


default search action
RecSys 2023: Singapore
- Jie Zhang, Li Chen, Shlomo Berkovsky, Min Zhang, Tommaso Di Noia, Justin Basilico, Luiz Pizzato, Yang Song:
Proceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore, September 18-22, 2023. ACM 2023
Applications
- Felix Bölz
, Diana Nurbakova
, Sylvie Calabretto
, Armin Gerl
, Lionel Brunie
, Harald Kosch
:
HUMMUS: A Linked, Healthiness-Aware, User-centered and Argument-Enabling Recipe Data Set for Recommendation. 1-11
Side Information, Items structure and Relations
- Saurabh Agrawal
, John Trenkle
, Jaya Kawale
:
Beyond Labels: Leveraging Deep Learning and LLMs for Content Metadata. 1
Late-Breaking Results
- Xumei Xi
, Yuke Zhao
, Quan Liu
, Liwen Ouyang
, Yang Wu
:
Integrating Offline Reinforcement Learning with Transformers for Sequential Recommendation. 1
Tutorials
- Kim Falk
, Morten Arngren
:
Recommenders In the wild - Practical Evaluation Methods. 1
Applications
- Yoji Tomita
, Riku Togashi
, Yuriko Hashizume
, Naoto Ohsaka
:
Fast and Examination-agnostic Reciprocal Recommendation in Matching Markets. 12-23 - Boming Yang
, Dairui Liu
, Toyotaro Suzumura
, Ruihai Dong
, Irene Li
:
✨ Going Beyond Local: Global Graph-Enhanced Personalized News Recommendations. 24-34 - Ming Li
, Mozhdeh Ariannezhad
, Andrew Yates
, Maarten de Rijke
:
Masked and Swapped Sequence Modeling for Next Novel Basket Recommendation in Grocery Shopping. 35-46
Side Information, Items structure and Relations
- Zhen Gong
, Xin Wu
, Lei Chen
, Zhenzhe Zheng
, Shengjie Wang
, Anran Xu
, Chong Wang
, Fan Wu
:
Full Index Deep Retrieval: End-to-End User and Item Structures for Cold-start and Long-tail Item Recommendation. 47-57 - Andreas Peintner
, Amir Reza Mohammadi
, Eva Zangerle
:
SPARE: Shortest Path Global Item Relations for Efficient Session-based Recommendation. 58-69 - Buket Baran
, Guilherme Dinis Junior
, Antonina Danylenko
, Olayinka S. Folorunso
, Gösta Forsum
, Maksym Lefarov
, Lucas Maystre
, Yu Zhao
:
Accelerating Creator Audience Building through Centralized Exploration. 70-73
Sequential Recommendation
- Haibo Liu
, Zhixiang Deng
, Liang Wang
, Jinjia Peng
, Shi Feng
:
Distribution-based Learnable Filters with Side Information for Sequential Recommendation. 78-88 - Bowen Zheng
, Yupeng Hou
, Wayne Xin Zhao
, Yang Song
, Hengshu Zhu
:
Reciprocal Sequential Recommendation. 89-100 - Chengxi Li, Yejing Wang
, Qidong Liu
, Xiangyu Zhao, Wanyu Wang
, Yiqi Wang, Lixin Zou
, Wenqi Fan
, Qing Li
:
STRec: Sparse Transformer for Sequential Recommendations. 101-111 - Walid Bendada
, Théo Bontempelli
, Mathieu Morlon
, Benjamin Chapus
, Thibault Cador
, Thomas Bouabça
, Guillaume Salha-Galvan
:
Track Mix Generation on Music Streaming Services using Transformers. 112-115 - Aleksandr Vladimirovich Petrov
, Craig MacDonald
:
gSASRec: Reducing Overconfidence in Sequential Recommendation Trained with Negative Sampling. 116-128 - Peilin Zhou
, Jingqi Gao
, Yueqi Xie
, Qichen Ye
, Yining Hua
, Jaeboum Kim
, Shoujin Wang
, Sunghun Kim:
Equivariant Contrastive Learning for Sequential Recommendation. 129-140 - Yichi Zhang
, Guisheng Yin
, Yuxin Dong
:
Contrastive Learning with Frequency-Domain Interest Trends for Sequential Recommendation. 141-150 - Xuewen Tao
, Mingming Ha
, Qiongxu Ma
, Hongwei Cheng
, Wenfang Lin
, Xiaobo Guo
, Linxun Chen
, Bing Han
:
Task Aware Feature Extraction Framework for Sequential Dependence Multi-Task Learning. 151-160
Click-Through Rate Prediction
- Cheng Wang
, Jiacheng Sun
, Zhenhua Dong
, Ruixuan Li
, Rui Zhang
:
Gradient Matching for Categorical Data Distillation in CTR Prediction. 161-170 - Yimin Lv
, Shuli Wang
, Beihong Jin
, Yisong Yu
, Yapeng Zhang
, Jian Dong
, Yongkang Wang
, Xingxing Wang
, Dong Wang
:
Deep Situation-Aware Interaction Network for Click-Through Rate Prediction. 171-182 - Yujun Li
, Xing Tang
, Bo Chen
, Yimin Huang
, Ruiming Tang
, Zhenguo Li
:
AutoOpt: Automatic Hyperparameter Scheduling and Optimization for Deep Click-through Rate Prediction. 183-194 - Congcong Liu
, Liang Shi
, Pei Wang
, Fei Teng
, Xue Jiang
, Changping Peng
, Zhangang Lin
, Jingping Shao
:
Loss Harmonizing for Multi-Scenario CTR Prediction. 195-199
Trustworthy Recommendation
- Jiakai Tang
, Shiqi Shen
, Zhipeng Wang
, Zhi Gong
, Jingsen Zhang
, Xu Chen
:
When Fairness meets Bias: a Debiased Framework for Fairness aware Top-N Recommendation. 200-210 - Hao Yang
, Zhining Liu
, Zeyu Zhang
, Chenyi Zhuang
, Xu Chen
:
Towards Robust Fairness-aware Recommendation. 211-222 - Chenyang Wang
, Yankai Liu
, Yuanqing Yu
, Weizhi Ma
, Min Zhang
, Yiqun Liu
, Haitao Zeng
, Junlan Feng
, Chao Deng
:
Two-sided Calibration for Quality-aware Responsible Recommendation. 223-233 - Changsheng Wang
, Jianbai Ye
, Wenjie Wang
, Chongming Gao
, Fuli Feng
, Xiangnan He
:
RecAD: Towards A Unified Library for Recommender Attack and Defense. 234-244
Collaborative filtering
- Huiyuan Chen
, Xiaoting Li
, Vivian Lai
, Chin-Chia Michael Yeh
, Yujie Fan
, Yan Zheng
, Mahashweta Das
, Hao Yang
:
Adversarial Collaborative Filtering for Free. 245-255 - Yuhan Zhao
, Rui Chen
, Riwei Lai
, Qilong Han
, Hongtao Song
, Li Chen
:
Augmented Negative Sampling for Collaborative Filtering. 256-266 - Derek Zhiyuan Cheng
, Ruoxi Wang
, Wang-Cheng Kang
, Benjamin Coleman
, Yin Zhang
, Jianmo Ni
, Jonathan Valverde
, Lichan Hong
, Ed H. Chi:
Efficient Data Representation Learning in Google-scale Systems. 267-271 - Balázs Hidasi
, Ádám Tibor Czapp
:
The Effect of Third Party Implementations on Reproducibility. 272-282 - Yueqi Xie
, Jingqi Gao
, Peilin Zhou
, Qichen Ye
, Yining Hua
, Jae Boum Kim
, Fangzhao Wu
, Sunghun Kim:
Rethinking Multi-Interest Learning for Candidate Matching in Recommender Systems. 283-293 - Hao Ding
, Branislav Kveton
, Yifei Ma
, Youngsuk Park
, Venkataramana Kini
, Yupeng Gu
, Ravi Divvela
, Fei Wang
, Anoop Deoras
, Hao Wang
:
Trending Now: Modeling Trend Recommendations. 294-305 - Norman Knyazev
, Harrie Oosterhuis
:
A Lightweight Method for Modeling Confidence in Recommendations with Learned Beta Distributions. 306-317 - Benedikt Schifferer
, Wenzhe Shi
, Gabriel de Souza Pereira Moreira
, Even Oldridge
, Chris Deotte
, Gilberto Titericz
, Kazuki Onodera
, Praveen Dhinwa
, Vishal Agrawal
, Chris Green
:
Investigating the effects of incremental training on neural ranking models. 318-321
Graphs
- Yuwei Cao
, Liangwei Yang
, Chen Wang
, Zhiwei Liu
, Hao Peng
, Chenyu You
, Philip S. Yu
:
Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item Recommendation. 322-333 - Dang Minh Nguyen
, Chenfei Wang
, Yan Shen
, Yifan Zeng
:
LightSAGE: Graph Neural Networks for Large Scale Item Retrieval in Shopee's Advertisement Recommendation. 334-337 - Wei Wei
, Lianghao Xia
, Chao Huang
:
Multi-Relational Contrastive Learning for Recommendation. 338-349 - Vito Walter Anelli
, Daniele Malitesta
, Claudio Pomo
, Alejandro Bellogín
, Eugenio Di Sciascio
, Tommaso Di Noia
:
Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis. 350-361
Interactive Recommendation
- Yaxiong Wu
, Craig Macdonald
, Iadh Ounis
:
Goal-Oriented Multi-Modal Interactive Recommendation with Verbal and Non-Verbal Relevance Feedback. 362-373 - Zhipeng Zhao
, Kun Zhou
, Xiaolei Wang
, Wayne Xin Zhao
, Fan Pan
, Zhao Cao
, Ji-Rong Wen
:
Alleviating the Long-Tail Problem in Conversational Recommender Systems. 374-385 - Cheng Wang
, Jiacheng Sun
, Zhenhua Dong
, Jieming Zhu
, Zhenguo Li
, Ruixuan Li
, Rui Zhang
:
Data-free Knowledge Distillation for Reusing Recommendation Models. 386-395 - Gary Tang
, Jiangwei Pan
, Henry Wang
, Justin Basilico
:
Reward innovation for long-term member satisfaction. 396-399 - Yan Chen
, Emilian Vankov
, Linas Baltrunas
, Preston Donovan
, Akash Mehta
, Benjamin Schroeder
, Matthew Herman
:
Contextual Multi-Armed Bandit for Email Layout Recommendation. 400-402 - Xinyang Yi
, Shao-Chuan Wang
, Ruining He
, Hariharan Chandrasekaran
, Charles Wu
, Lukasz Heldt
, Lichan Hong
, Minmin Chen
, Ed H. Chi
:
Online Matching: A Real-time Bandit System for Large-scale Recommendations. 403-414 - Huazheng Wang
, Haifeng Xu
, Chuanhao Li
, Zhiyuan Liu
, Hongning Wang
:
Incentivizing Exploration in Linear Contextual Bandits under Information Gap. 415-425 - William Black
, Ercument Ilhan
, Andrea Marchini
, Vilda Markeviciute
:
AdaptEx: A Self-Service Contextual Bandit Platform. 426-429
Reinforcement Learning
- Kabir Nagrecha
, Lingyi Liu
, Pablo Delgado
, Prasanna Padmanabhan
:
InTune: Reinforcement Learning-based Data Pipeline Optimization for Deep Recommendation Models. 430-442 - Zhi Zheng
, Ying Sun
, Xin Song
, Hengshu Zhu
, Hui Xiong
:
Generative Learning Plan Recommendation for Employees: A Performance-aware Reinforcement Learning Approach. 443-454 - Vivek F. Farias
, Hao Li
, Tianyi Peng
, Xinyuyang Ren
, Huawei Zhang
, Andrew Zheng
:
Correcting for Interference in Experiments: A Case Study at Douyin. 455-466 - Vincenzo Paparella
, Vito Walter Anelli
, Ludovico Boratto
, Tommaso Di Noia
:
Reproducibility of Multi-Objective Reinforcement Learning Recommendation: Interplay between Effectiveness and Beyond-Accuracy Perspectives. 467-478
Cross-domain Recommendation
- Xiaoxin Ye
, Yun Li
, Lina Yao
:
DREAM: Decoupled Representation via Extraction Attention Module and Supervised Contrastive Learning for Cross-Domain Sequential Recommender. 479-490 - Zitao Xu
, Weike Pan
, Zhong Ming
:
A Multi-view Graph Contrastive Learning Framework for Cross-Domain Sequential Recommendation. 491-501 - Haokai Ma
, Ruobing Xie
, Lei Meng
, Xin Chen
, Xu Zhang
, Leyu Lin
, Jie Zhou
:
Exploring False Hard Negative Sample in Cross-Domain Recommendation. 502-514 - Jiajie Zhu
, Yan Wang
, Feng Zhu
, Zhu Sun
:
Domain Disentanglement with Interpolative Data Augmentation for Dual-Target Cross-Domain Recommendation. 515-527
Multimedia Recommendation
- Haiyuan Zhao
, Lei Zhang
, Jun Xu
, Guohao Cai
, Zhenhua Dong
, Ji-Rong Wen
:
Uncovering User Interest from Biased and Noised Watch Time in Video Recommendation. 528-539 - Yunzhu Pan
, Chen Gao
, Jianxin Chang
, Yanan Niu
, Yang Song
, Kun Gai
, Depeng Jin
, Yong Li
:
Understanding and Modeling Passive-Negative Feedback for Short-video Sequential Recommendation. 540-550 - Benjamin Richard Clark
, Kristine Grivcova
, Polina Proutskova
, Duncan Martin Walker
:
Personalised Recommendations for the BBC iPlayer: Initial approach and current challenges. 551-553 - Pasquale Lops
, Elio Musacchio
, Cataldo Musto
, Marco Polignano
, Antonio Silletti
, Giovanni Semeraro
:
Reproducibility Analysis of Recommender Systems relying on Visual Features: traps, pitfalls, and countermeasures. 554-564
Knowledge and Context
- Meng Yuan
, Fuzhen Zhuang
, Zhao Zhang
, Deqing Wang
, Jin Dong
:
Knowledge-based Multiple Adaptive Spaces Fusion for Recommendation. 565-575 - Alberto Carlo Maria Mancino
, Antonio Ferrara
, Salvatore Bufi
, Daniele Malitesta
, Tommaso Di Noia
, Eugenio Di Sciascio
:
KGTORe: Tailored Recommendations through Knowledge-aware GNN Models. 576-587 - Dugang Liu
, Yuhao Wu
, Weixin Li
, Xiaolian Zhang
, Hao Wang
, Qinjuan Yang
, Zhong Ming
:
Pairwise Intent Graph Embedding Learning for Context-Aware Recommendation. 588-598 - Bin Yin
, Junjie Xie
, Yu Qin
, Zixiang Ding
, Zhichao Feng
, Xiang Li
, Wei Lin
:
Heterogeneous Knowledge Fusion: A Novel Approach for Personalized Recommendation via LLM. 599-601
Multi-task Recommendation
- Wanda Li
, Wenhao Zheng
, Xuanji Xiao
, Suhang Wang
:
STAN: Stage-Adaptive Network for Multi-Task Recommendation by Learning User Lifecycle-Based Representation. 602-612 - Youchen Sun
, Zhu Sun
, Xiao Sha
, Jie Zhang
, Yew Soon Ong
:
Disentangling Motives behind Item Consumption and Social Connection for Mutually-enhanced Joint Prediction. 613-624 - Qianzhen Rao
, Yang Liu
, Weike Pan
, Zhong Ming
:
BVAE: Behavior-aware Variational Autoencoder for Multi-Behavior Multi-Task Recommendation. 625-636 - Rui Luo
, Tianxin Wang
, Jingyuan Deng
, Peng Wan
:
MCM: A Multi-task Pre-trained Customer Model for Personalization. 637-639
Evaluation
- Lien Michiels
, Jorre T. A. Vannieuwenhuyze
, Jens Leysen
, Robin Verachtert
, Annelien Smets
, Bart Goethals
:
How Should We Measure Filter Bubbles? A Regression Model and Evidence for Online News. 640-651 - Faisal Shehzad
, Dietmar Jannach
:
Everyone's a Winner! On Hyperparameter Tuning of Recommendation Models. 652-657 - Yang Liu
, Alan Medlar
, Dorota Glowacka
:
What We Evaluate When We Evaluate Recommender Systems: Understanding Recommender Systems' Performance using Item Response Theory. 658-670 - Junyi Shen
, Dayvid V. R. Oliveira
, Jin Cao
, Brian Knott
, Goodman Gu
, Sindhu Vijaya Raghavan
, Yunye Jin
, Nikita Sudan
, Rob Monarch
:
Identifying Controversial Pairs in Item-to-Item Recommendations. 671-674
Short Papers
- Olivier Jeunen
:
A Probabilistic Position Bias Model for Short-Video Recommendation Feeds. 675-681 - Haoxuan Li
, Taojun Hu
, Zetong Xiong
, Chunyuan Zheng
, Fuli Feng
, Xiangnan He
, Xiao-Hua Zhou
:
ADRNet: A Generalized Collaborative Filtering Framework Combining Clinical and Non-Clinical Data for Adverse Drug Reaction Prediction. 682-687 - Abhishek Jaiswal
, Gautam Chauhan
, Nisheeth Srivastava
:
Using Learnable Physics for Real-Time Exercise Form Recommendations. 688-695 - Yoosof Mashayekhi
, Bo Kang
, Jefrey Lijffijt
, Tijl De Bie
:
ReCon: Reducing Congestion in Job Recommendation using Optimal Transport. 696-701 - Rui Ding
, Ruobing Xie
, Xiaobo Hao
, Xiaochun Yang
, Kaikai Ge
, Xu Zhang
, Jie Zhou
, Leyu Lin
:
Interpretable User Retention Modeling in Recommendation. 702-708 - Sebastian Lubos
, Viet-Man Le
, Alexander Felfernig
, Thi Ngoc Trang Tran
:
Analysis Operations for Constraint-based Recommender Systems. 709-714 - Iason Chaimalas
, Duncan Martin Walker
, Edoardo Gruppi
, Benjamin Richard Clark
, Laura Toni
:
Bootstrapped Personalized Popularity for Cold Start Recommender Systems. 715-722 - Sirui Wang
, Peiguang Li
, Yunsen Xian
, Hongzhi Zhang
:
Beyond the Sequence: Statistics-Driven Pre-training for Stabilizing Sequential Recommendation Model. 723-729 - Amit Pande
, Kunal Ghosh
, Rankyung Park
:
Personalized Category Frequency prediction for Buy It Again recommendations. 730-736 - Wenqi Sun
, Ruobing Xie
, Junjie Zhang
, Wayne Xin Zhao
, Leyu Lin
, Ji-Rong Wen
:
Generative Next-Basket Recommendation. 737-743 - Jianjun Yuan
, Wei Lee Woon
, Ludovik Coba
:
Adversarial Sleeping Bandit Problems with Multiple Plays: Algorithm and Ranking Application. 744-749 - Pantelis Pipergias Analytis
, Philipp Hager
:
Collaborative filtering algorithms are prone to mainstream-taste bias. 750-756 - Huiyuan Chen
, Kaixiong Zhou
, Kwei-Herng Lai
, Chin-Chia Michael Yeh
, Yan Zheng
, Xia Hu
, Hao Yang
:
Hessian-aware Quantized Node Embeddings for Recommendation. 757-762 - Martin Spisák
, Radek Bartyzal
, Antonín Hoskovec
, Ladislav Peska
, Miroslav Tuma
:
Scalable Approximate NonSymmetric Autoencoder for Collaborative Filtering. 763-770 - Zerong Lan
, Yingyi Zhang
, Xianneng Li
:
M3REC: A Meta-based Multi-scenario Multi-task Recommendation Framework. 771-776 - Sheshera Mysore
, Andrew McCallum
, Hamed Zamani
:
Large Language Model Augmented Narrative Driven Recommendations. 777-783 - Mostafa Rahmani
, James Caverlee
, Fei Wang
:
Incorporating Time in Sequential Recommendation Models. 784-790 - Vivian Lai
, Huiyuan Chen
, Chin-Chia Michael Yeh
, Minghua Xu
, Yiwei Cai
, Hao Yang
:
Enhancing Transformers without Self-supervised Learning: A Loss Landscape Perspective in Sequential Recommendation. 791-797 - Ashraf Ghiye
, Baptiste Barreau
, Laurent Carlier
, Michalis Vazirgiannis
:
Adaptive Collaborative Filtering with Personalized Time Decay Functions for Financial Product Recommendation. 798-804 - Mihaela Curmei
, Walid Krichene
, Li Zhang
, Mukund Sundararajan
:
Private Matrix Factorization with Public Item Features. 805-812 - Lucien Heitz
, Juliane A. Lischka
, Rana Abdullah
, Laura Laugwitz
, Hendrik Meyer
, Abraham Bernstein
:
Deliberative Diversity for News Recommendations: Operationalization and Experimental User Study. 813-819 - Yaokun Liu
, Xiaowang Zhang
, Minghui Zou
, Zhiyong Feng
:
Co-occurrence Embedding Enhancement for Long-tail Problem in Multi-Interest Recommendation. 820-825 - Elad Haramaty
, Zohar S. Karnin
, Arnon Lazerson
, Liane Lewin-Eytan
, Yoelle Maarek
:
Extended Conversion: Capturing Successful Interactions in Voice Shopping. 826-832 - Walid Bendada
, Guillaume Salha-Galvan
, Romain Hennequin
, Thomas Bouabça
, Tristan Cazenave
:
On the Consistency of Average Embeddings for Item Recommendation. 833-839 - Marta Moscati
, Christian Wallmann
, Markus Reiter-Haas
, Dominik Kowald
, Elisabeth Lex
, Markus Schedl
:
Integrating the ACT-R Framework with Collaborative Filtering for Explainable Sequential Music Recommendation. 840-847 - Balázs Hidasi
, Ádám Tibor Czapp
:
Widespread Flaws in Offline Evaluation of Recommender Systems. 848-855 - Giuseppe Spillo
, Allegra De Filippo
, Cataldo Musto
, Michela Milano
, Giovanni Semeraro
:
Towards Sustainability-aware Recommender Systems: Analyzing the Trade-off Between Algorithms Performance and Carbon Footprint. 856-862 - Stefania Ionescu
, Aniko Hannak
, Nicolò Pagan
:
Group Fairness for Content Creators: the Role of Human and Algorithmic Biases under Popularity-based Recommendations. 863-870 - Bjørnar Vassøy
, Helge Langseth
, Benjamin Kille
:
Providing Previously Unseen Users Fair Recommendations Using Variational Autoencoders. 871-876 - Aayush Singha Roy
, Edoardo D'Amico
, Elias Z. Tragos
, Aonghus Lawlor
, Neil Hurley
:
Scalable Deep Q-Learning for Session-Based Slate Recommendation. 877-882 - Tushar Prakash
, Raksha Jalan
, Brijraj Singh
, Naoyuki Onoe
:
CR-SoRec: BERT driven Consistency Regularization for Social Recommendation. 883-889 - Scott Sanner
, Krisztian Balog
, Filip Radlinski
, Ben Wedin
, Lucas Dixon
:
Large Language Models are Competitive Near Cold-start Recommenders for Language- and Item-based Preferences. 890-896 - Rana Shahout
, Yehonatan Peisakhovsky
, Sasha Stoikov
, Nikhil Garg
:
Interface Design to Mitigate Inflation in Recommender Systems. 897-903 - Alejandro Ariza-Casabona
, Maria Salamó
, Ludovico Boratto
, Gianni Fenu
:
Towards Self-Explaining Sequence-Aware Recommendation. 904-911 - Patrik Dokoupil
, Ladislav Peska
, Ludovico Boratto
:
Looks Can Be Deceiving: Linking User-Item Interactions and User's Propensity Towards Multi-Objective Recommendations. 912-918 - Nikita Severin
, Andrey V. Savchenko
, Dmitrii Kiselev
, Maria Ivanova
, Ivan Kireev
, Ilya Makarov
:
Ti-DC-GNN: Incorporating Time-Interval Dual Graphs for Recommender Systems. 919-925 - Darius Afchar
, Romain Hennequin
, Vincent Guigue
:
Of Spiky SVDs and Music Recommendation. 926-932 - Tonmoy Hasan
, Razvan C. Bunescu
:
Topic-Level Bayesian Surprise and Serendipity for Recommender Systems. 933-939 - Congrui Yi
, David Zumwalt
, Zijian Ni
, Shreya Chakrabarti
:
Progressive Horizon Learning: Adaptive Long Term Optimization for Personalized Recommendation. 940-946 - Sairamvinay Vijayaraghavan
, Prasant Mohapatra
:
Stability of Explainable Recommendation. 947-954 - Ruiyang Xu
, Jalaj Bhandari
, Dmytro Korenkevych
, Fan Liu
, Yuchen He
, Alex Nikulkov
, Zheqing Zhu
:
Optimizing Long-term Value for Auction-Based Recommender Systems via On-Policy Reinforcement Learning. 955-962 - Zheqing Zhu
, Benjamin Van Roy
:
Deep Exploration for Recommendation Systems. 963-970 - Bruno Sguerra
, Viet-Anh Tran
, Romain Hennequin
:
Ex2Vec: Characterizing Users and Items from the Mere Exposure Effect. 971-977 - Yuan Ma
, Jürgen Ziegler
:
Initiative transfer in conversational recommender systems. 978-984 - Aleksey Romanov
, Oleg Lashinin
, Marina Ananyeva
, Sergey Kolesnikov
:
Time-Aware Item Weighting for the Next Basket Recommendations. 985-992 - Jizhi Zhang
, Keqin Bao
, Yang Zhang
, Wenjie Wang
, Fuli Feng
, Xiangnan He
:
Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large Language Model Recommendation. 993-999 - Yaming Yang
, Jieyu Zhang
, Yujing Wang
, Zheng Miao
, Yunhai Tong
:
Multiple Connectivity Views for Session-based Recommendation. 1000-1006 - Keqin Bao
, Jizhi Zhang
, Yang Zhang
, Wenjie Wang
, Fuli Feng
, Xiangnan He
:
TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. 1007-1014
Industry Posters
- Zongyi Wang
, Yanyan Zou
, Anyu Dai
, Linfang Hou
, Nan Qiao
, Luobao Zou
, Mian Ma
, Zhuoye Ding
, Sulong Xu
:
An Industrial Framework for Personalized Serendipitous Recommendation in E-commerce. 1015-1018 - Manik Bhandari
, Mingxian Wang
, Oleg Poliannikov
, Kanna Shimizu
:
RecQR: Using Recommendation Systems for Query Reformulation to correct unseen errors in spoken dialog systems. 1019-1022 - Timo Wilm
, Philipp Normann
, Sophie Baumeister
, Paul-Vincent Kobow
:
Scaling Session-Based Transformer Recommendations using Optimized Negative Sampling and Loss Functions. 1023-1026 - Sarel Duanis
, Keren Gaiger
, Ravid Cohen
, Shaked Zychlinski
, Asnat Greenstein-Messica
:
Visual Representation for Capturing Creator Theme in Brand-Creator Marketplace. 1027-1030 - M. Jeffrey Mei
, Oliver Bembom
, Andreas F. Ehmann
:
Station and Track Attribute-Aware Music Personalization. 1031-1035 - Geetha Sai Aluri
, Paul Greyson
, Joaquin Delgado
:
Optimizing Podcast Discovery: Unveiling Amazon Music's Retrieval and Ranking Framework. 1036-1038 - Konstantina Christakopoulou
, Minmin Chen
:
Towards Companion Recommenders Assisting Users' Long-Term Journeys. 1039-1041 - Yernat Assylbekov
, Raghav Bali
, Luke Bovard
, Christian Klaue
:
Delivery Hero Recommendation Dataset: A Novel Dataset for Benchmarking Recommendation Algorithms. 1042-1044 - Andreas Grün
, Xenija Neufeld
:
Transparently Serving the Public: Enhancing Public Service Media Values through Exploration. 1045-1048 - Yueqi Wang
, Yoni Halpern
, Shuo Chang
, Jingchen Feng
, Elaine Ya Le
, Longfei Li
, Xujian Liang
, Min-Cheng Huang
, Shane Li
, Alex Beutel
, Yaping Zhang
, Shuchao Bi
:
Learning from Negative User Feedback and Measuring Responsiveness for Sequential Recommenders. 1049-1053 - Yi Su
, Minmin Chen
:
Nonlinear Bandits Exploration for Recommendations. 1054-1057 - Ding Tong
, Qifeng Qiao
, Ting-Po Lee
, James McInerney
, Justin Basilico
:
Navigating the Feedback Loop in Recommender Systems: Insights and Strategies from Industry Practice. 1058-1061 - Natalia Chen
, Oinam Nganba Meetei
, Nilothpal Talukder
, Alexey Zankevich
:
Leveling Up the Peloton Homescreen: A System and Algorithm for Dynamic Row Ranking. 1062-1066 - Johannes Kruse
, Kasper Lindskow
, Michael Riis Andersen
, Jes Frellsen
:
Creating the next generation of news experience on ekstrabladet.dk with recommender systems. 1067-1070 - Anshumali Shrivastava
, Vihan Lakshman
, Tharun Medini
, Nicholas Meisburger
, Joshua Engels
, David Torres Ramos
, Benito Geordie
, Pratik Pranav
, Shubh Gupta
, Yashwanth Adunukota
, Siddharth Jain
:
From Research to Production: Towards Scalable and Sustainable Neural Recommendation Models on Commodity CPU Hardware. 1071-1074 - Jan Hartman
, Assaf Klein
, Davorin Kopic
, Natalia Silberstein
:
Unleash the Power of Context: Enhancing Large-Scale Recommender Systems with Context-Based Prediction Models. 1075-1077
Late-Breaking Results
- Blaz Skrlj
, Blaz Mramor
:
OutRank: Speeding up AutoML-based Model Search for Large Sparse Data sets with Cardinality-aware Feature Ranking. 1078-1083 - Anastasiia Klimashevskaia
, Mehdi Elahi
, Dietmar Jannach
, Lars Skjærven
, Astrid Tessem
, Christoph Trattner
:
Evaluating The Effects of Calibrated Popularity Bias Mitigation: A Field Study. 1084-1089 - Benedikt Loepp
, Jürgen Ziegler
:
How Users Ride the Carousel: Exploring the Design of Multi-List Recommender Interfaces From a User Perspective. 1090-1095 - Jesse Harte
, Wouter Zorgdrager
, Panos Louridas
, Asterios Katsifodimos
, Dietmar Jannach
, Marios Fragkoulis
:
Leveraging Large Language Models for Sequential Recommendation. 1096-1102 - Jiawei Zhang
:
Learning the True Objectives of Multiple Tasks in Sequential Behavior Modeling. 1109-1113 - Andrea Bacciu
, Federico Siciliano
, Nicola Tonellotto
, Fabrizio Silvestri
:
Integrating Item Relevance in Training Loss for Sequential Recommender Systems. 1114-1119 - Anton Klenitskiy
, Alexey Vasilev
:
Turning Dross Into Gold Loss: is BERT4Rec really better than SASRec? 1120-1125 - Sunhao Dai
, Ninglu Shao
, Haiyuan Zhao
, Weijie Yu
, Zihua Si
, Chen Xu
, Zhongxiang Sun
, Xiao Zhang
, Jun Xu
:
Uncovering ChatGPT's Capabilities in Recommender Systems. 1126-1132 - Jaime Hieu Do
, Hady W. Lauw
:
Continual Collaborative Filtering Through Gradient Alignment. 1133-1138 - Vincenzo Paparella
, Dario Di Palma
, Vito Walter Anelli
, Tommaso Di Noia
:
Broadening the Scope: Evaluating the Potential of Recommender Systems beyond prioritizing Accuracy. 1139-1145 - Ine Coppens
, Luc Martens
, Toon De Pessemier
:
Analyzing Accuracy versus Diversity in a Health Recommender System for Physical Activities: a Longitudinal User Study. 1146-1151 - Yang Liu
, Alan Medlar
, Dorota Glowacka
:
On the Consistency, Discriminative Power and Robustness of Sampled Metrics in Offline Top-N Recommender System Evaluation. 1152-1157 - Iustina Ivanova
:
Climbing crags repetitive choices and recommendations. 1158-1164 - Patrícia Alves
, André Martins
, Paulo Novais
, Goreti Marreiros
:
Improving Group Recommendations using Personality, Dynamic Clustering and Multi-Agent MicroServices. 1165-1168 - Petr Kasalický
, Antoine Ledent
, Rodrigo Alves
:
Uncertainty-adjusted Inductive Matrix Completion with Graph Neural Networks. 1169-1174 - Mesut Kaya
, Toine Bogers
:
An Exploration of Sentence-Pair Classification for Algorithmic Recruiting. 1175-1179 - Ergun Biçici
:
Power Loss Function in Neural Networks for Predicting Click-Through Rate. 1180-1183 - Mehrdad Rostami
, Mohammad Aliannejadi
, Mourad Oussalah
:
Towards Health-Aware Fairness in Food Recipe Recommendation. 1184-1189 - Amit Kumar Jaiswal
, Yu Xiong
:
A Model-Agnostic Framework for Recommendation via Interest-aware Item Embeddings. 1190-1195
Demonstrations
- Patrik Dokoupil
, Ladislav Peska
:
EasyStudy: Framework for Easy Deployment of User Studies on Recommender Systems. 1196-1199 - Douglas Turnbull, April Trainor, Douglas R. Turnbull, Elizabeth Richards, Kieran Bentley, Victoria Conrad, Paul Gagliano, Cassandra Raineault, Thorsten Joachims:
Localify.org: Locally-focus Music Artist and Event Recommendation. 1200-1203 - Arkadeep Acharya
, Brijraj Singh
, Naoyuki Onoe
:
LLM Based Generation of Item-Description for Recommendation System. 1204-1207 - Antonela Tommasel
, Rafael Pablos-Sarabia
, Ira Assent
:
Re2Dan: Retrieval of Medical Documents for e-Health in Danish. 1208-1211 - Tobias Vente
, Michael D. Ekstrand
, Joeran Beel
:
Introducing LensKit-Auto, an Experimental Automated Recommender System (AutoRecSys) Toolkit. 1212-1216
Workshops and Challenge
- Rahul Agrawal
, Sarang Brahme
, Sourav Maitra
, Saikishore Kalloori
, Abhishek Srivastava
, Yong Liu
, Athirai A. Irissappane
:
RecSys Challenge 2023: Deep Funnel Optimization with a Focus on User Privacy. 1217-1220 - Alan Said
, Eva Zangerle
, Christine Bauer
:
Third Workshop: Perspectives on the Evaluation of Recommender Systems (PERSPECTIVES 2023). 1221-1222 - Olivier Jeunen
, Thorsten Joachims
, Harrie Oosterhuis
, Yuta Saito
, Flavian Vasile
, Yixin Wang
:
CONSEQUENCES - The 2nd Workshop on Causality, Counterfactuals and Sequential Decision-Making for Recommender Systems. 1223-1226 - Andres Ferraro
, Peter Knees
, Massimo Quadrana
, Tao Ye
, Fabien Gouyon
:
MuRS: Music Recommender Systems Workshop. 1227-1230 - Amon Rapp
, Federica Cena
, Christoph Trattner
, Rita Orji
, Julita Vassileva
, Alain Starke
:
BehavRec: Workshop on Recommendations for Behavior Change. 1231-1233 - Gediminas Adomavicius
, Konstantin Bauman
, Bamshad Mobasher
, Alexander Tuzhilin
, Moshe Unger
:
Workshop on Context-Aware Recommender Systems 2023. 1234-1236 - Julia Lasserre
, Nima Dokoohaki
, Reza Shirvany
:
Fifth Workshop on Recommender Systems in Fashion and Retail - fashionXrecsys2023. 1237-1240 - Oana Inel
, Nicolas Mattis
, Milda Norkute
, Alessandro Piscopo
, Timothée Schmude
, Sanne Vrijenhoek
, Krisztian Balog
:
QUARE: 2nd Workshop on Measuring the Quality of Explanations in Recommender Systems. 1241-1243 - Toine Bogers
, David Graus
, Mesut Kaya
, Chris Johnson
, Jens-Joris Decorte
:
Third Workshop on Recommender Systems for Human Resources (RecSys in HR 2023). 1244-1247 - Maurizio Ferrari Dacrema
, Pablo Castells
, Justin Basilico
, Paolo Cremonesi
:
Workshop on Learning and Evaluating Recommendations with Impressions (LERI). 1248-1251 - Sanne Vrijenhoek
, Lien Michiels
, Johannes Kruse
, Alain Starke
, Nava Tintarev
, Jordi Viader Guerrero
:
NORMalize: The First Workshop on Normative Design and Evaluation of Recommender Systems. 1252-1254 - Peter Brusilovsky
, Marco de Gemmis
, Alexander Felfernig
, Pasquale Lops
, Marco Polignano
, Giovanni Semeraro
, Martijn C. Willemsen
:
10th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems (IntRS'23). 1255-1258 - Vito Walter Anelli
, Pierpaolo Basile
, Gerard de Melo
, Francesco M. Donini
, Antonio Ferrara
, Cataldo Musto
, Fedelucio Narducci
, Azzurra Ragone
, Markus Zanker
:
Fifth Knowledge-aware and Conversational Recommender Systems Workshop (KaRS). 1259-1262 - Benjamin Kille
, Andreas Lommatzsch
, Özlem Özgöbek
, Peng Liu
, Simen Eide
, Lemei Zhang
:
The Eleventh International Workshop on News Recommendation and Analytics (INRA'23). 1263-1266 - Michael D. Ekstrand
, Jean Garcia-Gathright
, Nasim Sonboli
, Amifa Raj
, Karlijn Dinnissen
:
FAccTRec 2023: The 6th Workshop on Responsible Recommendation. 1267-1268 - Khushhall Chandra Mahajan
, Amey Porobo Dharwadker
, Saurabh Gupta
, Brad Schumitsch
:
VideoRecSys 2023: First Workshop on Large-Scale Video Recommender Systems. 1269-1271 - João Vinagre
, Marie Al-Ghossein
, Ladislav Peska
, Alípio Mário Jorge
, Albert Bifet
:
ORSUM 2023 - 6th Workshop on Online Recommender Systems and User Modeling. 1272-1273 - Julia Neidhardt
, Wolfgang Wörndl
, Tsvi Kuflik
, Dmitri Goldenberg
, Markus Zanker
:
Workshop on Recommenders in Tourism (RecTour) 2023. 1274-1275 - Ruiming Tang
, Xiaoqiang Zhu
, Junfeng Ge
, Kuang-chih Lee
, Biye Jiang
, Xingxing Wang
, Han Zhu
, Tao Zhuang
, Weiwen Liu
, Kan Ren
, Weinan Zhang
, Xiangyu Zhao
:
International Workshop on Deep Learning Practice for High-Dimensional Sparse Data with RecSys 2023. 1276-1280
Tutorials
- Wenyue Hua
, Lei Li
, Shuyuan Xu
, Li Chen
, Yongfeng Zhang
:
Tutorial on Large Language Models for Recommendation. 1281-1283 - Aixin Sun
:
On Challenges of Evaluating Recommender Systems in an Offline Setting. 1284-1285 - Weiwen Liu
, Wei Guo
, Yong Liu
, Ruiming Tang
, Hao Wang
:
User Behavior Modeling with Deep Learning for Recommendation: Recent Advances. 1286-1287 - Markus Schedl
, Vito Walter Anelli
, Elisabeth Lex
:
Trustworthy Recommender Systems: Technical, Ethical, Legal, and Regulatory Perspectives. 1288-1290 - Chuhan Wu
, Qinglin Jia
, Zhenhua Dong
, Ruiming Tang
:
Customer Lifetime Value Prediction: Towards the Paradigm Shift of Recommender System Objectives. 1293-1294
Doctoral Symposium
- Andreas Peintner
:
Sequential Recommendation Models: A Graph-based Perspective. 1295-1299 - Jens Leysen
:
Exploring Unlearning Methods to Ensure the Privacy, Security, and Usability of Recommender Systems. 1300-1304 - Rastislav Papso
:
Complementary Product Recommendation for Long-tail Products. 1305-1311 - Giuseppe Spillo
:
Knowledge-Aware Recommender Systems based on Multi-Modal Information Sources. 1312-1317 - Amir Reza Mohammadi
:
Explainable Graph Neural Network Recommenders; Challenges and Opportunities. 1318-1324 - Tommaso Carraro
:
Overcoming Recommendation Limitations with Neuro-Symbolic Integration. 1325-1331 - Lukas Wegmeth
:
Improving Recommender Systems Through the Automation of Design Decisions. 1332-1338 - Alessio Ferrato
:
Challenges for Anonymous Session-Based Recommender Systems in Indoor Environments. 1339-1341 - Imane Akdim
:
Acknowledging Dynamic Aspects of Trust in Recommender Systems. 1342-1343 - Youchen Sun
:
Denoising Explicit Social Signals for Robust Recommendation. 1344-1348 - Gangyi Zhang
:
User-Centric Conversational Recommendation: Adapting the Need of User with Large Language Models. 1349-1354 - Tobias Vente
:
Advancing Automation of Design Decisions in Recommender System Pipelines. 1355-1360 - Giacomo Balloccu
:
Demystifying Recommender Systems: A Multi-faceted Examination of Explanation Generation, Impact, and Perception. 1361-1363 - Ziqing Wu
:
Enhanced Privacy Preservation for Recommender Systems. 1364-1368 - Dario Di Palma
:
Retrieval-augmented Recommender System: Enhancing Recommender Systems with Large Language Models. 1369-1373

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.