


default search action
Da Zheng
This is just a disambiguation page, and is not intended to be the bibliography of an actual person. Any publication listed on this page has not been assigned to an actual author yet. If you know the true author of one of the publications listed below, you are welcome to contact us.
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j8]Linfei Yin
, Da Zheng
:
Hybrid modeling with data enhanced driven learning algorithm for smart generation control in multi-area integrated energy systems with high proportion renewable energy. Expert Syst. Appl. 261: 125530 (2025) - 2024
- [j7]Xueqing Li, Weile Li
, Zhanglei Wu, Qiang Xu
, Da Zheng, Xiujun Dong, Huiyan Lu, Yunfeng Shan
, Shengsen Zhou
, Wenlong Yu, Xincheng Wang:
Identification and Deformation Characteristics of Active Landslides at Large Hydropower Stations at the Early Impoundment Stage: A Case Study of the Lianghekou Reservoir Area in Sichuan Province, Southwest China. Remote. Sens. 16(17): 3175 (2024) - [j6]Zonghan Wu
, Da Zheng, Shirui Pan
, Quan Gan, Guodong Long
, George Karypis:
TraverseNet: Unifying Space and Time in Message Passing for Traffic Forecasting. IEEE Trans. Neural Networks Learn. Syst. 35(2): 2003-2013 (2024) - [c37]Kun Wu
, Mert Hidayetoglu
, Xiang Song
, Sitao Huang
, Da Zheng
, Israt Nisa
, Wen-Mei Hwu
:
Hector: An Efficient Programming and Compilation Framework for Implementing Relational Graph Neural Networks in GPU Architectures. ASPLOS (3) 2024: 528-544 - [c36]Zheng Wang
, Yuke Wang
, Jiaqi Deng
, Da Zheng
, Ang Li
, Yufei Ding
:
RAP: Resource-aware Automated GPU Sharing for Multi-GPU Recommendation Model Training and Input Preprocessing. ASPLOS (2) 2024: 964-979 - [c35]Hengrui Zhang
, Shen Wang
, Vassilis N. Ioannidis
, Soji Adeshina
, Jiani Zhang
, Xiao Qin
, Christos Faloutsos
, Da Zheng
, George Karypis
, Philip S. Yu
:
Revisit Orthogonality in Graph-Regularized MLPs. CIKM 2024: 3145-3154 - [c34]Meng-Chieh Lee, Haiyang Yu, Jian Zhang, Vassilis N. Ioannidis, Xiang Song, Soji Adeshina, Da Zheng, Christos Faloutsos:
NetInfoF Framework: Measuring and Exploiting Network Usable Information. ICLR 2024 - [c33]Da Zheng
, Xiang Song
, Qi Zhu
, Jian Zhang
, Theodore Vasiloudis
, Runjie Ma
, Houyu Zhang
, Zichen Wang
, Soji Adeshina
, Israt Nisa
, Alejandro Mottini
, Qingjun Cui
, Huzefa Rangwala
, Belinda Zeng
, Christos Faloutsos
, George Karypis
:
GraphStorm: All-in-one Graph Machine Learning Framework for Industry Applications. KDD 2024: 6356-6367 - [i40]Meng-Chieh Lee, Haiyang Yu, Jian Zhang, Vassilis N. Ioannidis, Xiang Song, Soji Adeshina, Da Zheng, Christos Faloutsos:
NetInfoF Framework: Measuring and Exploiting Network Usable Information. CoRR abs/2402.07999 (2024) - [i39]Qi Zhu, Da Zheng, Xiang Song, Shichang Zhang, Bowen Jin, Yizhou Sun, George Karypis:
Parameter-Efficient Tuning Large Language Models for Graph Representation Learning. CoRR abs/2404.18271 (2024) - [i38]Da Zheng, Xiang Song, Qi Zhu, Jiani Zhang, Theodore Vasiloudis, Runjie Ma, Houyu Zhang, Zichen Wang, Soji Adeshina, Israt Nisa, Alejandro Mottini, Qingjun Cui, Huzefa Rangwala, Belinda Zeng, Christos Faloutsos, George Karypis:
GraphStorm: all-in-one graph machine learning framework for industry applications. CoRR abs/2406.06022 (2024) - [i37]Shichang Zhang, Da Zheng, Jiani Zhang, Qi Zhu, Xiang Song, Soji Adeshina, Christos Faloutsos, George Karypis, Yizhou Sun:
Hierarchical Compression of Text-Rich Graphs via Large Language Models. CoRR abs/2406.11884 (2024) - [i36]Junfeng Tian, Da Zheng, Yang Cheng, Rui Wang, Colin Zhang, Debing Zhang:
Untie the Knots: An Efficient Data Augmentation Strategy for Long-Context Pre-Training in Language Models. CoRR abs/2409.04774 (2024) - [i35]Yujie Luo, Xiangyuan Ru, Kangwei Liu, Lin Yuan, Mengshu Sun, Ningyu Zhang, Lei Liang, Zhiqiang Zhang, Jun Zhou, Lanning Wei, Da Zheng, Haofen Wang, Huajun Chen:
OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System. CoRR abs/2412.20005 (2024) - 2023
- [c32]Israt Nisa, Minjie Wang, Da Zheng, Qiang Fu, Ümit V. Çatalyürek, George Karypis:
Optimizing Irregular Dense Operators of Heterogeneous GNN Models on GPU. IPDPS Workshops 2023: 199-206 - [c31]Han Xie
, Da Zheng
, Jun Ma
, Houyu Zhang
, Vassilis N. Ioannidis
, Xiang Song
, Qing Ping
, Sheng Wang
, Carl Yang
, Yi Xu
, Belinda Zeng
, Trishul Chilimbi
:
Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help Multiple Graph Applications. KDD 2023: 5270-5281 - [c30]Jian Zhang
, Da Zheng
, Xiang Song
, Theodore Vasiloudis
, Israt Nisa
, Jim Lu
:
GraphStorm an Easy-to-use and Scalable Graph Neural Network Framework: From Beginners to Heroes. KDD 2023: 5790-5791 - [c29]Neil Shah
, Shobeir Fakhraei
, Da Zheng
, Bahare Fatemi
, Leman Akoglu
:
19th International Workshop on Mining and Learning with Graphs (MLG). KDD 2023: 5882-5883 - [c28]Costas Mavromatis, Vassilis N. Ioannidis, Shen Wang, Da Zheng, Soji Adeshina, Jun Ma, Han Zhao, Christos Faloutsos, George Karypis:
Train Your Own GNN Teacher: Graph-Aware Distillation on Textual Graphs. ECML/PKDD (3) 2023: 157-173 - [c27]Zhenkun Cai, Qihui Zhou, Xiao Yan, Da Zheng, Xiang Song, Chenguang Zheng, James Cheng, George Karypis:
DSP: Efficient GNN Training with Multiple GPUs. PPoPP 2023: 392-404 - [c26]Shiyang Chen
, Da Zheng
, Caiwen Ding
, Chengying Huan
, Yuede Ji
, Hang Liu
:
TANGO: re-thinking quantization for graph neural network training on GPUs. SC 2023: 38:1-38:14 - [c25]Hongkuan Zhou
, Da Zheng
, Xiang Song
, George Karypis
, Viktor K. Prasanna
:
DistTGL: Distributed Memory-Based Temporal Graph Neural Network Training. SC 2023: 39:1-39:12 - [c24]Shichang Zhang
, Jiani Zhang
, Xiang Song
, Soji Adeshina
, Da Zheng
, Christos Faloutsos
, Yizhou Sun
:
PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction. WWW 2023: 3784-3793 - [i34]Kun Wu, Mert Hidayetoglu, Xiang Song, Sitao Huang, Da Zheng, Israt Nisa, Wen-Mei W. Hwu:
PIGEON: Optimizing CUDA Code Generator for End-to-End Training and Inference of Relational Graph Neural Networks. CoRR abs/2301.06284 (2023) - [i33]Hengrui Zhang, Shen Wang, Vassilis N. Ioannidis, Soji Adeshina, Jiani Zhang, Xiao Qin, Christos Faloutsos, Da Zheng, George Karypis, Philip S. Yu:
OrthoReg: Improving Graph-regularized MLPs via Orthogonality Regularization. CoRR abs/2302.00109 (2023) - [i32]Shichang Zhang, Jiani Zhang, Xiang Song, Soji Adeshina, Da Zheng, Christos Faloutsos, Yizhou Sun:
PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction. CoRR abs/2302.12465 (2023) - [i31]Costas Mavromatis, Vassilis N. Ioannidis, Shen Wang, Da Zheng, Soji Adeshina, Jun Ma, Han Zhao, Christos Faloutsos, George Karypis:
Train Your Own GNN Teacher: Graph-Aware Distillation on Textual Graphs. CoRR abs/2304.10668 (2023) - [i30]Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N. Ioannidis, Xiang Song, Qing Ping, Sheng Wang, Carl Yang, Yi Xu, Belinda Zeng, Trishul Chilimbi:
Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help Multiple Graph Applications. CoRR abs/2306.02592 (2023) - [i29]Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, Viktor K. Prasanna:
DistTGL: Distributed Memory-Based Temporal Graph Neural Network Training. CoRR abs/2307.07649 (2023) - [i28]Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan, Yuede Ji, Hang Liu:
Tango: rethinking quantization for graph neural network training on GPUs. CoRR abs/2308.00890 (2023) - 2022
- [j5]Hongkuan Zhou, Da Zheng, Israt Nisa, Vassilis N. Ioannidis, Xiang Song, George Karypis:
TGL: A General Framework for Temporal GNN Training onBillion-Scale Graphs. Proc. VLDB Endow. 15(8): 1572-1580 (2022) - [c23]Chunxing Yin, Da Zheng, Israt Nisa, Christos Faloutsos, George Karypis, Richard W. Vuduc:
Nimble GNN Embedding with Tensor-Train Decomposition. KDD 2022: 2327-2335 - [c22]Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, George Karypis:
Distributed Hybrid CPU and GPU training for Graph Neural Networks on Billion-Scale Heterogeneous Graphs. KDD 2022: 4582-4591 - [i27]Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, George Karypis:
TGL: A General Framework for Temporal GNN Training on Billion-Scale Graphs. CoRR abs/2203.14883 (2022) - [i26]Chunxing Yin, Da Zheng, Israt Nisa, Christos Faloutsos, George Karypis, Richard W. Vuduc:
Nimble GNN Embedding with Tensor-Train Decomposition. CoRR abs/2206.10581 (2022) - [i25]Vassilis N. Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, Jun Ma
, Yi Xu, Belinda Zeng, Trishul Chilimbi, George Karypis:
Efficient and effective training of language and graph neural network models. CoRR abs/2206.10781 (2022) - [i24]Ningyuan Huang, Soledad Villar, Carey E. Priebe, Da Zheng, Chengyue Huang, Lin Yang
, Vladimir Braverman:
From Local to Global: Spectral-Inspired Graph Neural Networks. CoRR abs/2209.12054 (2022) - 2021
- [c21]Saurav Manchanda, Da Zheng, George Karypis:
Schema-Aware Deep Graph Convolutional Networks for Heterogeneous Graphs. IEEE BigData 2021: 480-489 - [c20]Jialin Dong, Da Zheng, Lin F. Yang
, George Karypis:
Global Neighbor Sampling for Mixed CPU-GPU Training on Giant Graphs. KDD 2021: 289-299 - [c19]Anil Gaihre, Da Zheng, Scott Weitze, Lingda Li, Shuaiwen Leon Song, Caiwen Ding, Xiaoye S. Li, Hang Liu:
Dr. Top-k: delegate-centric Top-k on GPUs. SC 2021: 39 - [c18]Balasubramaniam Srinivasan, Da Zheng, George Karypis:
Learning over Families of Sets - Hypergraph Representation Learning for Higher Order Tasks. SDM 2021: 756-764 - [c17]Da Zheng, Minjie Wang, Quan Gan, Xiang Song, Zheng Zhang, George Karypis:
Scalable Graph Neural Networks with Deep Graph Library. WSDM 2021: 1141-1142 - [i23]Balasubramaniam Srinivasan, Da Zheng, George Karypis:
Learning over Families of Sets - Hypergraph Representation Learning for Higher Order Tasks. CoRR abs/2101.07773 (2021) - [i22]Saurav Manchanda, Da Zheng, George Karypis:
Schema-Aware Deep Graph Convolutional Networks for Heterogeneous Graphs. CoRR abs/2105.00644 (2021) - [i21]Jialin Dong, Da Zheng, Lin F. Yang, George Karypis:
Global Neighbor Sampling for Mixed CPU-GPU Training on Giant Graphs. CoRR abs/2106.06150 (2021) - [i20]Zonghan Wu, Da Zheng, Shirui Pan, Quan Gan, Guodong Long, George Karypis:
TraverseNet: Unifying Space and Time in Message Passing. CoRR abs/2109.02474 (2021) - [i19]Anil Gaihre, Da Zheng, Scott Weitze, Lingda Li, Shuaiwen Leon Song, Caiwen Ding, Xiaoye S. Li, Hang Liu:
Dr. Top-k: Delegate-Centric Top-k on GPUs. CoRR abs/2109.08219 (2021) - [i18]Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, Qidong Su, Minjie Wang, Chao Ma, George Karypis:
Distributed Hybrid CPU and GPU training for Graph Neural Networks on Billion-Scale Graphs. CoRR abs/2112.15345 (2021) - 2020
- [j4]Jue Wang
, Nengpan Ju, Chaoyang He, Junchao Cai
, Da Zheng:
Assessment of the accuracy of several methods for measuring the spatial attitude of geological bodies using an android smartphone. Comput. Geosci. 136: 104393 (2020) - [c16]Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, George Karypis:
Scalable Graph Neural Networks with Deep Graph Library. KDD 2020: 3521-3522 - [c15]Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang, George Karypis:
DistDGL: Distributed Graph Neural Network Training for Billion-Scale Graphs. IA3@SC 2020: 36-44 - [c14]Yuwei Hu, Zihao Ye
, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru Zhang
, Yida Wang:
FeatGraph: a flexible and efficient backend for graph neural network systems. SC 2020: 71 - [c13]Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang, George Karypis
:
DGL-KE: Training Knowledge Graph Embeddings at Scale. SIGIR 2020: 739-748 - [c12]Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, George Karypis
:
Learning Graph Neural Networks with Deep Graph Library. WWW (Companion Volume) 2020: 305-306 - [c11]Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong, Jiawei Han:
Collective Multi-type Entity Alignment Between Knowledge Graphs. WWW 2020: 2241-2252 - [i17]Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang, George Karypis:
DGL-KE: Training Knowledge Graph Embeddings at Scale. CoRR abs/2004.08532 (2020) - [i16]Vassilis N. Ioannidis, Da Zheng, George Karypis:
Few-shot link prediction via graph neural networks for Covid-19 drug-repurposing. CoRR abs/2007.10261 (2020) - [i15]Vassilis N. Ioannidis, Da Zheng, George Karypis:
PanRep: Universal node embeddings for heterogeneous graphs. CoRR abs/2007.10445 (2020) - [i14]Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru Zhang, Yida Wang:
FeatGraph: A Flexible and Efficient Backend for Graph Neural Network Systems. CoRR abs/2008.11359 (2020) - [i13]Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang, George Karypis:
DistDGL: Distributed Graph Neural Network Training for Billion-Scale Graphs. CoRR abs/2010.05337 (2020)
2010 – 2019
- 2019
- [i12]Disa Mhembere, Da Zheng, Carey E. Priebe, Joshua T. Vogelstein, Randal C. Burns:
clusterNOR: A NUMA-Optimized Clustering Framework. CoRR abs/1902.09527 (2019) - [i11]Disa Mhembere, Da Zheng, Carey E. Priebe, Joshua T. Vogelstein, Randal C. Burns:
Graphyti: A Semi-External Memory Graph Library for FlashGraph. CoRR abs/1907.03335 (2019) - [i10]Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J. Smola, Zheng Zhang:
Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. CoRR abs/1909.01315 (2019) - 2018
- [c10]Da Zheng, Disa Mhembere, Joshua T. Vogelstein, Carey E. Priebe, Randal C. Burns
:
FlashR: parallelize and scale R for machine learning using SSDs. PPoPP 2018: 183-194 - [i9]Hang Liu, Yufei Ding, Da Zheng, Seung Woo Son, Da Yan:
Challenges Towards Deploying Data Intensive Scientific Applications on Extreme Heterogeneity Supercomputers. CoRR abs/1804.09738 (2018) - 2017
- [j3]Da Zheng, Disa Mhembere, Vince Lyzinski, Joshua T. Vogelstein, Carey E. Priebe, Randal C. Burns
:
Semi-External Memory Sparse Matrix Multiplication for Billion-Node Graphs. IEEE Trans. Parallel Distributed Syst. 28(5): 1470-1483 (2017) - [c9]Disa Mhembere, Da Zheng, Carey E. Priebe, Joshua T. Vogelstein, Randal C. Burns
:
knor: A NUMA-Optimized In-Memory, Distributed and Semi-External-Memory k-means Library. HPDC 2017: 67-78 - 2016
- [c8]Da Zheng, Zhehuai Chen, Yue Wu, Kai Yu:
Directed automatic speech transcription error correction using bidirectional LSTM. ISCSLP 2016: 1-5 - [i8]Da Zheng, Randal C. Burns, Joshua T. Vogelstein, Carey E. Priebe, Alexander S. Szalay:
An SSD-based eigensolver for spectral analysis on billion-node graphs. CoRR abs/1602.01421 (2016) - [i7]Da Zheng, Disa Mhembere, Vince Lyzinski, Joshua T. Vogelstein, Carey E. Priebe, Randal C. Burns:
Semi-External Memory Sparse Matrix Multiplication on Billion-node Graphs in a Multicore Architecture. CoRR abs/1602.02864 (2016) - [i6]Da Zheng, Disa Mhembere, Joshua T. Vogelstein, Carey E. Priebe, Randal C. Burns:
FlashMatrix: Parallel, Scalable Data Analysis with Generalized Matrix Operations using Commodity SSDs. CoRR abs/1604.06414 (2016) - [i5]Disa Mhembere, Da Zheng, Joshua T. Vogelstein, Carey E. Priebe, Randal C. Burns:
NUMA-optimized In-memory and Semi-external-memory Parameterized Clustering. CoRR abs/1606.08905 (2016) - 2015
- [c7]Da Zheng, Disa Mhembere, Randal C. Burns, Joshua T. Vogelstein, Carey E. Priebe, Alexander S. Szalay:
FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs. FAST 2015: 45-58 - [i4]Da Zheng, Randal C. Burns, Alexander S. Szalay:
Optimize Unsynchronized Garbage Collection in an SSD Array. CoRR abs/1506.07566 (2015) - 2014
- [c6]Su Zhu, Lu Chen, Kai Sun, Da Zheng, Kai Yu:
Semantic parser enhancement for dialogue domain extension with little data. SLT 2014: 336-341 - [i3]Da Zheng, Disa Mhembere, Randal C. Burns, Alexander S. Szalay:
FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs. CoRR abs/1408.0500 (2014) - [i2]Da Zheng, Alexander S. Szalay, Andreas Terzis:
Hadoop in Low-Power Processors. CoRR abs/1408.2284 (2014) - [i1]Heng Wang, Da Zheng, Randal C. Burns, Carey E. Priebe:
Active Community Detection in Massive Graphs. CoRR abs/1412.8576 (2014) - 2013
- [c5]Da-Qi Ren, Da Zheng, Guowei Huang, Shujie Zhang, Zane Wei:
Parallel Set Determination and K-Means Clustering for Data Mining on Telecommunication Networks. HPCC/EUC 2013: 1553-1557 - [c4]Da Zheng, Randal C. Burns
, Alexander S. Szalay:
Toward millions of file system IOPS on low-cost, commodity hardware. SC 2013: 69:1-69:12 - 2012
- [j2]Wai-Mee Ching, Da Zheng:
Automatic Parallelization of Array-oriented Programs for a Multi-core Machine. Int. J. Parallel Program. 40(5): 514-531 (2012) - [c3]Da Zheng, Randal C. Burns, Alexander S. Szalay:
A Parallel Page Cache: IOPS and Caching for Multicore Systems. HotStorage 2012 - 2011
- [c2]Da Zheng, Anne-Marie Bosneag, Sidath Handurukande, David Cleary:
Extending classic telecommunication addressing schemes for Home Gateway based user content and services discovery. CCNC 2011: 1005-1010 - 2010
- [j1]Da Zheng, Zhengyun Ren, Jian-An Fang:
Stability Analysis of Time Delayed System with Coefficient Uncertainty and Time Delay Uncertainty. Eur. J. Control 16(1): 5-13 (2010) - [c1]Da Zheng, Lei Jiang, Zhengyun Ren, Jian-An Fang, Xiumei Wu:
Signal reconstruction and frequency estimation of a biased and noisy sinusoidal signal. ICCA 2010: 1145-1150
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-28 23:36 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint