default search action
Sanjay Krishnan
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Books and Theses
- 2018
- [b1]Sanjay Krishnan:
Hierarchical Deep Reinforcement Learning For Robotics and Data Science. University of California, Berkeley, USA, 2018
Journal Articles
- 2024
- [j18]Gabriel Mersy, Zhuo Wang, Stavros Sintos, Sanjay Krishnan:
Optimizing Collections of Bloom Filters within a Space Budget. Proc. VLDB Endow. 17(11): 3551-3564 (2024) - 2023
- [j17]Shinan Liu, Tarun Mangla, Ted Shaowang, Jinjin Zhao, John Paparrizos, Sanjay Krishnan, Nick Feamster:
AMIR: Active Multimodal Interaction Recognition from Video and Network Traffic in Connected Environments. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7(1): 21:1-21:26 (2023) - [j16]Bruno Barbarioli, Gabriel Mersy, Stavros Sintos, Sanjay Krishnan:
Hierarchical Residual Encoding for Multiresolution Time Series Compression. Proc. ACM Manag. Data 1(1): 99:1-99:26 (2023) - [j15]Raul Castro Fernandez, Aaron J. Elmore, Michael J. Franklin, Sanjay Krishnan, Chenhao Tan:
How Large Language Models Will Disrupt Data Management. Proc. VLDB Endow. 16(11): 3302-3309 (2023) - 2022
- [j14]Siyuan Xia, Zhiru Zhu, Chris Zhu, Jinjin Zhao, Kyle Chard, Aaron J. Elmore, Ian T. Foster, Michael J. Franklin, Sanjay Krishnan, Raul Castro Fernandez:
Data Station: Delegated, Trustworthy, and Auditable Computation to Enable Data-Sharing Consortia with a Data Escrow. Proc. VLDB Endow. 15(11): 3172-3185 (2022) - 2021
- [j13]Ted Shaowang, Nilesh Jain, Dennis Matthews, Sanjay Krishnan:
Declarative Data Serving: The Future of Machine Learning Inference on the Edge. Proc. VLDB Endow. 14(11): 2555-2562 (2021) - 2020
- [j12]Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, Michael J. Franklin:
CrocodileDB in Action: Resource-Efficient Query Execution by Exploiting Time Slackness. Proc. VLDB Endow. 13(12): 2937-2940 (2020) - 2019
- [j11]Sanjay Krishnan, Animesh Garg, Richard Liaw, Brijen Thananjeyan, Lauren Miller, Florian T. Pokorny, Ken Goldberg:
SWIRL: A sequential windowed inverse reinforcement learning algorithm for robot tasks with delayed rewards. Int. J. Robotics Res. 38(2-3) (2019) - [j10]Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, Michael J. Franklin:
Intermittent Query Processing. Proc. VLDB Endow. 12(11): 1427-1441 (2019) - [j9]Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, Ion Stoica:
Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13(3): 279-292 (2019) - [j8]Sanjay Krishnan, Aaron J. Elmore, Michael J. Franklin, John Paparrizos, Zechao Shang, Adam Dziedzic, Rui Liu:
Artificial Intelligence in Resource-Constrained and Shared Environments. ACM SIGOPS Oper. Syst. Rev. 53(1): 1-6 (2019) - 2017
- [j7]Sanjay Krishnan, Animesh Garg, Sachin Patil, Colin Lea, Gregory D. Hager, Pieter Abbeel, Ken Goldberg:
Transition state clustering: Unsupervised surgical trajectory segmentation for robot learning. Int. J. Robotics Res. 36(13-14): 1595-1618 (2017) - [j6]Yeounoh Chung, Sanjay Krishnan, Tim Kraska:
A Data Quality Metric (DQM): How to Estimate the Number of Undetected Errors in Data Sets. Proc. VLDB Endow. 10(10): 1094-1105 (2017) - 2016
- [j5]Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, Ken Goldberg:
ActiveClean: Interactive Data Cleaning For Statistical Modeling. Proc. VLDB Endow. 9(12): 948-959 (2016) - 2015
- [j4]Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, Ken Goldberg, Tim Kraska, Tova Milo, Eugene Wu:
SampleClean: Fast and Reliable Analytics on Dirty Data. IEEE Data Eng. Bull. 38(3): 59-75 (2015) - [j3]Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, Ken Goldberg, Tim Kraska:
Stale View Cleaning: Getting Fresh Answers from Stale Materialized Views. Proc. VLDB Endow. 8(12): 1370-1381 (2015) - [j2]Daniel Haas, Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, Eugene Wu:
Wisteria: Nurturing Scalable Data Cleaning Infrastructure. Proc. VLDB Endow. 8(12): 2004-2007 (2015) - 2014
- [j1]Liwen Sun, Sanjay Krishnan, Reynold S. Xin, Michael J. Franklin:
A Partitioning Framework for Aggressive Data Skipping. Proc. VLDB Endow. 7(13): 1617-1620 (2014)
Conference and Workshop Papers
- 2024
- [c55]Rui Liu, Jun Hyuk Chang, Riki Otaki, Zhe Heng Eng, Aaron J. Elmore, Michael J. Franklin, Sanjay Krishnan:
Towards Resource-adaptive Query Execution in Cloud Native Databases. CIDR 2024 - [c54]Jinjin Zhao, Sanjay Krishnan:
Compression and In-Situ Query Processing for Fine-Grained Array Lineage. ICDE 2024: 3654-3667 - [c53]Rui Liu, Aaron J. Elmore, Michael J. Franklin, Sanjay Krishnan:
Riveter: Adaptive Query Suspension and Resumption Framework for Cloud Native Databases. ICDE 2024: 3975-3988 - [c52]Sanjay Krishnan, Stavros Sintos:
Range Entropy Queries and Partitioning. ICDT 2024: 6:1-6:21 - 2023
- [c51]Jinjin Zhao, Avigdor Gal, Sanjay Krishnan:
Data Makes Better Data Scientists. HILDA@SIGMOD 2023: 12:1-12:3 - [c50]Gabriel Mersy, Sanjay Krishnan:
Toward a Life Cycle Assessment for the Carbon Footprint of Data. HotCarbon 2023: 14:1-14:9 - [c49]Xi Liang, Stavros Sintos, Sanjay Krishnan:
JanusAQP: Efficient Partition Tree Maintenance for Dynamic Approximate Query Processing. ICDE 2023: 572-584 - [c48]Rui Liu, Aaron J. Elmore, Michael J. Franklin, Sanjay Krishnan:
Rotary: A Resource Arbitration Framework for Progressive Iterative Analytics. ICDE 2023: 2140-2153 - 2022
- [c47]Ted Shaowang, Xi Liang, Sanjay Krishnan:
Sensor fusion on the edge: initial experiments in the EdgeServe system. BiDEDE@SIGMOD 2022: 8:1-8:7 - [c46]Ted Shaowang, Jinjin Zhao, Stavros Sintos, Sanjay Krishnan:
Towards causal physical error discovery in video analytics systems. HILDA@SIGMOD 2022: 10:1-10:6 - 2021
- [c45]John Paparrizos, Chunwei Liu, Bruno Barbarioli, Johnny Hwang, Ikraduya Edian, Aaron J. Elmore, Michael J. Franklin, Sanjay Krishnan:
VergeDB: A Database for IoT Analytics on Edge Devices. CIDR 2021 - [c44]Nalin Ranjan, Zechao Shang, Sanjay Krishnan, Aaron J. Elmore:
Version Reconciliation for Collaborative Databases. SoCC 2021: 473-488 - [c43]Cong Ding, Dixin Tang, Xi Liang, Aaron J. Elmore, Sanjay Krishnan:
CIAO: An Optimization Framework for Client-Assisted Data Loading. ICDE 2021: 1979-1984 - [c42]Rui Liu, Sanjay Krishnan, Aaron J. Elmore, Michael J. Franklin:
Understanding and optimizing packed neural network training for hyper-parameter tuning. DEEM@SIGMOD 2021: 3:1-3:11 - [c41]Xi Liang, Stavros Sintos, Zechao Shang, Sanjay Krishnan:
Combining Aggregation and Sampling (Nearly) Optimally for Approximate Query Processing. SIGMOD Conference 2021: 1129-1141 - [c40]Dixin Tang, Zechao Shang, William W. Ma, Aaron J. Elmore, Sanjay Krishnan:
Resource-efficient Shared Query Execution via Exploiting Time Slackness. SIGMOD Conference 2021: 1797-1810 - 2020
- [c39]Zechao Shang, Xi Liang, Dixin Tang, Cong Ding, Aaron J. Elmore, Sanjay Krishnan, Michael J. Franklin:
CrocodileDB: Efficient Database Execution through Intelligent Deferment. CIDR 2020 - [c38]Vanlin Sathya, Adam Dziedzic, Monisha Ghosh, Sanjay Krishnan:
Machine Learning based detection of multiple Wi-Fi BSSs for LTE-U CSAT. ICNC 2020: 596-601 - [c37]Xi Liang, Zechao Shang, Sanjay Krishnan, Aaron J. Elmore, Michael J. Franklin:
Fast and Reliable Missing Data Contingency Analysis with Predicate-Constraints. SIGMOD Conference 2020: 285-295 - [c36]Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, Michael J. Franklin:
Thrifty Query Execution via Incrementability. SIGMOD Conference 2020: 1241-1256 - 2019
- [c35]Zisu Dong, Sanjay Krishnan, Sona Dolasia, Ashwin Balakrishna, Michael Danielczuk, Ken Goldberg:
Automating Planar Object Singulation by Linear Pushing with Single-point and Multi-point Contacts. CASE 2019: 1429-1436 - [c34]Sanjay Krishnan, Adam Dziedzic, Aaron J. Elmore:
DeepLens: Towards a Visual Data Management System. CIDR 2019 - [c33]Adam Dziedzic, John Paparrizos, Sanjay Krishnan, Aaron J. Elmore, Michael J. Franklin:
Band-limited Training and Inference for Convolutional Neural Networks. ICML 2019: 1745-1754 - [c32]Brijen Thananjeyan, Ajay Kumar Tanwani, Jessica J. Ji, Danyal Fer, Vatsal Patel, Sanjay Krishnan, Ken Goldberg:
Optimizing Robot-Assisted Surgery Suture Plans to Avoid Joint Limits and Singularities. ISMR 2019: 1-7 - 2018
- [c31]Jessica J. Ji, Sanjay Krishnan, Vatsal Patel, Danyal Fer, Ken Goldberg:
Learning 2D Surgical Camera Motion From Demonstrations. CASE 2018: 35-42 - [c30]Roy Fox, Richard Shin, Sanjay Krishnan, Ken Goldberg, Dawn Song, Ion Stoica:
Parametrized Hierarchical Procedures for Neural Programming. ICLR (Poster) 2018 - [c29]Daniel Seita, Sanjay Krishnan, Roy Fox, Stephen McKinley, John F. Canny, Ken Goldberg:
Fast and Reliable Autonomous Surgical Debridement with Cable-Driven Robots Using a Two-Phase Calibration Procedure. ICRA 2018: 6651-6658 - [c28]Vatsal Patel, Sanjay Krishnan, Aimee Goncalves, Carolyn Chen, Walter Doug Boyd, Ken Goldberg:
Using intermittent synchronization to compensate for rhythmic body motion during autonomous surgical cutting and debridement. ISMR 2018: 1-6 - [c27]Vatsal Patel, Sanjay Krishnan, Aimee Goncalves, Ken Goldberg:
SPRK: A low-cost stewart platform for motion study in surgical robotics. ISMR 2018: 1-6 - [c26]Ajay Kumar Tanwani, Jonathan Lee, Brijen Thananjeyan, Michael Laskey, Sanjay Krishnan, Roy Fox, Ken Goldberg, Sylvain Calinon:
Generalizing Robot Imitation Learning with Invariant Hidden Semi-Markov Models. WAFR 2018: 196-211 - 2017
- [c25]Carolyn Chen, Sanjay Krishnan, Michael Laskey, Roy Fox, Ken Goldberg:
An algorithm and user study for teaching bilateral manipulation via iterated best response demonstrations. CASE 2017: 151-158 - [c24]Caleb Chuck, Michael Laskey, Sanjay Krishnan, Ruta Joshi, Roy Fox, Ken Goldberg:
Statistical data cleaning for deep learning of automation tasks from demonstrations. CASE 2017: 1142-1149 - [c23]Sanjay Krishnan:
RLEX: Saftey and Data Quality in Reinforcement Learning-based and Adaptive Systems. CIDR 2017 - [c22]Sanjay Krishnan, Roy Fox, Ion Stoica, Ken Goldberg:
DDCO: Discovery of Deep Continuous Options for Robot Learning from Demonstrations. CoRL 2017: 418-437 - [c21]Brandie Nonnecke, Shrestha Mohanty, Andrew Lee, Jonathan Lee, Sequoia Beckman, Justin Mi, Sanjay Krishnan, Rachel Edita Roxas, Nathaniel Oco, Camille Crittenden, Ken Goldberg:
Malasakit 1.0: A participatory online platform for crowdsourcing disaster risk reduction strategies in the philippines. GHTC 2017: 1-6 - [c20]Michael Laskey, Caleb Chuck, Jonathan Lee, Jeffrey Mahler, Sanjay Krishnan, Kevin G. Jamieson, Anca D. Dragan, Ken Goldberg:
Comparing human-centric and robot-centric sampling for robot deep learning from demonstrations. ICRA 2017: 358-365 - [c19]Brijen Thananjeyan, Animesh Garg, Sanjay Krishnan, Carolyn Chen, Lauren Miller, Ken Goldberg:
Multilateral surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning. ICRA 2017: 2371-2378 - [c18]Mo Zhou, Sanjay Krishnan, Jay Patel, Brandie Nonnecke, Camille Crittenden, Ken Goldberg:
M-CAFE 2.0: A Scalable Platform with Comparative Plots and Topic Tagging for Ongoing Course Feedback. SIGITE 2017: 159-164 - [c17]Sanjay Krishnan, Eugene Wu:
PALM: Machine Learning Explanations For Iterative Debugging. HILDA@SIGMOD 2017: 4:1-4:6 - 2016
- [c16]Adithyavairavan Murali, Animesh Garg, Sanjay Krishnan, Florian T. Pokorny, Pieter Abbeel, Trevor Darrell, Ken Goldberg:
TSC-DL: Unsupervised trajectory segmentation of multi-modal surgical demonstrations with Deep Learning. ICRA 2016: 4150-4157 - [c15]Sanjay Krishnan, Daniel Haas, Michael J. Franklin, Eugene Wu:
Towards reliable interactive data cleaning: a user survey and recommendations. HILDA@SIGMOD 2016: 9 - [c14]Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, Ken Goldberg, Tim Kraska:
PrivateClean: Data Cleaning and Differential Privacy. SIGMOD Conference 2016: 937-951 - [c13]Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Jiannan Wang, Eugene Wu:
ActiveClean: An Interactive Data Cleaning Framework For Modern Machine Learning. SIGMOD Conference 2016: 2117-2120 - [c12]Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, Jiannan Wang:
Data Cleaning: Overview and Emerging Challenges. SIGMOD Conference 2016: 2201-2206 - [c11]Sanjay Krishnan, Animesh Garg, Richard Liaw, Brijen Thananjeyan, Lauren Miller, Florian T. Pokorny, Ken Goldberg:
SWIRL: A SequentialWindowed Inverse Reinforcement Learning Algorithm for Robot Tasks With Delayed Rewards. WAFR 2016: 672-687 - 2015
- [c10]Brandie Nonnecke, Sanjay Krishnan, Jay Patel, Mo Zhou, Laura Byaruhanga, Dorothy Masinde, Maria Elena Meneses, Alejandro Martin del Campo, Camille Crittenden, Kenneth Y. Goldberg:
DevCAFE 1.0: A participatory platform for assessing development initiatives in the field. GHTC 2015: 437-444 - [c9]Sanjay Krishnan, Animesh Garg, Sachin Patil, Colin Lea, Gregory D. Hager, Pieter Abbeel, Ken Goldberg:
Transition State Clustering: Unsupervised Surgical Trajectory Segmentation for Robot Learning. ISRR (2) 2015: 91-110 - [c8]Mo Zhou, Alison Cliff, Allen Huang, Sanjay Krishnan, Brandie Nonnecke, Kanji Uchino, Samuel Joseph, Armando Fox, Ken Goldberg:
M-CAFE: Managing MOOC Student Feedback with Collaborative Filtering. L@S 2015: 309-312 - [c7]Jay Patel, Gil Gershoni, Sanjay Krishnan, Matti Nelimarkka, Brandie Nonnecke, Ken Goldberg:
A Case Study in Mobile-Optimized vs. Responsive Web Application Design. MobileHCI Adjunct 2015: 576-581 - [c6]Mo Zhou, Alison Cliff, Sanjay Krishnan, Brandie Nonnecke, Camille Crittenden, Kanji Uchino, Ken Goldberg:
M-CAFE 1.0: Motivating and Prioritizing Ongoing Student Feedback During MOOCs and Large on-Campus Courses using Collaborative Filtering. SIGITE 2015: 153-158 - 2014
- [c5]Jeffrey Mahler, Sanjay Krishnan, Michael Laskey, Siddarth Sen, Adithyavairavan Murali, Ben Kehoe, Sachin Patil, Jiannan Wang, Mike Franklin, Pieter Abbeel, Kenneth Y. Goldberg:
Learning accurate kinematic control of cable-driven surgical robots using data cleaning and Gaussian Process Regression. CASE 2014: 532-539 - [c4]Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, Michael I. Jordan:
Communication-Efficient Distributed Dual Coordinate Ascent. NIPS 2014: 3068-3076 - [c3]Sanjay Krishnan, Jay Patel, Michael J. Franklin, Ken Goldberg:
A methodology for learning, analyzing, and mitigating social influence bias in recommender systems. RecSys 2014: 137-144 - [c2]Jiannan Wang, Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Tim Kraska, Tova Milo:
A sample-and-clean framework for fast and accurate query processing on dirty data. SIGMOD Conference 2014: 469-480 - [c1]Liwen Sun, Michael J. Franklin, Sanjay Krishnan, Reynold S. Xin:
Fine-grained partitioning for aggressive data skipping. SIGMOD Conference 2014: 1115-1126
Editorship
- 2023
- [e1]Rajesh Bordawekar, Cinzia Cappiello, Vasilis Efthymiou, Lisa Ehrlinger, Vijay Gadepally, Sainyam Galhotra, Sandra Geisler, Sven Groppe, Le Gruenwald, Alon Y. Halevy, Hazar Harmouch, Oktie Hassanzadeh, Ihab F. Ilyas, Ernesto Jiménez-Ruiz, Sanjay Krishnan, Tirthankar Lahiri, Guoliang Li, Jiaheng Lu, Wolfgang Mauerer, Umar Farooq Minhas, Felix Naumann, M. Tamer Özsu, El Kindi Rezig, Kavitha Srinivas, Michael Stonebraker, Satyanarayana R. Valluri, Maria-Esther Vidal, Haixun Wang, Jiannan Wang, Yingjun Wu, Xun Xue, Mohamed Zaït, Kai Zeng:
Joint Proceedings of Workshops at the 49th International Conference on Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September 1, 2023. CEUR Workshop Proceedings 3462, CEUR-WS.org 2023 [contents]
Informal and Other Publications
- 2024
- [i42]Shinan Liu, Ted Shaowang, Gerry Wan, Jeewon Chae, Jonatas Marques, Sanjay Krishnan, Nick Feamster:
ServeFlow: A Fast-Slow Model Architecture for Network Traffic Analysis. CoRR abs/2402.03694 (2024) - [i41]Pranav Subramaniam, Sanjay Krishnan:
Intent-Based Access Control: Using LLMs to Intelligently Manage Access Control. CoRR abs/2402.07332 (2024) - [i40]Jinjin Zhao, Ted Shaowang, Stavros Sintos, Sanjay Krishnan:
Towards Causal Physical Error Discovery in Video Analytics Systems. CoRR abs/2405.17686 (2024) - [i39]Jinjin Zhao, Avigdor Gal, Sanjay Krishnan:
Data Makes Better Data Scientists. CoRR abs/2405.17690 (2024) - [i38]Jinjin Zhao, Sanjay Krishnan:
Compression and In-Situ Query Processing for Fine-Grained Array Lineage. CoRR abs/2405.17701 (2024) - [i37]Jinjin Zhao, Avidgor Gal, Sanjay Krishnan:
A System for Quantifying Data Science Workflows with Fine-Grained Procedural Logging and a Pilot Study. CoRR abs/2405.17845 (2024) - 2023
- [i36]Ted Shaowang, Sanjay Krishnan:
EdgeServe: An Execution Layer for Decentralized Prediction. CoRR abs/2303.08028 (2023) - [i35]Siyuan Xia, Zhiru Zhu, Chris Zhu, Jinjin Zhao, Kyle Chard, Aaron J. Elmore, Ian T. Foster, Michael J. Franklin, Sanjay Krishnan, Raul Castro Fernandez:
Data Station: Delegated, Trustworthy, and Auditable Computation to Enable Data-Sharing Consortia with a Data Escrow. CoRR abs/2305.03842 (2023) - [i34]Edward C. Williams, Grace Su, Sandra R. Schloen, Miller C. Prosser, Susanne Paulus, Sanjay Krishnan:
DeepScribe: Localization and Classification of Elamite Cuneiform Signs Via Deep Learning. CoRR abs/2306.01268 (2023) - [i33]Deniz Turkcapar, Sanjay Krishnan:
Quantifying Uncertainty in Aggregate Queries over Integrated Datasets. CoRR abs/2309.05178 (2023) - [i32]Sanjay Krishnan, Stavros Sintos:
Range Entropy Queries and Partitioning. CoRR abs/2312.15959 (2023) - 2022
- [i31]Xi Liang, Stavros Sintos, Sanjay Krishnan:
JanusAQP: Efficient Partition Tree Maintenance for Dynamic Approximate Query Processing. CoRR abs/2204.09235 (2022) - 2021
- [i30]Cong Ding, Dixin Tang, Xi Liang, Aaron J. Elmore, Sanjay Krishnan:
CIAO: An Optimization Framework for Client-Assisted Data Loading. CoRR abs/2102.11793 (2021) - [i29]Xi Liang, Stavros Sintos, Zechao Shang, Sanjay Krishnan:
Combining Aggregation and Sampling (Nearly) Optimally for Approximate Query Processing. CoRR abs/2103.15994 (2021) - [i28]Nalin Ranjan, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan:
Version Reconciliation for Collaborative Databases. CoRR abs/2110.01778 (2021) - [i27]Dale Decatur, Sanjay Krishnan:
VizExtract: Automatic Relation Extraction from Data Visualizations. CoRR abs/2112.03485 (2021) - 2020
- [i26]Rui Liu, Sanjay Krishnan, Aaron J. Elmore, Michael J. Franklin:
Understanding and Optimizing Packed Neural Network Training for Hyper-Parameter Tuning. CoRR abs/2002.02885 (2020) - [i25]Adam Dziedzic, Sanjay Krishnan:
An Empirical Evaluation of Perturbation-based Defenses. CoRR abs/2002.03080 (2020) - [i24]Adam Dziedzic, Vanlin Sathya, Muhammad Iqbal Rochman, Monisha Ghosh, Sanjay Krishnan:
Machine Learning enabled Spectrum Sharing in Dense LTE-U/Wi-Fi Coexistence Scenarios. CoRR abs/2003.13652 (2020) - [i23]Xi Liang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, Michael J. Franklin:
Fast and Reliable Missing Data Contingency Analysis with Predicate-Constraints. CoRR abs/2004.04139 (2020) - [i22]Raul Castro Fernandez, Kyle Chard, Ben Blaiszik, Sanjay Krishnan, Aaron J. Elmore, Ziad Obermeyer, Josh Risley, Sendhil Mullainathan, Michael J. Franklin, Ian T. Foster:
The Data Station: Combining Data, Compute, and Market Forces. CoRR abs/2009.00035 (2020) - 2019
- [i21]Xi Liang, Aaron J. Elmore, Sanjay Krishnan:
Opportunistic View Materialization with Deep Reinforcement Learning. CoRR abs/1903.01363 (2019) - [i20]Sanjay Krishnan, Eugene Wu:
AlphaClean: Automatic Generation of Data Cleaning Pipelines. CoRR abs/1904.11827 (2019) - [i19]Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, Ion Stoica:
Selectivity Estimation with Deep Likelihood Models. CoRR abs/1905.04278 (2019) - [i18]Adam Dziedzic, John Paparrizos, Sanjay Krishnan, Aaron J. Elmore, Michael J. Franklin:
Band-limited Training and Inference for Convolutional Neural Networks. CoRR abs/1911.09287 (2019) - [i17]Vanlin Sathya, Adam Dziedzic, Monisha Ghosh, Sanjay Krishnan:
Machine Learning based detection of multiple Wi-Fi BSSs for LTE-U CSAT. CoRR abs/1911.09292 (2019) - 2018
- [i16]Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, Ion Stoica:
Learning to Optimize Join Queries With Deep Reinforcement Learning. CoRR abs/1808.03196 (2018) - [i15]Ajay Kumar Tanwani, Jonathan Lee, Brijen Thananjeyan, Michael Laskey, Sanjay Krishnan, Roy Fox, Ken Goldberg, Sylvain Calinon:
Generalizing Robot Imitation Learning with Invariant Hidden Semi-Markov Models. CoRR abs/1811.07489 (2018) - [i14]Sanjay Krishnan, Adam Dziedzic, Aaron J. Elmore:
DeepLens: Towards a Visual Data Management System. CoRR abs/1812.07607 (2018) - 2017
- [i13]Roy Fox, Sanjay Krishnan, Ion Stoica, Ken Goldberg:
Multi-Level Discovery of Deep Options. CoRR abs/1703.08294 (2017) - [i12]Daniel Seita, Sanjay Krishnan, Roy Fox, Stephen McKinley, John F. Canny, Ken Goldberg:
Fast and Reliable Autonomous Surgical Debridement with Cable-Driven Robots Using a Two-Phase Calibration Procedure. CoRR abs/1709.06668 (2017) - [i11]Sanjay Krishnan, Roy Fox, Ion Stoica, Ken Goldberg:
DDCO: Discovery of Deep Continuous Options forRobot Learning from Demonstrations. CoRR abs/1710.05421 (2017) - [i10]Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Eugene Wu:
BoostClean: Automated Error Detection and Repair for Machine Learning. CoRR abs/1711.01299 (2017) - [i9]Richard Liaw, Sanjay Krishnan, Animesh Garg, Daniel Crankshaw, Joseph E. Gonzalez, Ken Goldberg:
Composing Meta-Policies for Autonomous Driving Using Hierarchical Deep Reinforcement Learning. CoRR abs/1711.01503 (2017) - [i8]Vatsal Patel, Sanjay Krishnan, Aimee Goncalves, Carolyn Chen, Walter Doug Boyd, Ken Goldberg:
Using Intermittent Synchronization to Compensate for Rhythmic Body Motion During Autonomous Surgical Cutting and Debridement. CoRR abs/1712.02917 (2017) - [i7]Vatsal Patel, Sanjay Krishnan, Aimee Goncalves, Ken Goldberg:
SPRK: A Low-Cost Stewart Platform For Motion Study In Surgical Robotics. CoRR abs/1712.02923 (2017) - 2016
- [i6]Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, Ken Goldberg:
ActiveClean: Interactive Data Cleaning While Learning Convex Loss Models. CoRR abs/1601.03797 (2016) - [i5]Sanjay Krishnan, Animesh Garg, Richard Liaw, Lauren Miller, Florian T. Pokorny, Ken Goldberg:
HIRL: Hierarchical Inverse Reinforcement Learning for Long-Horizon Tasks with Delayed Rewards. CoRR abs/1604.06508 (2016) - [i4]Michael Laskey, Caleb Chuck, Jonathan Lee, Jeffrey Mahler, Sanjay Krishnan, Kevin G. Jamieson, Anca D. Dragan, Kenneth Y. Goldberg:
Comparing Human-Centric and Robot-Centric Sampling for Robot Deep Learning from Demonstrations. CoRR abs/1610.00850 (2016) - [i3]Yeounoh Chung, Sanjay Krishnan, Tim Kraska:
A Data Quality Metric (DQM): How to Estimate The Number of Undetected Errors in Data Sets. CoRR abs/1611.04878 (2016) - 2015
- [i2]Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, Ken Goldberg, Tim Kraska:
Stale View Cleaning: Getting Fresh Answers from Stale Materialized Views. CoRR abs/1509.07454 (2015) - 2014
- [i1]Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, Michael I. Jordan:
Communication-Efficient Distributed Dual Coordinate Ascent. CoRR abs/1409.1458 (2014)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-19 23:09 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint