


default search action
R. Kamalapurkar
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j35]Jared Town, Zachary Morrison, Rushikesh Kamalapurkar:
Nonuniqueness and convergence to equivalent solutions in observer-based inverse reinforcement learning. Autom. 171: 111977 (2025) - [j34]Max L. Greene
, Masoud S. Sakha
, Rushikesh Kamalapurkar
, Warren E. Dixon
:
Approximate Dynamic Programming for Trajectory Tracking of Switched Systems. IEEE Trans. Autom. Control. 70(2): 1024-1037 (2025) - [i46]Masoud S. Sakha, Rushikesh Kamalapurkar:
Switched Optimal Control with Dwell Time Constraints. CoRR abs/2501.05548 (2025) - [i45]Muzaffar Qureshi
, Tochukwu Elijah Ogri, Humberto Ramos, Zachary I. Bell, Rushikesh Kamalapurkar:
Gaussian Process-Based Scalar Field Estimation in GPS-Denied Environments. CoRR abs/2502.17584 (2025) - [i44]Moad Abudia, Joel A. Rosenfeld, Rushikesh Kamalapurkar:
On Dynamic Mode Decomposition of Control-affine Systems. CoRR abs/2503.10891 (2025) - 2024
- [j33]Zachary Morrison
, Moad Abudia
, Joel A. Rosenfeld
, Rushikesh Kamalapurkar
:
Dynamic Mode Decomposition of Control-Affine Nonlinear Systems Using Discrete Control Liouville Operators. IEEE Control. Syst. Lett. 8: 79-84 (2024) - [j32]Joel A. Rosenfeld
, Benjamin P. Russo
, Rushikesh Kamalapurkar
, Taylor T. Johnson
:
The Occupation Kernel Method for Nonlinear System Identification. SIAM J. Control. Optim. 62(3): 1643-1668 (2024) - [j31]Joel A. Rosenfeld
, Rushikesh Kamalapurkar
:
Dynamic Mode Decomposition With Control Liouville Operators. IEEE Trans. Autom. Control. 69(12): 8571-8586 (2024) - [j30]Jared Town, Zachary Morrison
, Rushikesh Kamalapurkar
:
Pilot Performance Modeling via Observer-Based Inverse Reinforcement Learning. IEEE Trans. Control. Syst. Technol. 32(6): 2444-2451 (2024) - [c40]Tochukwu Elijah Ogri, Muzaffar Qureshi, Zachary I. Bell, Kristy Waters, Rushikesh Kamalapurkar:
An Adaptive Optimal Control Approach to Monocular Depth Observability Maximization. ACC 2024: 2356-2361 - [c39]Muzaffar Qureshi
, Tochukwu Elijah Ogri, Zachary I. Bell, Rushikesh Kamalapurkar:
Scalar Field Mapping with Adaptive High-Intensity Region Avoidance. CCTA 2024: 388-393 - [i43]Tochukwu Elijah Ogri, Muzaffar Qureshi, Zachary I. Bell, Kristy Waters, Rushikesh Kamalapurkar:
An adaptive optimal control approach to monocular depth observability maximization. CoRR abs/2401.09658 (2024) - [i42]Tochukwu Elijah Ogri, Muzaffar Qureshi, Zachary I. Bell, Rushikesh Kamalapurkar:
State and Input Constrained Output-Feedback Adaptive Optimal Control of Affine Nonlinear Systems. CoRR abs/2406.18804 (2024) - [i41]Muzaffar Qureshi, Tochukwu Elijah Ogri, Zachary I. Bell, Rushikesh Kamalapurkar:
Scalar Field Mapping with Adaptive High-Intensity Region Avoidance. CoRR abs/2407.13543 (2024) - [i40]Moad Abudia, Joel A. Rosenfeld, Rushikesh Kamalapurkar:
On Convergent Dynamic Mode Decomposition and its Equivalence with Occupation Kernel Regression. CoRR abs/2409.12285 (2024) - 2023
- [j29]Zachary Morrison
, Benjamin P. Russo
, Ying Zhao Lian
, Rushikesh Kamalapurkar
:
Fault Detection via Occupation Kernel Principal Component Analysis. IEEE Control. Syst. Lett. 7: 2695-2700 (2023) - [j28]Joel A. Rosenfeld
, Rushikesh Kamalapurkar
:
Singular Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst. 22(3): 2357-2381 (2023) - [c38]Moad Abudia, Joel A. Rosenfeld, Rushikesh Kamalapurkar:
Carleman Lifting for Nonlinear System Identification with Guaranteed Error Bounds. ACC 2023: 929-934 - [c37]Efrain Gonzalez, Ladan Avazpour, Rushikesh Kamalapurkar, Joel A. Rosenfeld
:
Modeling Partially Unknown Dynamics with Continuous Time DMD*. ACC 2023: 2913-2918 - [c36]Jared Town, Zachary Morrison, Rushikesh Kamalapurkar:
Nonuniqueness and Convergence to Equivalent Solutions in Observer-based Inverse Reinforcement Learning. ACC 2023: 3989-3994 - [c35]Tochukwu Elijah Ogri, S. M. Nahid Mahmud, Zachary I. Bell, Rushikesh Kamalapurkar
:
Output Feedback Adaptive Optimal Control of Affine Nonlinear systems with a Linear Measurement Model. CCTA 2023: 645-650 - [c34]Tochukwu Elijah Ogri, Zachary I. Bell, Rushikesh Kamalapurkar
:
State and Parameter Estimation for Affine Nonlinear Systems. CDC 2023: 1517-1522 - [c33]Joel A. Rosenfeld
, Rushikesh Kamalapurkar:
Convergent Dynamic Mode Decomposition. CDC 2023: 4972-4977 - [i39]Zachary Morrison, Benjamin P. Russo, Yingzhao Lian, Rushikesh Kamalapurkar:
Fault Detection via Occupation Kernel Principal Component Analysis. CoRR abs/2303.11138 (2023) - [i38]Tochukwu Elijah Ogri, Zachary I. Bell, Rushikesh Kamalapurkar:
State and Parameter Estimation for Affine Nonlinear Systems. CoRR abs/2304.01526 (2023) - [i37]Jared Town, Zachary Morrison, Rushikesh Kamalapurkar:
Pilot Performance modeling via observer-based inverse reinforcement learning. CoRR abs/2307.13150 (2023) - 2022
- [j27]Ryan Self, Moad Abudia, S. M. Nahid Mahmud
, Rushikesh Kamalapurkar
:
Model-based inverse reinforcement learning for deterministic systems. Autom. 140: 110242 (2022) - [j26]Ashwin Dani, Zhen Kan, Rushikesh Kamalapurkar, Nicholas R. Gans:
Editorial: Safety in Collaborative Robotics and Autonomous Systems. Frontiers Robotics AI 9 (2022) - [j25]Joel A. Rosenfeld
, Rushikesh Kamalapurkar
, L. Forest Gruss, Taylor T. Johnson
:
Dynamic Mode Decomposition for Continuous Time Systems with the Liouville Operator. J. Nonlinear Sci. 32(1): 5 (2022) - [i36]S. M. Nahid Mahmud, Moad Abudia, Scott A. Nivison, Zachary I. Bell, Rushikesh Kamalapurkar:
Safe Controller for Output Feedback Linear Systems using Model-Based Reinforcement Learning. CoRR abs/2204.01409 (2022) - [i35]Moad Abudia, Joel A. Rosenfeld
, Rushikesh Kamalapurkar:
Carleman Lifting for Nonlinear System Identification with Guaranteed Error Bounds. CoRR abs/2205.15009 (2022) - [i34]Tochukwu Elijah Ogri, S. M. Nahid Mahmud, Zachary I. Bell, Rushikesh Kamalapurkar:
Output Feedback Adaptive Optimal Control of Affine Nonlinear systems with a Linear Measurement Model. CoRR abs/2210.06637 (2022) - [i33]Jared Town, Zachary Morrison, Rushikesh Kamalapurkar:
Nonuniqueness and Convergence to Equivalent Solutions in Observer-based Inverse Reinforcement Learning. CoRR abs/2210.16299 (2022) - 2021
- [j24]Ryan Self
, Kevin Coleman, He Bai
, Rushikesh Kamalapurkar
:
Online Observer-Based Inverse Reinforcement Learning. IEEE Control. Syst. Lett. 5(6): 1922-1927 (2021) - [j23]S. M. Nahid Mahmud
, Scott A. Nivison, Zachary I. Bell, Rushikesh Kamalapurkar
:
Safe Model-Based Reinforcement Learning for Systems With Parametric Uncertainties. Frontiers Robotics AI 8: 733104 (2021) - [j22]Ghananeel Rotithor
, Daniel Trombetta, Rushikesh Kamalapurkar
, Ashwin P. Dani
:
Full- and Reduced-Order Observers for Image-Based Depth Estimation Using Concurrent Learning. IEEE Trans. Control. Syst. Technol. 29(6): 2647-2653 (2021) - [c32]Ryan Self, Kevin Coleman, He Bai, Rushikesh Kamalapurkar
:
Online Observer-Based Inverse Reinforcement Learning. ACC 2021: 1959-1964 - [c31]S. M. Nahid Mahmud
, Katrine Hareland, Scott A. Nivison, Zachary I. Bell, Rushikesh Kamalapurkar
:
A Safety Aware Model-Based Reinforcement Learning Framework for Systems with Uncertainties. ACC 2021: 1979-1984 - [c30]Joel A. Rosenfeld, Rushikesh Kamalapurkar
, L. Forest Gruss, Taylor T. Johnson:
On Occupation Kernels, Liouville Operators, and Dynamic Mode Decomposition. ACC 2021: 3957-3962 - [i32]Moad Abudia, Tejasvi Channagiri, Joel A. Rosenfeld, Rushikesh Kamalapurkar:
Control Occupation Kernel Regression for Nonlinear Control-Affine Systems. CoRR abs/2106.00103 (2021) - [i31]Efrain Gonzalez, Moad Abudia, Michael Jury, Rushikesh Kamalapurkar, Joel A. Rosenfeld:
Anti-Koopmanism. CoRR abs/2106.00106 (2021) - [i30]Rushikesh Kamalapurkar, Joel A. Rosenfeld:
An occupation kernel approach to optimal control. CoRR abs/2106.00663 (2021) - [i29]Joel A. Rosenfeld, Rushikesh Kamalapurkar:
Singular Dynamic Mode Decompositions. CoRR abs/2106.02639 (2021) - [i28]S. M. Nahid Mahmud, Moad Abudia, Scott A. Nivison, Zachary I. Bell, Rushikesh Kamalapurkar:
Safety aware model-based reinforcement learning for optimal control of a class of output-feedback nonlinear systems. CoRR abs/2110.00271 (2021) - 2020
- [c29]Ryan Self, Moad Abudia, Rushikesh Kamalapurkar
:
Online inverse reinforcement learning for systems with disturbances. ACC 2020: 1118-1123 - [c28]Max L. Greene, Moad Abudia, Rushikesh Kamalapurkar
, Warren E. Dixon
:
Model-Based Reinforcement Learning for Optimal Feedback Control of Switched Systems. CDC 2020: 162-167 - [c27]Ryan Self, S. M. Nahid Mahmud
, Katrine Hareland, Rushikesh Kamalapurkar
:
Online inverse reinforcement learning with limited data. CDC 2020: 603-608 - [c26]Moad Abudia, Michael Harlan, Ryan Self, Rushikesh Kamalapurkar
:
Switched Optimal Control and Dwell Time Constraints: A Preliminary Study. CDC 2020: 3261-3266 - [i27]Ryan Self, Moad Abudia, Rushikesh Kamalapurkar:
Online inverse reinforcement learning with unknown disturbances. CoRR abs/2003.03912 (2020) - [i26]S. M. Nahid Mahmud, Ryan Self, Katrine Hareland, Rushikesh Kamalapurkar:
A safety aware model based reinforcement learning framework for systems with uncertainties. CoRR abs/2007.12666 (2020) - [i25]Ghananeel Rotithor, Daniel Trombetta, Rushikesh Kamalapurkar, Ashwin Dani:
Extension of Full and Reduced Order Observers for Image-based Depth Estimation using Concurrent Learning. CoRR abs/2008.04809 (2020) - [i24]Ryan Self, S. M. Nahid Mahmud, Katrine Hareland, Rushikesh Kamalapurkar:
Online inverse reinforcement learning with limited data. CoRR abs/2008.08972 (2020) - [i23]Ryan Self, Kevin Coleman, He Bai, Rushikesh Kamalapurkar:
Online Observer-Based Inverse Reinforcement Learning. CoRR abs/2011.02057 (2020) - [i22]Moad Abudia, Michael Harlan, Ryan Self, Rushikesh Kamalapurkar:
Switched Optimal Control and Dwell Time Constraints: A Preliminary Study. CoRR abs/2011.02351 (2020)
2010 – 2019
- 2019
- [j21]Sandesh Thapa
, Ryan V. Self, Rushikesh Kamalapurkar
, He Bai
:
Cooperative Manipulation of an Unknown Payload With Concurrent Mass and Drag Force Estimation. IEEE Control. Syst. Lett. 3(4): 907-912 (2019) - [j20]Rushikesh Kamalapurkar
, Joel A. Rosenfeld
, Anup Parikh, Andrew R. Teel
, Warren E. Dixon
:
Invariance-Like Results for Nonautonomous Switched Systems. IEEE Trans. Autom. Control. 64(2): 614-627 (2019) - [j19]Joel A. Rosenfeld
, Rushikesh Kamalapurkar
, Warren E. Dixon
:
The State Following Approximation Method. IEEE Trans. Neural Networks Learn. Syst. 30(6): 1716-1730 (2019) - [c25]Ryan Self, Michael Harlan, Rushikesh Kamalapurkar
:
Model-based reinforcement learning for output-feedback optimal control of a class of nonlinear systems. ACC 2019: 2378-2383 - [c24]Ghananeel Rotithor, Ryan Saltus, Rushikesh Kamalapurkar
, Ashwin Dani:
Observer Design for Structure from Motion using Concurrent Learning. ACC 2019: 2384-2389 - [c23]Ryan Self, Michael Harlan, Rushikesh Kamalapurkar:
Online inverse reinforcement learning for nonlinear systems. CCTA 2019: 296-301 - [c22]Joel A. Rosenfeld
, Rushikesh Kamalapurkar, Benjamin Russo
, Taylor T. Johnson
:
Occupation Kernels and Densely Defined Liouville Operators for System Identification. CDC 2019: 6455-6460 - [c21]Ghananeel Rotithor, Daniel Trombetta, Rushikesh Kamalapurkar, Ashwin P. Dani:
Reduced Order Observer for Structure from Motion using Concurrent Learning. CDC 2019: 6815-6820 - [i21]Rushikesh Kamalapurkar:
Output-feedback online optimal control for a class of nonlinear systems. CoRR abs/1903.02078 (2019) - 2018
- [j18]Rushikesh Kamalapurkar
, Justin R. Klotz
, Patrick Walters, Warren E. Dixon
:
Model-Based Reinforcement Learning in Differential Graphical Games. IEEE Trans. Control. Netw. Syst. 5(1): 423-433 (2018) - [j17]Patryk Deptula
, Joel A. Rosenfeld
, Rushikesh Kamalapurkar
, Warren E. Dixon
:
Approximate Dynamic Programming: Combining Regional and Local State Following Approximations. IEEE Trans. Neural Networks Learn. Syst. 29(6): 2154-2166 (2018) - [j16]Patrick Walters
, Rushikesh Kamalapurkar
, Forrest Voight, Eric M. Schwartz, Warren E. Dixon
:
Online Approximate Optimal Station Keeping of a Marine Craft in the Presence of an Irrotational Current. IEEE Trans. Robotics 34(2): 486-496 (2018) - [j15]Anup Parikh
, Rushikesh Kamalapurkar
, Warren E. Dixon
:
Target Tracking in the Presence of Intermittent Measurements via Motion Model Learning. IEEE Trans. Robotics 34(3): 805-819 (2018) - [c20]Rushikesh Kamalapurkar
:
Linear inverse reinforcement learning in continuous time and space. ACC 2018: 1683-1688 - [i20]Rushikesh Kamalapurkar:
Inverse reinforcement learning in continuous time and space. CoRR abs/1801.07663 (2018) - [i19]Ryan Self, Michael Harlan, Rushikesh Kamalapurkar:
Online inverse reinforcement learning for nonlinear systems. CoRR abs/1811.10471 (2018) - 2017
- [j14]Serhat Obuz, Justin R. Klotz, Rushikesh Kamalapurkar
, Warren E. Dixon
:
Unknown time-varying input delay compensation for uncertain nonlinear systems. Autom. 76: 222-229 (2017) - [j13]Rushikesh Kamalapurkar
, Benjamin Reish, Girish Chowdhary
, Warren E. Dixon
:
Concurrent Learning for Parameter Estimation Using Dynamic State-Derivative Estimators. IEEE Trans. Autom. Control. 62(7): 3594-3601 (2017) - [j12]Rushikesh Kamalapurkar
, Lindsey Andrews, Patrick Walters, Warren E. Dixon
:
Model-Based Reinforcement Learning for Infinite-Horizon Approximate Optimal Tracking. IEEE Trans. Neural Networks Learn. Syst. 28(3): 753-758 (2017) - [c19]Rushikesh Kamalapurkar
:
Online output-feedback parameter and state estimation for second order linear systems. ACC 2017: 5672-5677 - [c18]Rushikesh Kamalapurkar
:
Simultaneous state and parameter estimation for second-order nonlinear systems. CDC 2017: 2164-2169 - [c17]Rushikesh Kamalapurkar
, Warren E. Dixon
, Andrew R. Teel:
On reduction of differential inclusions and Lyapunov stability. CDC 2017: 5499-5504 - [i18]Rushikesh Kamalapurkar, Justin R. Klotz, Patrick Walters, Warren E. Dixon:
Model-based reinforcement learning in differential graphical games. CoRR abs/1702.08584 (2017) - [i17]Rushikesh Kamalapurkar:
Simultaneous State and Parameter Estimation for Second-Order Nonlinear Systems. CoRR abs/1703.07068 (2017) - [i16]Rushikesh Kamalapurkar, Warren E. Dixon, Andrew R. Teel:
On reduction of differential inclusions and Lyapunov stability. CoRR abs/1703.07071 (2017) - [i15]Patrick Walters, Rushikesh Kamalapurkar, Forrest Voight, Eric M. Schwartz, Warren E. Dixon:
Online Approximate Optimal Station Keeping of a Marine Craft in the Presence of a Current. CoRR abs/1710.10511 (2017) - 2016
- [j11]Rushikesh Kamalapurkar
, Patrick Walters, Warren E. Dixon
:
Model-based reinforcement learning for approximate optimal regulation. Autom. 64: 94-104 (2016) - [j10]Rushikesh Kamalapurkar
, Joel A. Rosenfeld
, Warren E. Dixon
:
Efficient model-based reinforcement learning for approximate online optimal control. Autom. 74: 247-258 (2016) - [j9]Rushikesh Kamalapurkar
, Nicholas R. Fischer, Serhat Obuz, Warren E. Dixon
:
Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems. IEEE Trans. Autom. Control. 61(3): 834-839 (2016) - [j8]Teng-Hu Cheng, Qiang Wang, Rushikesh Kamalapurkar
, Huyen T. Dinh
, Matthew J. Bellman
, Warren E. Dixon
:
Identification-Based Closed-Loop NMES Limb Tracking With Amplitude-Modulated Control Input. IEEE Trans. Cybern. 46(7): 1679-1690 (2016) - [i14]Rushikesh Kamalapurkar:
Online Output-Feedback Parameter and State Estimation for Second Order Linear Systems. CoRR abs/1609.05879 (2016) - [i13]Rushikesh Kamalapurkar, Joel A. Rosenfeld, Anup Parikh, Andrew R. Teel, Warren E. Dixon:
A Corollary for Switched Nonsmooth Systems with Applications to Switching in Adaptive Control. CoRR abs/1609.05880 (2016) - 2015
- [j7]Rushikesh Kamalapurkar
, Huyen T. Dinh
, Shubhendu Bhasin
, Warren E. Dixon
:
Approximate optimal trajectory tracking for continuous-time nonlinear systems. Autom. 51: 40-48 (2015) - [j6]Marcus Johnson, Rushikesh Kamalapurkar
, Shubhendu Bhasin
, Warren E. Dixon
:
Approximate N -Player Nonzero-Sum Game Solution for an Uncertain Continuous Nonlinear System. IEEE Trans. Neural Networks Learn. Syst. 26(8): 1645-1658 (2015) - [c16]Rushikesh Kamalapurkar
, Joel A. Rosenfeld
, Warren E. Dixon
:
State following (StaF) kernel functions for function approximation part II: Adaptive dynamic programming. ACC 2015: 521-526 - [c15]Joel A. Rosenfeld
, Rushikesh Kamalapurkar
, Warren E. Dixon
:
State following (StaF) kernel functions for function approximation Part I: Theory and motivation. ACC 2015: 1217-1222 - [c14]Justin R. Klotz, Lindsey Andrews, R. Kamalapurkar
, Warren E. Dixon
:
Decentralized monitoring of leader-follower networks of uncertain nonlinear systems. ACC 2015: 1393-1398 - [c13]Patrick Walters, Rushikesh Kamalapurkar
, Warren E. Dixon
:
Approximate optimal online continuous-time path-planner with static obstacle avoidance. CDC 2015: 650-655 - [c12]Anup Parikh, Rushikesh Kamalapurkar
, Hsi-Yuan Chen, Warren E. Dixon
:
Homography based visual servo control with scene reconstruction. CDC 2015: 6972-6977 - [i12]Rushikesh Kamalapurkar, Nicholas R. Fischer, Serhat Obuz, Warren E. Dixon:
Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems. CoRR abs/1501.03810 (2015) - [i11]Rushikesh Kamalapurkar, Joel A. Rosenfeld, Warren E. Dixon:
Efficient model-based reinforcement learning for approximate online optimal. CoRR abs/1502.02609 (2015) - [i10]Rushikesh Kamalapurkar, Lindsey Andrews, Patrick Walters, Warren E. Dixon:
Model-based reinforcement learning for infinite-horizon approximate optimal tracking. CoRR abs/1506.00685 (2015) - [i9]Rushikesh Kamalapurkar, Ben Reish, Girish Chowdhary, Warren E. Dixon:
Concurrent learning for parameter estimation using dynamic state-derivative estimators. CoRR abs/1507.08903 (2015) - [i8]Anup Parikh, Rushikesh Kamalapurkar, Warren E. Dixon:
Integral Concurrent Learning: Adaptive Control with Parameter Convergence without PE or State Derivatives. CoRR abs/1512.03464 (2015) - 2014
- [j5]Huyen T. Dinh
, R. Kamalapurkar
, Shubhendu Bhasin
, Warren E. Dixon
:
Dynamic neural network-based robust observers for uncertain nonlinear systems. Neural Networks 60: 44-52 (2014) - [j4]Nicholas R. Fischer, Zhen Kan, Rushikesh Kamalapurkar
, Warren E. Dixon
:
Saturated RISE Feedback Control for a Class of Second-Order Nonlinear Systems. IEEE Trans. Autom. Control. 59(4): 1094-1099 (2014) - [c11]Justin Klotz, R. Kamalapurkar
, Warren E. Dixon
:
Concurrent learning-based network synchronization. ACC 2014: 796-801 - [c10]Rushikesh Kamalapurkar
, Justin Klotz, Warren E. Dixon
:
Model-based reinforcement learning for on-line feedback-Nash equilibrium solution of N-player nonzero-sum differential games. ACC 2014: 3000-3005 - [c9]Patrick Walters, Rushikesh Kamalapurkar
, Lindsey Andrews, Warren E. Dixon
:
Online approximate optimal path-following for a mobile robot. CDC 2014: 4536-4541 - [c8]Rushikesh Kamalapurkar
, Lindsey Andrews, Patrick Walters, Warren E. Dixon
:
Model-based reinforcement learning for infinite-horizon approximate optimal tracking. CDC 2014: 5083-5088 - [c7]Lindsey Andrews, Justin Klotz, R. Kamalapurkar
, Warren E. Dixon
:
Adaptive dynamic programming for terminally constrained finite-horizon optimal control problems. CDC 2014: 5095-5100 - 2013
- [j3]Shubhendu Bhasin
, R. Kamalapurkar
, Marcus Johnson, Kyriakos G. Vamvoudakis
, Frank L. Lewis, Warren E. Dixon
:
A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems. Autom. 49(1): 82-92 (2013) - [j2]Shubhendu Bhasin
, R. Kamalapurkar
, Huyen T. Dinh
, Warren E. Dixon
:
Robust Identification-Based State Derivative Estimation for Nonlinear Systems. IEEE Trans. Autom. Control. 58(1): 187-192 (2013) - [j1]Nicholas R. Fischer, Rushikesh Kamalapurkar
, Warren E. Dixon
:
LaSalle-Yoshizawa Corollaries for Nonsmooth Systems. IEEE Trans. Autom. Control. 58(9): 2333-2338 (2013) - [c6]Rushikesh Kamalapurkar
, Huyen T. Dinh, Patrick Walters, Warren E. Dixon
:
Approximate optimal cooperative decentralized control for consensus in a topological network of agents with uncertain nonlinear dynamics. ACC 2013: 1320-1325 - [c5]Huyen T. Dinh, Nicholas R. Fischer, R. Kamalapurkar
, Warren E. Dixon
:
Output feedback control for uncertain nonlinear systems with slowly varying input delay. ACC 2013: 1745-1750 - [c4]Rushikesh Kamalapurkar
, Patrick Walters, Warren E. Dixon
:
Concurrent learning-based approximate optimal regulation. CDC 2013: 6256-6261 - [i7]Rushikesh Kamalapurkar, Huyen T. Dinh, Shubhendu Bhasin, Warren E. Dixon:
Approximately Optimal Trajectory Tracking for Continuous Time Nonlinear Systems. CoRR abs/1301.7664 (2013) - [i6]Rushikesh Kamalapurkar, Patrick Walters, Warren E. Dixon:
Concurrent learning-based approximate optimal regulation. CoRR abs/1304.3477 (2013) - [i5]Rushikesh Kamalapurkar, Huyen T. Dinh, Patrick Walters, Warren E. Dixon:
Approximate optimal cooperative decentralized control for consensus in a topological network of agents with uncertain nonlinear dynamics. CoRR abs/1304.3479 (2013) - [i4]Rushikesh Kamalapurkar, Justin Klotz, Ryan Downey, Warren E. Dixon:
Supporting Lemmas for RISE-based Control Methods. CoRR abs/1306.3432 (2013) - [i3]Patrick Walters, Rushikesh Kamalapurkar, Warren E. Dixon:
Online Approximate Optimal Station Keeping of an Autonomous Underwater Vehicle. CoRR abs/1310.0063 (2013) - [i2]Patrick Walters, Rushikesh Kamalapurkar, Lindsey Andrews, Warren E. Dixon:
Online Approximate Optimal Path-Following for a Kinematic Unicycle. CoRR abs/1310.0064 (2013) - [i1]Rushikesh Kamalapurkar, Justin Klotz, Warren E. Dixon:
Concurrent learning-based online approximate feedback-Nash equilibrium solution of N-player nonzero-sum differential games. CoRR abs/1310.1384 (2013) - 2012
- [c3]Nicholas R. Fischer, R. Kamalapurkar
, Norman G. Fitz-Coy, Warren E. Dixon
:
Lyapunov-based control of an uncertain Euler-Lagrange system with time-varying input delay. ACC 2012: 3919-3924 - [c2]Nicholas R. Fischer, R. Kamalapurkar
, Nitin Sharma
, Warren E. Dixon
:
RISE-based control of an uncertain nonlinear system with time-varying state delays. CDC 2012: 3502-3507 - 2011
- [c1]Huyen T. Dinh
, R. Kamalapurkar
, Shubhendu Bhasin
, Warren E. Dixon
:
Dynamic neural network-based robust observers for second-order uncertain nonlinear systems. CDC/ECC 2011: 7543-7548
Coauthor Index
aka: Ryan Self

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-04-14 22:09 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint