiaoli Li, Wee Sun Lee, Philip S. Yu:
Text Classification by Labeling Words. AAAI 2004: 425-430 - [c211]Philip S. Yu, Kun-Lung Wu, Shyh-Kwei Chen:
Monitoring Continual Range Queries. APWeb 2004: 1-12 - [c210]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Interval query indexing for efficient stream processing. CIKM 2004: 88-97 - [c209]Bugra Gedik, Kun-Lung Wu, Philip S. Yu, Ling Liu:
Motion adaptive indexing for moving continual queries over moving objects. CIKM 2004: 427-436 - [c208]Xiaoxin Yin, Jiawei Han, Jiong Yang, Philip S. Yu:
CrossMine: Efficient Classification Across Multiple Database Relations. Constraint-Based Mining and Inductive Databases 2004: 172-195 - [c207]Charu C. Aggarwal, Philip S. Yu:
A Condensation Approach to Privacy Preserving Data Mining. EDBT 2004: 183-199 - [c206]Wei Fan, Philip S. Yu, Haixun Wang:
Mining Extremely Skewed Trading Anomalies. EDBT 2004: 801-810 - [c205]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Indexing Continual Range Queries for Location-Aware Mobile Services. EEE 2004: 233-240 - [c204]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Indexing Continual Range Queries with Covering Tiles for Fast Locating of Moving Objects. ICDCS Workshops 2004: 470-475 - [c203]Xiaoxin Yin, Jiawei Han, Jiong Yang, Philip S. Yu:
CrossMine: Efficient Classification Across Multiple Database Relations. ICDE 2004: 399-410 - [c202]Yun Chi, Haixun Wang, Philip S. Yu, Richard R. Muntz:
Moment: Maintaining Closed Frequent Itemsets over a Stream Sliding Window. ICDM 2004: 59-66 - [c201]Ke Wang, Philip S. Yu, Sourav Chakraborty:
Bottom-Up Generalization: A Data Mining Solution to Privacy Protection. ICDM 2004: 249-256 - [c200]Wei Fan, Yi-an Huang, Philip S. Yu:
Decision Tree Evolution Using Limited Number of Labeled Data Items from Drifting Data Streams. ICDM 2004: 379-382 - [c199]Charu C. Aggarwal, Jiawei Han, Jianyong Wang, Philip S. Yu:
On demand classification of data streams. KDD 2004: 503-508 - [c198]Mauro Andreolini, Riccardo Lancellotti, Philip S. Yu:
Analysis of Peer-to-Peer Systems: Workload Characterization and Effects on Traffic Cacheability. MASCOTS 2004: 95-104 - [c197]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Processing Continual Range Queries over Moving Objects Using VCR-Based Query Indexes. MobiQuitous 2004: 226-235 - [c196]Philip S. Yu:
Mining of Evolving Data Streams with Privacy Preservation. PAKDD 2004: 1 - [c195]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
VCR indexing for fast event matching for highly-overlapping range predicates. SAC 2004: 740-747 - [c194]Wei Fan, Yi-an Huang, Haixun Wang, Philip S. Yu:
Active Mining of Data Streams. SDM 2004: 457-461 - [c193]Wei-Guang Teng, Ming-Syan Chen, Philip S. Yu:
Resource-Aware Mining with Variable Granularities in Data Streams. SDM 2004: 527-531 - [c192]Xifeng Yan, Philip S. Yu, Jiawei Han:
Graph Indexing: A Frequent Structure-based Approach. SIGMOD Conference 2004: 335-346 - [c191]Haixun Wang, Fang Chu, Wei Fan, Philip S. Yu, Jian Pei:
A Fast Algorithm for Subspace Clustering by Pattern Similarity. SSDBM 2004: 51-60 - [c190]Jiong Yang, Wei Wang, Philip S. Yu:
BASS: Approximate Search on Large String Databases. SSDBM 2004: 181-190 - [c189]Charu C. Aggarwal, Jiawei Han, Jianyong Wang, Philip S. Yu:
A Framework for Projected Clustering of High Dimensional Data Streams. VLDB 2004: 852-863 - [c188]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Shingle-Based Query Indexing for Location-Based Mobile E-Commerce. CEC 2004: 16-23 - [c187]Philip S. Yu, Xin Li, Bing Liu:
On the temporal dimension of search. WWW (Alternate Track Papers & Posters) 2004: 448-449 - [e14]Gautam Das, Bing Liu, Philip S. Yu:
Proceedings of the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD 2004, Paris, France, June 13, 2004. ACM 2004, ISBN 1-58113-908-X [contents] - [e13]Philip S. Yu:
Editorial: State of the Transactions. IEEE Trans. Knowl. Data Eng. 16(1): 1 (2004) - [e12]Philip S. Yu:
EIC Editorial. IEEE Trans. Knowl. Data Eng. 16(3): 289-291 (2004) - [e11]Philip S. Yu:
EIC Editorial. IEEE Trans. Knowl. Data Eng. 16(9): 1025 (2004) - 2003
- [j123]Bing Liu, Yiming Ma, Ching Kian Wong, Philip S. Yu:
Scoring the Data Using Association Rules. Appl. Intell. 18(2): 119-135 (2003) - [j122]Ah-Hwee Tan, Philip S. Yu:
Guest Editorial: Text and Web Mining. Appl. Intell. 18(3): 239-241 (2003) - [j121]Kun-Lung Wu, Philip S. Yu:
Replication for Load Balancing and Hot-Spot Relief on Proxy Web Caches with Hash Routing. Distributed Parallel Databases 13(2): 203-220 (2003) - [j120]Xindong Wu, Philip S. Yu, Gregory Piatetsky-Shapiro:
Data Mining: How Research Meets Practical Development? Knowl. Inf. Syst. 5(2): 248-261 (2003) - [j119]Ming-Syan Chen, Kun-Lung Wu, Philip S. Yu:
Optimizing Index Allocation for Sequential Data Broadcasting in Wireless Mobile Computing. IEEE Trans. Knowl. Data Eng. 15(1): 161-173 (2003) - [j118]Jiong Yang, Wei Wang, Philip S. Yu:
Mining Asynchronous Periodic Patterns in Time Series Data. IEEE Trans. Knowl. Data Eng. 15(3): 613-628 (2003) - [j117]Valeria Cardellini, Michele Colajanni, Philip S. Yu:
Request Redirection Algorithms for Distributed Web Systems. IEEE Trans. Parallel Distributed Syst. 14(4): 355-368 (2003) - [c186]Jiong Yang, Haixun Wang, Wei Wang, Philip S. Yu:
Enhanced Biclustering on Expression Data. BIBE 2003: 321-327 - [c185]Yi-an Huang, Wei Fan, Wenke Lee, Philip S. Yu:
Cross-Feature Analysis for Detecting Ad-Hoc Routing Anomalies. ICDCS 2003: 478- - [c184]Anton Riabov, Zhen Liu, Joel L. Wolf, Philip S. Yu, Li Zhang:
New Algorithms for Content-Based Publication-Subscription Systems. ICDCS 2003: 678-686 - [c183]Haixun Wang, Chang-Shing Perng, Wei Fan, Sanghyun Park, Philip S. Yu:
Indexing Weighted-Sequences in Large Databases. ICDE 2003: 63-74 - [c182]Wei Fan, Haixun Wang, Philip S. Yu, Sheng Ma:
Is random model better? On its accuracy and efficiency. ICDM 2003: 51-58 - [c181]Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, Philip S. Yu:
Building Text Classifiers Using Positive and Unlabeled Examples. ICDM 2003: 179-188 - [c180]Jian Pei, Xiaoling Zhang, Moonjung Cho, Haixun Wang, Philip S. Yu:
MaPle: A Fast Algorithm for Maximal Pattern-based Clustering. ICDM 2003: 259-266 - [c179]Chung-Sheng Li, Charu C. Aggarwal, Murray Campbell, Yuan-Chi Chang, Gregory Glass, Vijay S. Iyengar, Mahesh Joshi, Ching-Yung Lin, Milind R. Naphade, John R. Smith, Belle L. Tseng, Min Wang, Kun-Lung Wu, Philip S. Yu:
Epi-SPIRE: a system for environmental and public health activity monitoring. ICME 2003: 713-716 - [c178]Wei Fan, Haixun Wang, Philip S. Yu, Shaw-Hwa Lo:
Inductive Learning in Less Than One Sequential Data Scan. IJCAI 2003: 595-600 - [c177]Melissa J. Buco, Rong N. Chang, Laura Z. Luan, Christopher Ward, Joel L. Wolf, Philip S. Yu, Tevfik Kosar, Syed Umair Ahmed Shah:
Managing eBusiness on Demand SLA Contracts in Business Terms Using the Cross-SLA Execution Manager SAM. ISADS 2003: 157-164 - [c176]Haixun Wang, Wei Fan, Philip S. Yu, Jiawei Han:
Mining concept-drifting data streams using ensemble classifiers. KDD 2003: 226-235 - [c175]Zhongfei (Mark) Zhang, John J. Salerno, Philip S. Yu:
Applying data mining in investigating money laundering crimes. KDD 2003: 747-752 - [c174]Jiong Yang, Wei Wang, Philip S. Yu:
STAMP: On Discovery of Statistically Important Pattern Repeats in Long Sequential Data. SDM 2003: 224-235 - [c173]Haixun Wang, Sanghyun Park, Wei Fan, Philip S. Yu:
ViST: A Dynamic Index Method for Querying XML Data by Tree Structures. SIGMOD Conference 2003: 110-121 - [c172]Charu C. Aggarwal, Jiawei Han, Jianyong Wang, Philip S. Yu:
A Framework for Clustering Evolving Data Streams. VLDB 2003: 81-92 - [c171]Wei-Guang Teng, Ming-Syan Chen, Philip S. Yu:
A Regression-Based Temporal Pattern Mining Scheme for Data Streams. VLDB 2003: 93-104 - [c170]Claudia Canali, Valeria Cardellini, Michele Colajanni, Riccardo Lancellotti, Philip S. Yu:
Cooperative Architectures and Algorithms for Discovery and Transcoding of Multi-Version Content. WCW 2003: 205-221 - [c169]Claudia Canali, Valeria Cardellini, Michele Colajanni, Riccardo Lancellotti, Philip S. Yu:
Cooperative TransCaching: A System of Distributed Proxy Servers for Web Content Adaptation. WWW (Posters) 2003 - [e10]Philip S. Yu:
Editorial: New AE Introduction. IEEE Trans. Knowl. Data Eng. 15(1): 1 (2003) - [e9]Philip S. Yu:
Editorial: AE Introduction. IEEE Trans. Knowl. Data Eng. 15(5): 1057-1058 (2003) - 2002
- [j116]Kun-Lung Wu, Philip S. Yu:
Controlled replication for hash routing-based web caching. Comput. Syst. Sci. Eng. 17(4/5): 293-302 (2002) - [j115]Valeria Cardellini, Emiliano Casalicchio, Michele Colajanni, Philip S. Yu:
The state of the art in locally distributed Web-server systems. ACM Comput. Surv. 34(2): 263-311 (2002) - [j114]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu:
Adaptive Piggybacking Schemes for Video-On-Demand Systems. Multim. Tools Appl. 16(3): 231-250 (2002) - [j113]Charu C. Aggarwal, Cecilia Magdalena Procopiuc, Philip S. Yu:
Finding Localized Associations in Market Basket Data. IEEE Trans. Knowl. Data Eng. 14(1): 51-62 (2002) - [j112]Charu C. Aggarwal, Philip S. Yu:
Redefining Clustering for High-Dimensional Applications. IEEE Trans. Knowl. Data Eng. 14(2): 210-225 (2002) - [j111]Michele Colajanni, Philip S. Yu:
A Performance Study of Robust Load Sharing Strategies for Distributed Heterogeneous Web Server Systems. IEEE Trans. Knowl. Data Eng. 14(2): 398-414 (2002) - [j110]Charu C. Aggarwal, Zheng Sun, Philip S. Yu:
Fast Algorithms for Online Generation of Profile Association Rules. IEEE Trans. Knowl. Data Eng. 14(5): 1017-1028 (2002) - [c168]Wei Fan, Fang Chu, Haixun Wang, Philip S. Yu:
Pruning and Dynamic Scheduling of Cost-Sensitive Ensembles. AAAI/IAAI 2002: 146-151 - [c167]Kun-Lung Wu, Philip S. Yu:
Efficient query monitoring using adaptive multiple key hashing. CIKM 2002: 477-484 - [c166]Jiong Yang, Wei Wang, Yi Xia, Philip S. Yu:
Accelerating Approximate Subsequence Search on Large Protein Sequence Databases. CSB 2002: 207- - [c165]Haixun Wang, Chang-Shing Perng, Wei Fan, Philip S. Yu:
An Index Structure for Pattern Similarity Searching in DNA Microarray Dat. CSB 2002: 256-267 - [c164]Anton Riabov, Zhen Liu, Joel L. Wolf, Philip S. Yu, Li Zhang:
Clustering Algorithms for Content-Based Publication-Subscription Systems. ICDCS 2002: 133-142 - [c163]Wei Fan, Haixun Wang, Philip S. Yu, Salvatore J. Stolfo:
A Fully Distributed Framework for Cost-Sensitive Data Mining. ICDCS 2002: 445-446 - [c162]Jiong Yang, Wei Wang, Haixun Wang, Philip S. Yu:
delta-Clusters: Capturing Subspace Correlation in a Large Data Set. ICDE 2002: 517-528 - [c161]Wei Fan, Haixun Wang, Philip S. Yu, Shaw-Hwa Lo, Salvatore J. Stolfo:
Progressive Modeling. ICDM 2002: 163-170 - [c160]Haixun Wang, Chang-Shing Perng, Sheng Ma, Philip S. Yu:
Mining Associations by Pattern Structure in Large Relational Tables. ICDM 2002: 482-489 - [c159]Jiong Yang, Wei Wang, Philip S. Yu:
InfoMiner+: Mining Partial Periodic Patterns with Gap Penalties. ICDM 2002: 725-728 - [c158]Bing Liu, Wee Sun Lee, Philip S. Yu, Xiaoli Li:
Partially Supervised Classification of Text Documents. ICML 2002: 387-394 - [c157]Cheng-Ru Lin, Chang-Hung Lee, Ming-Syan Chen, Philip S. Yu:
Distributed data mining in a chain store database of short transactions. KDD 2002: 576-581 - [c156]Yi Xia, Wei Wang, Jiong Yang, Philip S. Yu, Richard R. Muntz:
Efficient Filtering of Large DatasetA User-Centric Paradigm. SDM 2002: 112-127 - [c155]Chang-Hung Lee, Philip S. Yu, Ming-Syan Chen:
Mining Relationship between Triggering and Consequential Events in a Short Transaction Database. SDM 2002: 403-419 - [c154]Wei Fan, Haixun Wang, Philip S. Yu, Salvatore J. Stolfo:
A Framework for Scalable Cost-sensitive Learning Based on Combing Probabilities and Benefits. SDM 2002: 437-453 - [c153]Haixun Wang, Wei Wang, Jiong Yang, Philip S. Yu:
Clustering by pattern similarity in large data sets. SIGMOD Conference 2002: 394-405 - [c152]Jiong Yang, Wei Wang, Philip S. Yu, Jiawei Han:
Mining long sequential patterns in a noisy environment. SIGMOD Conference 2002: 406-417 - [c151]Charu C. Aggarwal, Philip S. Yu:
An Automated System for Web Portal Personalization. VLDB 2002: 1031-1040 - [c150]Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu:
Dynamic Refinement of Table Summarization or M-Commerce. WECWIS 2002: 179-186 - [c149]Joel L. Wolf, Mark S. Squillante, Philip S. Yu, Jay Sethuraman, L. Ozsen:
Optimal crawling strategies for web search engines. WWW 2002: 136-147 - [e8]Ming-Shan Cheng, Philip S. Yu, Bing Liu:
Advances in Knowledge Discovery and Data Mining, 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002, Proceedings. Lecture Notes in Computer Science 2336, Springer 2002, ISBN 3-540-43704-5 [contents] - [e7]Philip S. Yu:
Editorial. IEEE Trans. Knowl. Data Eng. 14(2): 209 (2002) - [e6]Philip S. Yu:
Introducing the New AEs. IEEE Trans. Knowl. Data Eng. 14(5): 929 (2002) - 2001
- [j109]Kun-Lung Wu, Philip S. Yu, James Z. Teng:
Thrashing control and avoidance for concurrent mergesorts using parallel prefetching. Comput. Syst. Sci. Eng. 16(6): 349-359 (2001) - [j108]Joel L. Wolf, Philip S. Yu:
Load balancing for clustered web farms. SIGMETRICS Perform. Evaluation Rev. 28(4): 11-13 (2001) - [j107]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu:
The Maximum Factor Queue Length Batching Scheme for Video-on-Demand Systems. IEEE Trans. Computers 50(2): 97-110 (2001) - [j106]Charu C. Aggarwal, Philip S. Yu:
A New Approach to Online Generation of Association Rules. IEEE Trans. Knowl. Data Eng. 13(4): 527-540 (2001) - [j105]Joel L. Wolf, Mark S. Squillante, John Turek, Philip S. Yu, Jay Sethuraman:
Scheduling Algorithms for the Broadcast Delivery of Digital Products. IEEE Trans. Knowl. Data Eng. 13(5): 721-741 (2001) - [j104]Charu C. Aggarwal, Philip S. Yu:
Mining Associations with the Collective Strength Approach. IEEE Trans. Knowl. Data Eng. 13(6): 863-873 (2001) - [j103]Charu C. Aggarwal, Fatima Al-Garawi, Philip S. Yu:
On the design of a learning crawler for topical resource discovery. ACM Trans. Inf. Syst. 19(3): 286-309 (2001) - [j102]Joel L. Wolf, Philip S. Yu:
On balancing the load in a clustered web farm. ACM Trans. Internet Techn. 1(2): 231-261 (2001) - [c148]Sang-Wook Kim, Charu C. Aggarwal, Philip S. Yu:
Effective Nearest Neighbor Indexing with the Euclidean Metric. CIKM 2001: 9-16 - [c147]Charu C. Aggarwal, Philip S. Yu:
On Effective Conceptual Indexing and Similarity Search in Text Data. ICDM 2001: 3-10 - [c146]Haixun Wang, Philip S. Yu:
SSDT: A Scalable Subspace-Splitting Classifier for Biased Data. ICDM 2001: 542-549 - [c145]Wei Wang, Jiong Yang, Philip S. Yu:
Meta-patterns: Revealing Hidden Periodic Patterns. ICDM 2001: 550-557 - [c144]Bing Liu, Yiming Ma, Philip S. Yu:
Discovering unexpected information from your competitors' web sites. KDD 2001: 144-153 - [c143]Jiong Yang, Wei Wang, Philip S. Yu:
Infominer: mining surprising periodic patterns. KDD 2001: 395-400 - [c142]Charu C. Aggarwal, Philip S. Yu:
Outlier Detection for High Dimensional Data. SIGMOD Conference 2001: 37-46 - [c141]Kun-Lung Wu, Charu C. Aggarwal, Philip S. Yu:
Personalization with Dynamic Profiler. WECWIS 2001: 12-20 - [c140]Kun-Lung Wu, Philip S. Yu, Joel L. Wolf:
Segment-based proxy caching of multimedia streams. WWW 2001: 36-44 - [c139]Charu C. Aggarwal, Fatima Al-Garawi, Philip S. Yu:
Intelligent crawling on the World Wide Web with arbitrary predicates. WWW 2001: 96-105 - [e5]Philip S. Yu:
Editorial. IEEE Trans. Knowl. Data Eng. 13(1): 3-4 (2001) - [e4]Philip S. Yu:
Editorial: Introducing the New AEs. IEEE Trans. Knowl. Data Eng. 13(3): 393-394 (2001) - 2000
- [j101]Kun-Lung Wu, Philip S. Yu:
Latency-sensitive hashing for collaborative Web caching. Comput. Networks 33(1-6): 633-644 (2000) - [j100]Charu C. Aggarwal, Philip S. Yu:
Data Mining Techniques for Personalization. IEEE Data Eng. Bull. 23(1): 4-9 (2000) - [j99]Kun-Lung Wu, Philip S. Yu, Jen-Yao Chung, James Z. Teng:
Workfile Disk Management for Concurrent Mergesorts in a Multiprocessor Database System. Distributed Parallel Databases 8(3): 279-296 (2000) - [j98]Wei Wang, Jiong Yang, Philip S. Yu:
Mining Patterns in Long Sequential Data with Noise. SIGKDD Explor. 2(2): 28-33 (2000) - [j97]Kun-Lung Wu, Philip S. Yu:
Report on Second International Workshop on Advanced Issues of E-Commerce and Web-based Information Systems. SIGMOD Rec. 29(3): 19-23 (2000) - [c138]Bing Liu, Yiyuan Xia, Philip S. Yu:
Clustering Through Decision Tree Construction. CIKM 2000: 20-29 - [c137]Philip S. Yu, Valeria Cardellini, Yun-Wu Huang:
Collaborative Proxy System for Distributed Web Content Transcoding. CIKM 2000: 520-527 - [c136]Ming-Ling Lo, Kun-Lung Wu, Philip S. Yu:
TabSum: A Flexible and Dynamic Table Summarization Approach. ICDCS 2000: 628-635 - [c135]Charu C. Aggarwal, Joel L. Wolf, Kun-Lung Wu, Philip S. Yu:
The Intelligent Recommendation Analyzer. ICDCS Workshop of Knowledge Discovery and Data Mining in the World-Wide Web 2000: F67-F72 - [c134]Yun-Wu Huang, Philip S. Yu:
Lightweight Version Vectors for Pervasive Computing Devices. ICPP Workshops 2000: 43-50 - [c133]Charu C. Aggarwal, Philip S. Yu:
The IGrid index: reversing the dimensionality curse for similarity indexing in high dimensional space. KDD 2000: 119-129 - [c132]Wei Wang, Jiong Yang, Philip S. Yu:
Efficient mining of weighted association rules (WAR). KDD 2000: 270-274 - [c131]Jiong Yang, Wei Wang, Philip S. Yu:
Mining asynchronous periodic patterns in time series data. KDD 2000: 275-279 - [c130]Yiming Ma, Bing Liu, Ching Kian Wong, Philip S. Yu, Shuik Ming Lee:
Targeting the right students using data mining. KDD 2000: 457-464 - [c129]Valeria Cardellini, Michele Colajanni, Philip S. Yu:
Geographic Load Balancing for Scalable Distributed Web Systems. MASCOTS 2000: 20-27 - [c128]Charu C. Aggarwal, Philip S. Yu:
Finding Generalized Projected Clusters In High Dimensional Spaces. SIGMOD Conference 2000: 70-81 - [e3]Ah-Hwee Tan, Philip S. Yu:
Proceedings of the International Workshop on Text and Web Mining, Melbourne, Australia, August 2000. 2000 [contents]
1990 – 1999
- 1999
- [j96]Valeria Cardellini, Michele Colajanni, Philip S. Yu:
Dynamic Load Balancing on Web-Server Systems. IEEE Internet Comput. 3(3): 28-39 (1999) - [j95]Chung-Sheng Li, Philip S. Yu, Vittorio Castelli:
Scan: A Hierarchical Algorithm for Similarity Search in Databases Consisting of Long Sequences. Knowl. Inf. Syst. 1(2): 229-256 (1999) - [j94]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Marina A. Epelman:
Using Unbalanced Trees for Indexing Multidimensional Objects. Knowl. Inf. Syst. 1(3): 157-192 (1999) - [j93]Kun-Lung Wu, Philip S. Yu, James Z. Teng:
Run Placement Policies for Concurrent Mergesorts Using Parallel Prefetching. Knowl. Inf. Syst. 1(4): 435-457 (1999) - [j92]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu:
Design and Analysis of Permutation-Based Pyramid Broadcasting. Multim. Syst. 7(6): 439-448 (1999) - [j91]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu:
Caching on the World Wide Web. IEEE Trans. Knowl. Data Eng. 11(1): 95-107 (1999) - [j90]Valeria Cardellini, Michele Colajanni, Philip S. Yu:
DNS Dispatching Algorithms with State Estimators for Scalable Web-Server Clusters. World Wide Web 2(3): 101-113 (1999) - [c127]Kun-Lung Wu, Philip S. Yu:
Local Replication for Proxy Web Caches with Hash Routing. CIKM 1999: 69-76 - [c126]Philip S. Yu:
Data Mining and Personalization Technologies. DASFAA 1999: 6-13 - [c125]Valeria Cardellini, Michele Colajanni, Philip S. Yu:
Redirection Algorithms for Load Sharing in Distributed Web-server Systems. ICDCS 1999: 528-535 - [c124]Kun-Lung Wu, Philip S. Yu:
Load Balancing and Hot Spot Relief for Hash Routing among a Collection of Proxy Caches. ICDCS 1999: 536-543 - [c123]Charu C. Aggarwal, Joel L. Wolf, Kun-Lung Wu, Philip S. Yu:
Horting Hatches an Egg: A New Graph-Theoretic Approach to Collaborative Filtering. KDD 1999: 201-212 - [c122]Yun-Wu Huang, Philip S. Yu:
Adaptive Query Processing for Time-Series Data. KDD 1999: 282-286 - [c121]Charu C. Aggarwal, Stephen C. Gates, Philip S. Yu:
On the Merits of Building Categorization Systems by Supervised Clustering. KDD 1999: 352-356 - [c120]Charu C. Aggarwal, Mark S. Squillante, Joel L. Wolf, Philip S. Yu, Jay Sethuraman:
Optimizing Profits in the Broadcast Delivery of Multimedia Products. Multimedia Information Systems 1999: 88-95 - [c119]Charu C. Aggarwal, Philip S. Yu:
Data Mining Techniques for Associations, Clustering and Classification. PAKDD 1999: 13-23 - [c118]Kun-Lung Wu, Philip S. Yu:
Replication Issues on Proxy Cache Array. PDPTA 1999: 836-842 - [c117]Charu C. Aggarwal, Philip S. Yu:
On Text Mining Techniques for Personalization. RSFDGrC 1999: 12-18 - [c116]Charu C. Aggarwal, Cecilia Magdalena Procopiuc, Joel L. Wolf, Philip S. Yu, Jong Soo Park:
Fast Algorithms for Projected Clustering. SIGMOD Conference 1999: 61-72 - [c115]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu:
A New Method for Similarity Indexing of Market Basket Data. SIGMOD Conference 1999: 407-418 - [i1]Philip S. Yu:
Review - Mining Association Rules between Sets of Items in Large Databases. ACM SIGMOD Digit. Rev. 1 (1999) - 1998
- [j89]Philip S. Yu, Edward A. MacNair:
Performance Study of a Collaborative Method for Hierarchical Caching in Proxy Servers. Comput. Networks 30(1-7): 215-224 (1998) - [j88]Charu C. Aggarwal, Philip S. Yu:
Mining Large Itemsets for Association Rules. IEEE Data Eng. Bull. 21(1): 23-31 (1998) - [j87]Kun-Lung Wu, Philip S. Yu, Ming-Syan Chen:
Energy-Efficient Mobile Cache Invalidation. Distributed Parallel Databases 6(4): 351-372 (1998) - [j86]Kun-Lung Wu, Philip S. Yu, Allen Ballman:
SpeedTracer: A Web Usage Mining and Analysis Tool. IBM Syst. J. 37(1): 89-105 (1998) - [j85]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu:
Optimization issues in multimedia systems. Int. J. Intell. Syst. 13(12): 1113-1135 (1998) - [j84]Hadas Shachnai, Philip S. Yu:
Exploring Wait Tolerance in Effective Batching for Video-on-Demand Scheduling. Multim. Syst. 6(6): 382-394 (1998) - [j83]Kun-Lung Wu, Philip S. Yu:
Increasing Multimedia System Throughput with Consumption-based Buffer Management. Multim. Syst. 6(6): 421-428 (1998) - [j82]Hadas Shachnai, Philip S. Yu:
On Analytic Modeling of Multimedia Batching Schemes. Perform. Evaluation 33(3): 201-213 (1998) - [j81]Uwe Schwiegelshohn, Walter Ludwig, Joel L. Wolf, John Turek, Philip S. Yu:
Smart SMART Bounds for Weighted Response Time Scheduling. SIAM J. Comput. 28(1): 237-253 (1998) - [j80]Richard T. Snodgrass, Laura M. Haas, Alberto O. Mendelzon, Z. Meral Özsoyoglu, Jan Paredaens, Krithi Ramamritham, Nick Roussopoulos, Jennifer Widom, Philip S. Yu:
Reminiscences on Influential Papers. SIGMOD Rec. 27(4): 81-85 (1998) - [j79]Ming-Syan Chen, Jong Soo Park, Philip S. Yu:
Efficient Data Mining for Path Traversal Patterns. IEEE Trans. Knowl. Data Eng. 10(2): 209-221 (1998) - [j78]Michele Colajanni, Philip S. Yu, Daniel M. Dias:
Analysis of Task Assignment Policies in Scalable Distributed Web-Server Systems. IEEE Trans. Parallel Distributed Syst. 9(6): 585-600 (1998) - [c114]Charu C. Aggarwal, Zheng Sun, Philip S. Yu:
Online Algorithms for Finding Profile Association Rules. CIKM 1998: 86-95 - [c113]Chung-Sheng Li, Philip S. Yu, Vittorio Castelli:
MALM: A Framework for Mining Sequence Database at Multiple Abstraction Levels. CIKM 1998: 267-272 - [c112]Kun-Lung Wu, Philip S. Yu:
Range-Based Bitmap Indexing for High Cardinality Attributes with Skew. COMPSAC 1998: 61-67 - [c111]Valeria Cardellini, Michele Colajanni, Philip S. Yu:
Efficient State Estimators for Load Control Policies in Scalable Web Server Clusters. COMPSAC 1998: 449-457 - [c110]Michele Colajanni, Philip S. Yu, Valeria Cardellini:
Dynamic Load Balancing in Geographically Distributed Heterogeneous Web Servers. ICDCS 1998: 295-302 - [c109]Yun-Wu Huang, Philip S. Yu:
A Bandwidth-Sensitive Update Scheduling Method for Internet Push. ICDCS 1998: 303-310 - [c108]Charu C. Aggarwal, Philip S. Yu:
Online Generation of Association Rules. ICDE 1998: 402-411 - [c107]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu:
A Framework for the Optimizing of WWW Advertising. Trends in Distributed Systems for Electronic Commerce 1998: 1-10 - [c106]Charu C. Aggarwal, Zheng Sun, Philip S. Yu:
Online Generation of Profile Association Rules. KDD 1998: 129-133 - [c105]Charu C. Aggarwal, Philip S. Yu:
A New Framework For Itemset Generation. PODS 1998: 18-24 - 1997
- [j77]Gary M. King, Daniel M. Dias, Philip S. Yu:
Cluster Architectures and S/390 Parallel Sysplex Scalability. IBM Syst. J. 36(2): 221-241 (1997) - [j76]Joel L. Wolf, Philip S. Yu, Hadas Shachnai:
Disk Load Balancing for Video-On-Demand Systems. Multim. Syst. 5(6): 358-370 (1997) - [j75]Ming-Syan Chen, Hui-I Hsiao, Chung-Sheng Li, Philip S. Yu:
Using Rotational Mirrored Declustering for Replica Placement in a Disk-Array-Based Video Server. Multim. Syst. 5(6): 371-379 (1997) - [j74]Michele Colajanni, Philip S. Yu:
Adaptive TTL Schemes for Load Balancing of Distributed Web Servers. SIGMETRICS Perform. Evaluation Rev. 25(2): 36-42 (1997) - [j73]Kun-Lung Wu, Philip S. Yu, Calton Pu:
Divergence Control Algorithms for Epsilon Serializability. IEEE Trans. Knowl. Data Eng. 9(2): 262-274 (1997) - [j72]Ming-Syan Chen, Philip S. Yu:
Optimal Design of Multiple Hash Tables for Concurrency Control. IEEE Trans. Knowl. Data Eng. 9(3): 384-390 (1997) - [j71]Jong Soo Park, Ming-Syan Chen, Philip S. Yu:
Using a Hash-Based Method with Transaction Trimming for Mining Association Rules. IEEE Trans. Knowl. Data Eng. 9(5): 813-825 (1997) - [j70]Asit Dan, Philip S. Yu, Anant Jhingran:
Recovery Analysis of Data Sharing Systems under Deferred Dirty Page Propagation Policies. IEEE Trans. Parallel Distributed Syst. 8(7): 695-711 (1997) - [j69]Hui-I Hsiao, Ming-Syan Chen, Philip S. Yu:
Parallel Execution of Hash Joins in Parallel Databases. IEEE Trans. Parallel Distributed Syst. 8(8): 872-883 (1997) - [j68]Ming-Syan Chen, Hui-I Hsiao, Philip S. Yu:
On Applying Hash Filters to Improving the Execution of Multi-Join Queries. VLDB J. 6(2): 121-131 (1997) - [c104]Jong Soo Park, Philip S. Yu, Ming-Syan Chen:
Mining Association Rules with Adjustable Accuracy. CIKM 1997: 151-160 - [c103]Charu C. Aggarwal, Philip S. Yu:
On Disk Caching of Web Objects in Proxy Servers. CIKM 1997: 238-245 - [c102]Ming-Syan Chen, Philip S. Yu, Kun-Lung Wu:
Indexed Sequential Data Broadcasting in Wireless Mobile Computing. ICDCS 1997: 124-131 - [c101]Michele Colajanni, Philip S. Yu, Daniel M. Dias:
Scheduling Algorithms for Distributed Web Servers. ICDCS 1997: 169-176 - [c100]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Marina A. Epelman:
The S-Tree: An Efficient Index for Multidimensional Objects. SSD 1997: 350-373 - 1996
- [j67]Ming-Syan Chen, Chung-Sheng Li, Philip S. Yu:
Using Content-Based Search to Download Digital Video into a Client Station. Real Time Imaging 2(1): 35-44 (1996) - [j66]Arif Merchant, Philip S. Yu:
Analytic Modeling of Clustered RAID with Mapping Based on Nearly Random Permutation. IEEE Trans. Computers 45(3): 367-373 (1996) - [j65]Ming-Syan Chen, Philip S. Yu, Tao-Heng Yang:
On Coupling Multiple Systems With A Global Buffer. IEEE Trans. Knowl. Data Eng. 8(2): 339-344 (1996) - [j64]Ming-Syan Chen, Philip S. Yu, Kun-Lung Wu:
Optimization of Parallel Execution for Multi-Join Queries. IEEE Trans. Knowl. Data Eng. 8(3): 416-428 (1996) - [j63]Ming-Syan Chen, Jiawei Han, Philip S. Yu:
Data Mining: An Overview from a Database Perspective. IEEE Trans. Knowl. Data Eng. 8(6): 866-883 (1996) - [j62]Arif Merchant, Kun-Lung Wu, Philip S. Yu, Ming-Syan Chen:
Performance Analysis of Dynamic Finite Versioning Schemes: Storage Cost vs. Obsolescence. IEEE Trans. Knowl. Data Eng. 8(6): 985-1001 (1996) - [j61]Avraham Leff, Joel L. Wolf, Philip S. Yu:
Efficient LRU-Based Buffering in a LAN Remote Caching Architecture. IEEE Trans. Parallel Distributed Syst. 7(2): 191-206 (1996) - [j60]Ming-Syan Chen, Jeng-Chun Chen, Philip S. Yu:
On General Results for All-to-All Broadcast. IEEE Trans. Parallel Distributed Syst. 7(4): 363-370 (1996) - [c99]Ming-Syan Chen, Jong Soo Park, Philip S. Yu:
Efficient Data Mining for Path Traversal Patterns in Distributed Systems. ICDCS 1996: 385-393 - [c98]Kun-Lung Wu, Philip S. Yu, Ming-Syan Chen:
Energy-Efficient Caching for Wireless Mobile Computing. ICDE 1996: 336-343 - [c97]Chung-Sheng Li, Philip S. Yu, Vittorio Castelli:
HierarchyScan: A Hierarchical Similarity Search Algorithm for Databases of Long Sequences. ICDE 1996: 546-553 - [c96]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu:
A Permutation-Based Pyramid Broadcasting Scheme for Video-on-Demand Systems. ICMCS 1996: 118-126 - [c95]Kun-Lung Wu, Philip S. Yu:
Consumption-Based Buffer Management for Maximizing System Throughput of a Multimedia System. ICMCS 1996: 164-171 - [c94]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu:
On Optimal Batching Policies for Video-on-Demand Storage Servers. ICMCS 1996: 253-258 - [c93]Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu:
On Optimal Piggyback Merging Policies for Video-on-Demand Systems. SIGMETRICS 1996: 200-209 - [p1]Philip S. Yu:
Modeling and Analysis of Concurrency Control Schemes. Performance of Concurrency Control Mechanisms in Centralized Database Systems 1996: 106-147 - 1995
- [j59]Wenwey Hseush, Gail E. Kaiser, Calton Pu, Kun-Lung Wu, Philip S. Yu:
Divergence Control for Distributed Database Systems. Distributed Parallel Databases 3(1): 85-109 (1995) - [j58]Ming-Syan Chen, Dilip D. Kandlur, Philip S. Yu:
Storage and Retrieval Methods to Support Fully Interactive Playout in a Disk-Array-Based Video Server. Multim. Syst. 3(3): 126-135 (1995) - [j57]Philip S. Yu, Joel L. Wolf, Hadas Shachnai:
Design and Analysis of a Look-Ahead Scheduling Scheme to Support Pause-Resume for Video-on-Demand Applications. Multim. Syst. 3(4): 137-149 (1995) - [j56]Arif Merchant, Philip S. Yu:
Analytic Modeling and Comparisons of Striping Strategies for Replicated Disk Arrays. IEEE Trans. Computers 44(3): 419-433 (1995) - [j55]Ming-Syan Chen, Ming-Ling Lo, Philip S. Yu, Honesty C. Young:
Applying Segmented Right-Deep Trees to Pipelining Multiple Hash Joins. IEEE Trans. Knowl. Data Eng. 7(4): 656-668 (1995) - [j54]Joel L. Wolf, John Turek, Ming-Syan Chen, Philip S. Yu:
A Hierarchical Approach to Parallel Multiquery Scheduling. IEEE Trans. Parallel Distributed Syst. 6(6): 578-590 (1995) - [j53]Asit Dan, Philip S. Yu, Jen-Yao Chung:
Characterization of Database Access Pattern for Analytic Prediction of Buffer Hit Probability. VLDB J. 4(1): 127-154 (1995) - [c92]Jong Soo Park, Ming-Syan Chen, Philip S. Yu:
Efficient Parallel and Data Mining for Association Rules. CIKM 1995: 31-36 - [c91]Edward A. MacNair, Stephen S. Lavenberg, Philip S. Yu:
Performance Modeling For Designing Client/Server Systems. Int. CMG Conference 1995: 745-751 - [c90]Ming-Syan Chen, Hui-I Hsiao, Chung-Sheng Li, Philip S. Yu:
Using Rotational Mirrored Declustering for Replica Placement in a Disk-Array-Based Video Server. ACM Multimedia 1995: 121-130 - [c89]Joel L. Wolf, Philip S. Yu, Hadas Shachnai:
DASD Dancing: A Disk Load Balancing Optimization Scheme for Video-on-Demand Computer. SIGMETRICS 1995: 157-166 - [c88]Jong Soo Park, Ming-Syan Chen, Philip S. Yu:
An Effective Hash Based Algorithm for Mining Association Rules. SIGMOD Conference 1995: 175-186 - [c87]Kun-Lung Wu, Philip S. Yu, Jen-Yao Chung, James Z. Teng:
A Performance Study of Workfile Disk Management for Concurrent Mergesorts in a Multiprocessor Database System. VLDB 1995: 100-109 - [e2]Philip S. Yu, Arbee L. P. Chen:
Proceedings of the Eleventh International Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan. IEEE Computer Society 1995, ISBN 0-8186-6910-1 [contents] - 1994
- [j52]Arif Merchant, Philip S. Yu:
An Analytical Model of Reconstruction Time in Mirrored Disks. Perform. Evaluation 20(1-3): 115-129 (1994) - [j51]Philip S. Yu, Kun-Lung Wu, Kwei-Jay Lin, Sang H. Son:
On real-time databases: concurrency control and scheduling. Proc. IEEE 82(1): 140-157 (1994) - [j50]Asit Dan, Philip S. Yu, Daniel M. Dias:
Performance Modelling and Comparisons of Global Shared Buffer Management Policies in a Cluster Environment. IEEE Trans. Computers 43(11): 1281-1297 (1994) - [j49]Ming-Syan Chen, Philip S. Yu:
A Graph Theoretical Approach to Determine a Join Reducer Sequence in Distributed Query Processing. IEEE Trans. Knowl. Data Eng. 6(1): 152-165 (1994) - [j48]Asit Dan, Daniel M. Dias, Philip S. Yu:
Buffer Analysis for a Data Sharing Environment with Skewed Data Access. IEEE Trans. Knowl. Data Eng. 6(2): 331-337 (1994) - [j47]Philip S. Yu, Asit Dan:
Performance Analysis of Affinity Clustering on Transaction Processing Coupling Architecture. IEEE Trans. Knowl. Data Eng. 6(5): 764-786 (1994) - [j46]Joel L. Wolf, Daniel M. Dias, Philip S. Yu, John Turek:
New Algorithms for Parallelizing Relational Database Joins in the Presence of Data Skew. IEEE Trans. Knowl. Data Eng. 6(6): 990-997 (1994) - [j45]Philip S. Yu, Asit Dan:
Performance Evaluation of Transaction Processing Coupling Architectures for Handling System Dynamics. IEEE Trans. Parallel Distributed Syst. 5(2): 139-153 (1994) - [j44]Ming-Syan Chen, Philip S. Yu, Kun-Lung Wu:
Optimal NODUP All-to-All Broadcast Schemes in Distributed Computing Systems. IEEE Trans. Parallel Distributed Syst. 5(12): 1275-1285 (1994) - [j43]Avraham Leff, Philip S. Yu:
A Performance Study of Robust Distributed Load Sharing Strategies. IEEE Trans. Parallel Distributed Syst. 5(12): 1286-1301 (1994) - [c86]Calton Pu, Miu K. Tsang, Kun-Lung Wu, Philip S. Yu:
Multiversion Divergence Control of Time Fuzziness. CIKM 1994: 195-202 - [c85]Kun-Lung Wu, Philip S. Yu, James Z. Teng:
Data Placement and Buffer Management for Concurrent Mergesorts with Parallel Prefetching. ICDE 1994: 418-427 - [c84]Ming-Syan Chen, Tao-Heng Yang, Philip S. Yu, Tze-Shiu Liu:
On Parallel Transaction Processing in a Coupled System. ICPADS 1994: 662-669 - [c83]Philip S. Yu, Kun-Lung Wu, Asit Dan:
Dynamic Parity Grouping for Improving Write Performance of RAID-5 Disk Arrays. ICPP (2) 1994: 193-196 - [c82]Ming-Syan Chen, Dilip D. Kandlur, Philip S. Yu:
Support for Fully Interactive Playout in Disk-Array-Based Video Server. ACM Multimedia 1994: 391-398 - [c81]Joel L. Wolf, John Turek, Ming-Syan Chen, Philip S. Yu:
Scheduling Multiple Queries on a Parallel Machine. SIGMETRICS 1994: 45-55 - [c80]Avi Bittan, Yaakov Kogan, Philip S. Yu:
Asymtotic Performance of a Buffer Model in a Data Sharing Environment. SIGMETRICS 1994: 67-76 - [c79]Hui-I Hsiao, Ming-Syan Chen, Philip S. Yu:
On Parallel Execution of Multiple Pipelined Hash Joins. SIGMOD Conference 1994: 185-196 - [c78]John Turek, Uwe Schwiegelshohn, Joel L. Wolf, Philip S. Yu:
Scheduling Parallel Tasks to Minimize Average Response Time. SODA 1994: 112-121 - [c77]John Turek, Walter Ludwig, Joel L. Wolf, Lisa Fleischer, Prasoon Tiwari, Jason Glasgow, Uwe Schwiegelshohn, Philip S. Yu:
Scheduling Parallelizable Tasks to Minimize Average Response Time. SPAA 1994: 200-209 - [c76]Chung-Sheng Li, Ming-Syan Chen, Philip S. Yu, Hui-I Hsiao:
Combining replication and parity approaches for fault-tolerant disk arrays. SPDP 1994: 360-367 - [c75]Sudarshan S. Chawathe, Ming-Syan Chen, Philip S. Yu:
On Index Selection Schemes for Nested Object Hierarchies. VLDB 1994: 331-341 - 1993
- [j42]Calton Pu, Danilo Florissi, Patricia Soares, Philip S. Yu, Kun-Lung Wu:
Performance comparison of dynamic policies for remote caching. Concurr. Pract. Exp. 5(4): 239-256 (1993) - [j41]Philip S. Yu, Daniel M. Dias, Stephen S. Lavenberg:
On the Analytical Modeling of Database Concurrency Control. J. ACM 40(4): 831-872 (1993) - [j40]Philip S. Yu, Ming-Syan Chen, Dilip D. Kandlur:
Grouped Sweeping Scheduling for DASD-based Multimedia Storage Management. Multim. Syst. 1(3): 99-109 (1993) - [j39]Ming-Syan Chen, Philip S. Yu:
Combining Join and Semi-Join Operations for Distributed Query Processing. IEEE Trans. Knowl. Data Eng. 5(3): 534-542 (1993) - [j38]Joel L. Wolf, Daniel M. Dias, Philip S. Yu:
A Parallel Sort Merge Join Algorithm for Managing Data Skew. IEEE Trans. Parallel Distributed Syst. 4(1): 70-86 (1993) - [j37]Asit Dan, Philip S. Yu:
Performance Analysis of Buffer Coherency Policies in a Multisystem Data Sharing Environment. IEEE Trans. Parallel Distributed Syst. 4(3): 289-305 (1993) - [j36]Avraham Leff, Joel L. Wolf, Philip S. Yu:
Replication Algorithms in a Remote Caching Architecture. IEEE Trans. Parallel Distributed Syst. 4(11): 1185-1204 (1993) - [j35]Joel L. Wolf, Philip S. Yu, John Turek, Daniel M. Dias:
A Parallel Hash Join Algorithm for Managing Data Skew. IEEE Trans. Parallel Distributed Syst. 4(12): 1355-1371 (1993) - [j34]Philip S. Yu, Daniel M. Dias:
Performance Analysis of Concurrency Control Using Locking with Deferred Blocking. IEEE Trans. Software Eng. 19(10): 982-996 (1993) - [j33]Philip S. Yu, Douglas W. Cornell:
Buffer Management Based on Return on Consumption in a Multi-Query Environment. VLDB J. 2(1): 1-37 (1993) - [c74]Ming-Syan Chen, Philip S. Yu, Kun-Lung Wu:
Decentralized Consensus Protocols with Multi-Port Communication. ICDCS 1993: 356-365 - [c73]Calton Pu, Wenwey Hseush, Gail E. Kaiser, Kun-Lung Wu, Philip S. Yu:
Distributed Divergence Control for Epsilon Serializability. ICDCS 1993: 449-456 - [c72]Asit Dan, Philip S. Yu, Jen-Yao Chung:
Database Access Characterization for Buffer Hit Prediction. ICDE 1993: 134-143 - [c71]Kun-Lung Wu, Philip S. Yu, Ming-Syan Chen:
Dynamic Finite Versioning: An Effective Versioning Approach to Concurrent Transaction and Query Processing. ICDE 1993: 577-586 - [c70]Mon-Song Chen, Dilip D. Kandlur, Philip S. Yu:
Optimization of the Grouped Sweeping Scheduling (GSS) with Heterogeneous Multimedia Streams. ACM Multimedia 1993: 235-242 - [c69]Arif Merchant, Philip S. Yu:
Performance Analysis of a Dual Striping Strategy for Replicated Disk Arrays. PDIS 1993: 148-157 - [c68]Dinkar Sitaram, Asit Dan, Philip S. Yu:
Issues in the Design of Multi-Server File Systems to Cope with Load Skew. PDIS 1993: 214-223 - [c67]Kun-Lung Wu, Philip S. Yu, James Z. Teng:
Performance Comparison of Thrashing Control Policies for Concurrent Mergesorts with Parallel Prefetching. SIGMETRICS 1993: 171-182 - [c66]Philip S. Yu:
Modeling and Analysis of Transaction Processing Systems. Performance/SIGMETRICS Tutorials 1993: 651-675 - [c65]Ming-Ling Lo, Ming-Syan Chen, Chinya V. Ravishankar, Philip S. Yu:
On Optimal Processor Allocation to Support Pipelined Hash Joins. SIGMOD Conference 1993: 69-78 - [c64]Ming-Syan Chen, Hui-I Hsiao, Philip S. Yu:
Applying Hash Filters to Improving the Execution of Bushy Trees. VLDB 1993: 505-516 - [c63]Philip S. Yu, Ming-Syan Chen, Joel L. Wolf, John Turek:
Parallel Query Processing. Advanced Database Systems 1993: 229-258 - 1992
- [j32]Ming-Syan Chen, Philip S. Yu:
Interleaving a Join Sequence with Semijoins in Distributed Query Processing. IEEE Trans. Parallel Distributed Syst. 3(5): 611-621 (1992) - [j31]Philip S. Yu, Daniel M. Dias:
Analysis of Hybrid Concurrency Control Schemes For a High Data Contention Environment. IEEE Trans. Software Eng. 18(2): 118-129 (1992) - [j30]Philip S. Yu, Ming-Syan Chen, Hans-Ulrich Heiss, Sukho Lee:
On Workload Characterization of Relational Database Environments. IEEE Trans. Software Eng. 18(4): 347-355 (1992) - [j29]Bruno Ciciani, Daniel M. Dias, Philip S. Yu:
Analysis of Concurrency-Coherency Control Protocols for Distributed Transaction Processing Systems with Regional Locality. IEEE Trans. Software Eng. 18(10): 899-914 (1992) - [c62]Arif Merchant, Philip S. Yu:
Design and Modeling of Clustered RAID. FTCS 1992: 140-149 - [c61]Calton Pu, Danilo Florissi, Patricia Soares, Kun-Lung Wu, Philip S. Yu:
Performance Comparison of Active-Sender and Active-Receiver Policies for Distributed Caching. HPDC 1992: 218-227 - [c60]Avraham Leff, Philip S. Yu:
A Comparison of Regression-Based Load Sharing Strategies for Distributed Database Environments. ICDCS 1992: 98-107 - [c59]Ming-Syan Chen, Kun-Lung Wu, Philip S. Yu:
Efficient Decentralized Consensus Protocols in a Distributed Computing System. ICDCS 1992: 426-433 - [c58]Ming-Syan Chen, Philip S. Yu, Kun-Lung Wu:
Scheduling and Processor Allocation for Parallel Execution of Multi-Join Queries. ICDE 1992: 58-67 - [c57]Philip S. Yu, Asit Dan:
Effect of System Dynamics on Coupling Architectures for Transaction Processing. ICDE 1992: 458-469 - [c56]Kun-Lung Wu, Philip S. Yu, Calton Pu:
Divergence Control for Epsilon-Serializability. ICDE 1992: 506-515 - [c55]Avraham Leff, Joel L. Wolf, Philip S. Yu:
Distributed Object Replication Strategies for a Remote Caching Architecture. ICPP (2) 1992: 114-123 - [c54]Avraham Leff, Joel L. Wolf, Philip S. Yu:
LRU-based replication strategies in a LAN remote caching architecture. LCN 1992: 244-253 - [c53]Philip S. Yu:
Mon-Song Chen, Dilip D. Kandlur: Design and Analysis of a Grouped Sweeping Scheme for Multimedia Storage Management. NOSSDAV 1992: 44-55 - [c52]Arif Merchant, Kun-Lung Wu, Philip S. Yu, Ming-Syan Chen:
Performance Analysis of Dynamic Finite Versioning for Concurrency Transaction and Query Processing. SIGMETRICS 1992: 103-114 - [c51]John Turek, Joel L. Wolf, Krishna R. Pattipati, Philip S. Yu, Icel Wolf:
Scheduling Parallelizable Tasks: Putting it All on the Shelf. SIGMETRICS 1992: 225-236 - [c50]Asit Dan, Philip S. Yu, Jen-Yao Chung:
Characterization of Database Access Skew in a Transaction Processing Environment. SIGMETRICS 1992: 251-252 - [c49]Asit Dan, Philip S. Yu:
Performance Analysis of Coherency Control Policies through Lock Retention. SIGMOD Conference 1992: 114-123 - [c48]John Turek, Joel L. Wolf, Philip S. Yu:
Approximate Algorithms Scheduling Parallelizable Tasks. SPAA 1992: 323-332 - [c47]Philip S. Yu, Asit Dan:
Impact of Workload Partitionability on the Performance of Coupling Architectures for Transaction Processing. SPDP 1992: 40-49 - [c46]Ming-Syan Chen, Ming-Ling Lo, Philip S. Yu, Honesty C. Young:
Using Segmented Right-Deep Trees for the Execution of Pipelined Hash Joins. VLDB 1992: 15-26 - [e1]Philip S. Yu:
RIDE-TQP '92, Second International Workshop on Research Issues on Data Engineering: Transaction and Query Processing, Tempe, Arizona, USA, February 2-3, 1992. IEEE Computer Society 1992, ISBN 0-8186-2660-7 [contents] - 1991
- [j28]Avraham Leff, Philip S. Yu:
An Adaptive Strategy for Load Sharing in Distributed Database Environment with Information Lags. J. Parallel Distributed Comput. 13(1): 91-103 (1991) - [j27]Philip S. Yu, Hans-Ulrich Heiss, Daniel M. Dias:
Modeling and Analysis of a Time-Stamp History Based Certification Protocol for Concurrency Control. IEEE Trans. Knowl. Data Eng. 3(4): 525-537 (1991) - [j26]Philip S. Yu, Avraham Leff, Yann-Hang Lee:
On Robust Transaction Routing and Load Sharing. ACM Trans. Database Syst. 16(3): 476-512 (1991) - [c45]Philip S. Yu, Daniel M. Dias:
Performance analysis of optimistic concurrency control schemes with different rerun policies. COMPSAC 1991: 294-300 - [c44]Asit Dan, Philip S. Yu:
Performance comparisons of buffer coherency policies. ICDCS 1991: 208-217 - [c43]Ming-Syan Chen, Philip S. Yu:
Determining Beneficial Semijoins for a Join Sequence in Distributed Query Processing. ICDE 1991: 50-58 - [c42]Joel L. Wolf, Daniel M. Dias, Philip S. Yu, John Turek:
An Effective Algorithm for Parallelizing Hash Joins in the Presence of Data Skew. ICDE 1991: 200-209 - [c41]Philip S. Yu, Douglas W. Cornell:
Optimal Buffer Allocation in A Multi-Query Environment. ICDE 1991: 622-631 - [c40]Avraham Leff, Philip S. Yu:
Dynamic Load Sharing in the Presence of Information Obsolescence in Distributed Database Environments. ICPP (2) 1991: 91-98 - [c39]Joel L. Wolf, Daniel M. Dias, Philip S. Yu, John Turek:
Comparative Performance of Parallel Join Algorithms. PDIS 1991: 78-88 - [c38]Avraham Leff, Philip S. Yu, Joel L. Wolf:
Policies for Efficient Resource Utilization in a Remote Caching Architecture. PDIS 1991: 198-207 - [c37]Ming-Syan Chen, Philip S. Yu, Kun-Lung Wu:
Optimal All-to-All Broadcasting Schemes in Distributed Systems. PDIS 1991: 253-260 - [c36]Asit Dan, Daniel M. Dias, Philip S. Yu:
Analytical Modeling of a Hierarchical Buffer for a Data Sharing Environment. SIGMETRICS 1991: 156-167 - 1990
- [j25]M. Seetha Lakshmi, Philip S. Yu:
Effectiveness of parallel processing in database systems. Comput. Syst. Sci. Eng. 5(2): 73-81 (1990) - [j24]Douglas W. Cornell, Philip S. Yu:
Integrated approach to buffer management and query optimization. Comput. Syst. Sci. Eng. 5(4): 243-251 (1990) - [j23]Bruno Ciciani, Daniel M. Dias, Philip S. Yu:
Analysis of Replication in Distributed Database Systems. IEEE Trans. Knowl. Data Eng. 2(2): 247-261 (1990) - [j22]M. Seetha Lakshmi, Philip S. Yu:
Effectiveness of Parallel Joins. IEEE Trans. Knowl. Data Eng. 2(4): 410-424 (1990) - [j21]Douglas W. Cornell, Philip S. Yu:
An Effective Approach to Vertical Partitioning for Physical Design of Relational Databases. IEEE Trans. Software Eng. 16(2): 248-258 (1990) - [j20]Bruno Ciciani, Daniel M. Dias, Balakrishna R. Iyer, Philip S. Yu:
A Hybrid Distributed Centralized System Structure for Transaction Processing. IEEE Trans. Software Eng. 16(8): 791-806 (1990) - [c35]Philip S. Yu, Hans-Ulrich Heiss, Sukho Lee, Ming-Syan Chen:
On Workload Characterization of Relational Database Environments. Int. CMG Conference 1990: 235-244 - [c34]Joel L. Wolf, Daniel M. Dias, Philip S. Yu:
An Effective Algorithm for Parallelizing Sort Merge in the Presence of Data Skew. DPDS 1990: 103-115 - [c33]Ming-Syan Chen, Philip S. Yu:
Using Join Operations as Reducers in Distributed Query Processing. DPDS 1990: 116-123 - [c32]Ming-Syan Chen, Philip S. Yu:
Using Combination of Join and Semijoin Operations for Distributed Query Processing. ICDCS 1990: 328-335 - [c31]Philip S. Yu, Daniel M. Dias:
Concurrency Control Using Locking with Deferred Blocking. ICDE 1990: 30-36 - [c30]Asit Dan, Daniel M. Dias, Philip S. Yu:
Database Buffer Model for the Data Sharing Environment. ICDE 1990: 538-544 - [c29]Asit Dan, Daniel M. Dias, Philip S. Yu:
The Effect of Skewed Data Access on Buffer Hits and Data Contention an a Data Sharing Environment. VLDB 1990: 419-431
1980 – 1989
- 1989
- [j19]Yann-Hang Lee, Philip S. Yu, Avraham Leff:
Robust Transaction-Routing Strategies in Distributed Database Systems. IEEE Data Eng. Bull. 12(1): 51-57 (1989) - [j18]Philip S. Yu, Douglas W. Cornell, Daniel M. Dias, Alexander Thomasian:
Performance Comparison of IO Shipping and Database Call Shipping: Schemes in Multisystem Partitioned Databases. Perform. Evaluation 10(1): 15-33 (1989) - [j17]Daniel M. Dias, Balakrishna R. Iyer, John T. Robinson, Philip S. Yu:
Integrated Concurrency-Coherency Controls for Multisystem Data Sharing. IEEE Trans. Software Eng. 15(4): 437-448 (1989) - [j16]Joel L. Wolf, Daniel M. Dias, Balakrishna R. Iyer, Philip S. Yu:
Multisystem Coupling by a Combination of Data Sharing and Data Partitioning. IEEE Trans. Software Eng. 15(7): 854-860 (1989) - [j15]Douglas W. Cornell, Philip S. Yu:
On Optimal Site Assignment for Relations in the Distributed Database Environment. IEEE Trans. Software Eng. 15(8): 1004-1009 (1989) - [c28]Yann-Hang Lee, Philip S. Yu:
Adaptive selection of access path and join method. COMPSAC 1989: 250-256 - [c27]Avraham Leff, Philip S. Yu, Yann-Hang Lee:
Adaptive Transaction Routing in a Heterogeneous Database Environment. ICDCS 1989: 406-413 - [c26]M. Seetha Lakshmi, Philip S. Yu:
Limiting Factors of Join Performance on Parallel Processors. ICDE 1989: 488-496 - [c25]M. Seetha Lakshmi, Philip S. Yu:
Analysis of Parallel Processing Architectures for Database Systems. ICPP (1) 1989: 83-90 - [c24]Philip S. Yu, Daniel M. Dias:
Performance Analysis of Optimistic Concurrency Control Schemes for Systems with Large Memory. SIGMETRICS 1989: 238 - [c23]Bruno Ciciani, Daniel M. Dias, Philip S. Yu:
Performance Comparision of Concurrency Control Protocols for Transaction Processing Systems with Regional Locality. SRDS 1989: 112-118 - [c22]Douglas W. Cornell, Philip S. Yu:
Integration of Buffer Management and Query Optimization in Relational Database Environment. VLDB 1989: 247-255 - 1988
- [j14]Balakrishna R. Iyer, Daniel M. Dias, Philip S. Yu:
Performability comparison of configurable duplex systems. Comput. Syst. Sci. Eng. 3(4): 201-215 (1988) - [j13]Daniel M. Dias, Balakrishna R. Iyer, Philip S. Yu:
Tradeoffs Between Coupling Small and Large Processors for Transaction Processing. IEEE Trans. Computers 37(3): 310-320 (1988) - [j12]Philip S. Yu, C. Mani Krishna, Yann-Hang Lee:
Optimal Design and Sequential Analysis of VLSI Testing Strategy. IEEE Trans. Computers 37(3): 339-347 (1988) - [j11]Philip S. Yu, Simonetta Balsamo, Yann-Hang Lee:
Dynamic Transaction Routing in Distributed Database Systems. IEEE Trans. Software Eng. 14(9): 1307-1318 (1988) - [c21]M. Seetha Lakshmi, Philip S. Yu:
Effect of Skew on Join Performance in Parallel Architectures. DPDS 1988: 107-120 - [c20]Yann-Hang Lee, Philip S. Yu, Avraham Leff:
Robust Transaction Routing in Distributed Database Systems. DPDS 1988: 210-219 - [c19]Bruno Ciciani, Daniel M. Dias, Philip S. Yu:
Load Sharing in Hybrid Distributed - Centralized Database Systems. ICDCS 1988: 274-281 - [c18]Douglas W. Cornell, Philip S. Yu:
Site Assignment for Relations and Join Operations in the Distributed Transaction Processing Environment. ICDE 1988: 100-108 - [c17]Joel L. Wolf, Daniel M. Dias, Balakrishna R. Iyer, Philip S. Yu:
A Hybrid Data Sharing - Data Partitioning Architecture for Transaction Processing. ICDE 1988: 520-527 - 1987
- [j10]Balakrishna R. Iyer, Philip S. Yu, Lorenzo Donatiello:
Analysis of Fault Tolerant Multiprocessor Architectures for Lock Engine Design. Comput. Syst. Sci. Eng. 2(2): 59-75 (1987) - [j9]Philip S. Yu, Douglas W. Cornell, Daniel M. Dias, Balakrishna R. Iyer:
Analysis of Affinity Based Routing in Multi-System Data Sharing. Perform. Evaluation 7(2): 87-109 (1987) - [j8]Philip S. Yu, Daniel M. Dias, John T. Robinson, Balakrishna R. Iyer, Douglas W. Cornell:
On coupling multi-systems through data sharing. Proc. IEEE 75(5): 573-587 (1987) - [j7]Yann-Hang Lee, Philip S. Yu, Balakrishna R. Iyer:
Progressive Transaction Recovery in Distributed DB/DC Systems. IEEE Trans. Computers 36(8): 976-987 (1987) - [c16]Philip S. Yu, C. Mani Krishna, Yann-Hang Lee:
VLSI Circuit Testing Using an Adaptive Optimization Model. DAC 1987: 399-406 - [c15]Douglas W. Cornell, Philip S. Yu:
Relation Assignment in Distributed Transaction Processing Environment. ICDCS 1987: 50-55 - [c14]Daniel M. Dias, Philip S. Yu, B. T. Bennett:
On Centralized versus Geographically Distributed Database Systems. ICDCS 1987: 64-73 - [c13]Douglas W. Cornell, Philip S. Yu:
A Vertical Partitioning Algorithm for Relational Databases. ICDE 1987: 30-35 - [c12]Philip S. Yu, C. Mani Krishna, Yann-Hang Lee:
An Adaptive Optimization Model with Applications to Testing. Computer Performance and Reliability 1987: 503-515 - [c11]Daniel M. Dias, Balakrishna R. Iyer, John T. Robinson, Philip S. Yu:
Design and Analysis of Integrated Concurrency-Coherence Controls. VLDB 1987: 463-471 - 1986
- [j6]Douglas W. Cornell, Daniel M. Dias, Philip S. Yu:
On Multisystem Coupling Through Function Request Shipping. IEEE Trans. Software Eng. 12(10): 1006-1017 (1986) - [c10]Philip S. Yu, Simonetta Balsamo, Yann-Hang Lee:
Dynamic Load Sharing in Distributed Database Systems. FJCC 1986: 675-683 - [c9]Balakrishna R. Iyer, Daniel M. Dias, Philip S. Yu:
Performability Analysis of Operation Modes of Configurable Duplex Systems. FJCC 1986: 785-796 - [c8]Philip S. Yu, Douglas W. Cornell, Daniel M. Dias, Alexander Thomasian:
On Coupling Partitioned Database Systems. ICDCS 1986: 148-157 - [c7]Douglas W. Cornell, Daniel M. Dias, Philip S. Yu:
Analysis of Multi-System Function Request Shipping. ICDE 1986: 282-291 - [c6]Daniel M. Dias, Balakrishna R. Iyer, Philip S. Yu:
On Coupling Many Small Systems for Transaction Processing. ISCA 1986: 104-110 - [c5]Balakrishna R. Iyer, Philip S. Yu, Yann-Hang Lee:
Analysis of Recovery Protocols in Distributed On-Line Transaction Processing Systems. RTSS 1986: 226-233 - [c4]Philip S. Yu, Balakrishna R. Iyer, Yann-Hang Lee:
Transaction Recovery in Distributed DB/DC Systems: A Progressive Approach. Symposium on Reliability in Distributed Software and Database Systems 1986: 207-214 - [c3]Philip S. Yu, Douglas W. Cornell, Daniel M. Dias, Balakrishna R. Iyer:
On Affinity Based Routing in Multi-System Data Sharing. VLDB 1986: 249-256 - 1985
- [c2]Philip S. Yu, Daniel M. Dias, John T. Robinson, Balakrishna R. Iyer, Douglas W. Cornell:
Distributed Concurrency Control Analysis for Data Sharing. Int. CMG Conference 1985: 13-20 - [c1]Philip S. Yu, Daniel M. Dias, John T. Robinson, Balakrishna R. Iyer, Douglas W. Cornell:
Modelling of Centralized Concurrency Control in a Multi-System Environment. SIGMETRICS 1985: 183-191 - 1983
- [j5]We-Min Chow, Philip S. Yu:
An approximation technique for central server queueing models with a priority dispatching rule. Perform. Evaluation 3(1): 55-62 (1983) - 1982
- [j4]Shu Lin, Philip S. Yu:
A Hybrid ARQ Scheme with Parity Retransmission for Error Control of Satellite Channels. IEEE Trans. Commun. 30(7): 1701-1719 (1982) - 1981
- [j3]Philip S. Yu, Shu Lin:
An efficient selective-repeat ARQ scheme for satellite channels and its throughput analysis. Perform. Evaluation 1(1): 94 (1981) - [j2]Philip S. Yu, Shu Lin:
An Efficient Selective-Repeat ARQ Scheme for Satellite Channels and Its Throughput Analysis. IEEE Trans. Commun. 29(3): 353-363 (1981) - 1980
- [j1]Shu Lin, Philip S. Yu:
An Effective Error Control Scheme for Satellite Communications. IEEE Trans. Commun. 28(3): 395-401 (1980)
Coauthor Index
aka: Changdong Wang
aka: Zhongfei (Mark) Zhang
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-18 19:22 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint