default search action
B. John Oommen
Person information
- affiliation: Carleton University, Ottawa, Canada
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j191]Rebekka Olsson Omslandseter, Lei Jiao, Xuan Zhang, Anis Yazidi, B. John Oommen:
The Hierarchical Discrete Pursuit Learning Automaton: A Novel Scheme With Fast Convergence and Epsilon-Optimality. IEEE Trans. Neural Networks Learn. Syst. 35(6): 8278-8292 (2024) - 2023
- [j190]Rebekka Olsson Omslandseter, Lei Jiao, B. John Oommen:
Pioneering approaches for enhancing the speed of hierarchical LA by ordering the actions. Inf. Sci. 647: 119487 (2023) - [j189]Ismail Hassan, B. John Oommen, Anis Yazidi:
Adaptive learning with artificial barriers yielding Nash equilibria in general games. Knowl. Eng. Rev. 38 (2023) - [j188]Rebekka Olsson Omslandseter, Lei Jiao, Yuanwei Liu, B. John Oommen:
User grouping and power allocation in NOMA systems: a novel semi-supervised reinforcement learning-based solution. Pattern Anal. Appl. 26(1): 1-17 (2023) - [j187]B. John Oommen, Rebekka Olsson Omslandseter, Lei Jiao:
Learning automata-based partitioning algorithms for stochastic grouping problems with non-equal partition sizes. Pattern Anal. Appl. 26(2): 751-772 (2023) - [j186]B. John Oommen, Rebekka Olsson Omslandseter, Lei Jiao:
The object migration automata: its field, scope, applications, and future research challenges. Pattern Anal. Appl. 26(3): 917-928 (2023) - [j185]Anis Yazidi, Daniel Silvestre, B. John Oommen:
Solving Two-Person Zero-Sum Stochastic Games With Incomplete Information Using Learning Automata With Artificial Barriers. IEEE Trans. Neural Networks Learn. Syst. 34(2): 650-661 (2023) - 2022
- [c199]Rebekka Olsson Omslandseter, Lei Jiao, Xuan Zhang, Anis Yazidi, B. John Oommen:
The Hierarchical Discrete Learning Automaton Suitable for Environments with Many Actions and High Accuracy Requirements. AI 2022: 507-518 - [c198]Rebekka Olsson Omslandseter, Lei Jiao, B. John Oommen:
Enhancing the Speed of Hierarchical Learning Automata by Ordering the Actions - A Pioneering Approach. AI 2022: 775-788 - [c197]B. John Oommen, Xuan Zhang, Lei Jiao:
A Comprehensive Survey of Estimator Learning Automata and Their Recent Convergence Results. Honoring Professor Mohammad S. Obaidat 2022: 33-52 - [c196]Ismail Hassan, B. John Oommen, Anis Yazidi:
Learning Automata with Artificial Reflecting Barriers in Games with Limited Information. FLAIRS 2022 - [i2]Ismail Hassan, Anis Yazidi, B. John Oommen:
Adaptive Learning with Artificial Barriers Yielding Nash Equilibria in General Games. CoRR abs/2203.15780 (2022) - 2021
- [j184]Omar Ghaleb, B. John Oommen:
On solving single elevator-like problems using a learning automata-based paradigm. Evol. Syst. 12(1): 37-56 (2021) - [j183]O. Ekaba Bisong, B. John Oommen:
On utilizing an enhanced object partitioning scheme to optimize self-organizing lists-on-lists. Evol. Syst. 12(1): 123-154 (2021) - [j182]O. Ekaba Bisong, B. John Oommen:
On utilizing the transitivity pursuit-enhanced object partitioning to optimize self-organizing lists-on-lists. Evol. Syst. 12(3): 655-686 (2021) - [j181]Fatemeh Mahmoudi, Mostafa Razmkhah, B. John Oommen:
Nonparametric "anti-Bayesian" quantile-based pattern classification. Pattern Anal. Appl. 24(1): 75-87 (2021) - [j180]Tahira Ghani, B. John Oommen:
On utilizing 2D features from 3D scans to enhance the prediction of lung cancer survival rates. Pattern Recognit. Lett. 152: 56-62 (2021) - [j179]Anis Yazidi, Ismail Hassan, Hugo Lewi Hammer, B. John Oommen:
Achieving Fair Load Balancing by Invoking a Learning Automata-Based Two-Time-Scale Separation Paradigm. IEEE Trans. Neural Networks Learn. Syst. 32(8): 3444-3457 (2021) - [c195]Rebekka Olsson Omslandseter, Lei Jiao, B. John Oommen:
A Learning-Automata Based Solution for Non-equal Partitioning: Partitions with Common GCD Sizes. IEA/AIE (2) 2021: 227-239 - [c194]Rebekka Olsson Omslandseter, Lei Jiao, B. John Oommen:
Object Migration Automata for Non-equal Partitioning Problems with Known Partition Sizes. AIAI 2021: 129-142 - 2020
- [j178]Abdolreza Shirvani, B. John Oommen:
On enhancing the deadlock-preventing object migration automaton using the pursuit paradigm. Pattern Anal. Appl. 23(2): 509-526 (2020) - [j177]Xuan Zhang, Lei Jiao, B. John Oommen, Ole-Christoffer Granmo:
A Conclusive Analysis of the Finite-Time Behavior of the Discretized Pursuit Learning Automaton. IEEE Trans. Neural Networks Learn. Syst. 31(1): 284-294 (2020) - [j176]Anis Yazidi, Xuan Zhang, Lei Jiao, B. John Oommen:
The Hierarchical Continuous Pursuit Learning Automation: A Novel Scheme for Environments With Large Numbers of Actions. IEEE Trans. Neural Networks Learn. Syst. 31(2): 512-526 (2020) - [c193]Tahira Ghani, B. John Oommen:
Novel Block Diagonalization for Reducing Features and Computations in Medical Diagnosis. Australasian Conference on Artificial Intelligence 2020: 42-54 - [c192]Tahira Ghani, B. John Oommen:
Enhancing the Prediction of Lung Cancer Survival Rates Using 2D Features from 3D Scans. ICIAR (2) 2020: 202-215 - [c191]Rebekka Olsson Omslandseter, Lei Jiao, Yuanwei Liu, B. John Oommen:
User Grouping and Power Allocation in NOMA Systems: A Reinforcement Learning-Based Solution. IEA/AIE 2020: 299-311 - [c190]Ibrahim Helmy, B. John Oommen:
A Novel Learning Automata-Based Strategy to Generate Melodies from Chordal Inputs. AIAI (1) 2020: 203-215 - [c189]O. Ekaba Bisong, B. John Oommen:
Optimizing Self-organizing Lists-on-Lists Using Transitivity and Pursuit-Enhanced Object Partitioning. AIAI (1) 2020: 227-240
2010 – 2019
- 2019
- [j175]Hanane Tavasoli, B. John Oommen, Anis Yazidi:
On utilizing weak estimators to achieve the online classification of data streams. Eng. Appl. Artif. Intell. 86: 11-31 (2019) - [c188]Nicolas Perez, B. John Oommen:
Multi-Minimax: A New AI Paradigm for Simultaneously-Played Multi-player Games. Australasian Conference on Artificial Intelligence 2019: 41-53 - [c187]Abdolreza Shirvani, B. John Oommen:
The Power of the "Pursuit" Learning Paradigm in the Partitioning of Data. EANN 2019: 3-16 - [c186]Omar Ghaleb, B. John Oommen:
Learning Automata-Based Solutions to the Multi-Elevator Problem. ICIC (3) 2019: 130-141 - [c185]O. Ekaba Bisong, B. John Oommen:
Optimizing Self-organizing Lists-on-Lists Using Pursuit-Oriented Enhanced Object Partitioning. ICIC (3) 2019: 201-212 - [c184]Jessica Havelock, B. John Oommen, Ole-Christoffer Granmo:
On Using "Stochastic Learning on the Line" to Design Novel Distance Estimation Methods for Three-Dimensional Environments. IEA/AIE 2019: 39-49 - [c183]Abdolreza Shirvani, B. John Oommen:
The Power of the "Pursuit" Learning Paradigm in the Partitioning of Data. AIAI 2019: 3-16 - [c182]Omar Ghaleb, B. John Oommen:
Learning Automata-Based Solutions to the Single Elevator Problem. AIAI 2019: 439-450 - [c181]O. Ekaba Bisong, B. John Oommen:
Optimizing Self-organizing Lists-on-Lists Using Enhanced Object Partitioning. AIAI 2019: 451-463 - 2018
- [j174]Rajan Thapa, Lei Jiao, B. John Oommen, Anis Yazidi:
A Learning Automaton-Based Scheme for Scheduling Domestic Shiftable Loads in Smart Grids. IEEE Access 6: 5348-5361 (2018) - [j173]Abdolreza Shirvani, B. John Oommen:
On Invoking Transitivity to Enhance the Pursuit-Oriented Object Migration Automata. IEEE Access 6: 21668-21681 (2018) - [j172]Anis Yazidi, Hugo Hammer, B. John Oommen:
Higher-Fidelity Frugal and Accurate Quantile Estimation Using a Novel Incremental Discretized Paradigm. IEEE Access 6: 24362-24374 (2018) - [j171]Jessica Havelock, B. John Oommen, Ole-Christoffer Granmo:
Novel Distance Estimation Methods Using "Stochastic Learning on the Line" Strategies. IEEE Access 6: 48438-48454 (2018) - [j170]Spencer Polk, B. John Oommen:
Challenging state-of-the-art move ordering with Adaptive Data Structures. Appl. Intell. 48(5): 1128-1147 (2018) - [j169]Spencer Polk, B. John Oommen:
Novel threat-based AI strategies that incorporate adaptive data structures for multi-player board games. Appl. Intell. 48(8): 1893-1911 (2018) - [j168]Ratish Mohan, Anis Yazidi, Boning Feng, B. John Oommen:
On optimizing firewall performance in dynamic networks by invoking a novel swapping window-based paradigm. Int. J. Commun. Syst. 31(15) (2018) - [j167]Akaki Jobava, Anis Yazidi, B. John Oommen, Kyrre M. Begnum:
On achieving intelligent traffic-aware consolidation of virtual machines in a data center using Learning Automata. J. Comput. Sci. 24: 290-312 (2018) - [j166]Abdolreza Shirvani, B. John Oommen:
On enhancing the object migration automaton using the Pursuit paradigm. J. Comput. Sci. 24: 329-342 (2018) - [j165]Hugo Lewi Hammer, Anis Yazidi, B. John Oommen:
On the classification of dynamical data streams using novel "Anti-Bayesian" techniques. Pattern Recognit. 76: 108-124 (2018) - [c180]Jessica Havelock, B. John Oommen, Ole-Christoffer Granmo:
On Using "Stochastic Learning on the Line" to Design Novel Distance Estimation Methods. IEA/AIE 2018: 34-42 - [c179]Armando H. Taucer, Spencer Polk, B. John Oommen:
On Addressing the Challenges of Complex Stochastic Games Using "Representative" Moves. AIAI 2018: 3-13 - [c178]Anis Yazidi, Xuan Zhang, Lei Jiao, B. John Oommen:
The Hierarchical Continuous Pursuit Learning Automation for Large Numbers of Actions. AIAI 2018: 451-461 - 2017
- [j164]Nathan Bell, B. John Oommen:
A novel abstraction for swarm intelligence: particle field optimization. Auton. Agents Multi Agent Syst. 31(2): 362-385 (2017) - [j163]B. John Oommen, Sang-Woon Kim:
Occlusion-based estimation of independent multinomial random variables using occurrence and sequential information. Eng. Appl. Artif. Intell. 63: 69-84 (2017) - [j162]Anis Yazidi, B. John Oommen:
A novel technique for stochastic root-finding: Enhancing the search with adaptive d-ary search. Inf. Sci. 393: 108-129 (2017) - [j161]Hugo Lewi Hammer, Anis Yazidi, B. John Oommen:
"Anti-Bayesian" flat and hierarchical clustering using symmetric quantiloids. Inf. Sci. 418: 495-512 (2017) - [j160]Xuan Zhang, B. John Oommen, Ole-Christoffer Granmo:
The design of absorbing Bayesian pursuit algorithms and the formal analyses of their ε-optimality. Pattern Anal. Appl. 20(3): 797-808 (2017) - [j159]Anis Yazidi, B. John Oommen, Morten Goodwin:
On Solving the Problem of Identifying Unreliable Sensors Without a Knowledge of the Ground Truth: The Case of Stochastic Environments. IEEE Trans. Cybern. 47(7): 1604-1617 (2017) - [c177]Anis Yazidi, Hugo Lewi Hammer, B. John Oommen:
A Higher-Fidelity Frugal Quantile Estimator. ADMA 2017: 76-86 - [c176]Anis Yazidi, B. John Oommen, Morten Goodwin:
Identifying Unreliable Sensors Without a Knowledge of the Ground Truth in Deceptive Environments. ADMA 2017: 741-753 - [c175]Hugo Lewi Hammer, Anis Yazidi, B. John Oommen:
On using novel "Anti-Bayesian" techniques for the classification of dynamical data streams. CEC 2017: 1173-1182 - [c174]Thomas McMahon, B. John Oommen:
Enhancing English-Japanese Translation Using Syntactic Pattern Recognition Methods. CORES 2017: 33-42 - [c173]Anis Yazidi, B. John Oommen:
Novel Results on Random Walk-Jump Chains That Possess Tree-Based Transitions. CORES 2017: 43-52 - [c172]Abdolreza Shirvani, B. John Oommen:
Partitioning in signal processing using the object migration automaton and the pursuit paradigm. MLSP 2017: 1-6 - [c171]Rajan Thapa, Lei Jiao, B. John Oommen, Anis Yazidi:
Scheduling Domestic Shiftable Loads in Smart Grids: A Learning Automata-Based Scheme. SmartGIFT 2017: 58-68 - 2016
- [j158]Xuan Zhang, B. John Oommen, Ole-Christoffer Granmo, Lei Jiao:
A formal proof of the 𝜀-optimality of discretized pursuit algorithms. Appl. Intell. 44(2): 282-294 (2016) - [j157]Lei Jiao, Xuan Zhang, B. John Oommen, Ole-Christoffer Granmo:
Optimizing channel selection for cognitive radio networks using a distributed Bayesian learning automata-based approach. Appl. Intell. 44(2): 307-321 (2016) - [j156]Anis Yazidi, B. John Oommen, Geir Horn, Ole-Christoffer Granmo:
Stochastic discretized learning-based weak estimation: a novel estimation method for non-stationary environments. Pattern Recognit. 60: 430-443 (2016) - [j155]Spencer Polk, B. John Oommen:
On Achieving History-Based Move Ordering in Adversarial Board Games Using Adaptive Data Structures. Trans. Comput. Collect. Intell. 22: 10-44 (2016) - [j154]B. John Oommen, Richard Khoury, Aron Schmidt:
Text Classification Using "Anti"-Bayesian Quantile Statistics-Based Classifiers. Trans. Comput. Collect. Intell. 25: 101-126 (2016) - [j153]Anis Yazidi, B. John Oommen:
Novel Discretized Weak Estimators Based on the Principles of the Stochastic Search on the Line Problem. IEEE Trans. Cybern. 46(12): 2732-2744 (2016) - [c170]César A. Astudillo, Jorge Poblete, Marina Resta, B. John Oommen:
A Cluster Analysis of Stock Market Data Using Hierarchical SOMs. Australasian Conference on Artificial Intelligence 2016: 101-112 - [c169]César A. Astudillo, Javier I. González, B. John Oommen, Anis Yazidi:
Concept Drift Detection Using Online Histogram-Based Bayesian Classifiers. Australasian Conference on Artificial Intelligence 2016: 175-182 - [c168]B. John Oommen, Sang-Woon Kim:
On the Foundations of Multinomial Sequence Based Estimation. ICCCI (1) 2016: 218-229 - [c167]Ratish Mohan, Anis Yazidi, Boning Feng, B. John Oommen:
Dynamic Ordering of Firewall Rules Using a Novel Swapping Window-based Paradigm. ICCNS 2016: 11-20 - [c166]B. John Oommen, Sang-Woon Kim:
Multinomial Sequence Based Estimation Using Contiguous Subsequences of Length Three. ICIAR 2016: 243-253 - [c165]Anis Yazidi, Hugo Lewi Hammer, B. John Oommen:
"Anti-Bayesian" Flat and Hierarchical Clustering Using Symmetric Quantiloids. IEA/AIE 2016: 56-67 - [c164]Hanane Tavasoli, B. John Oommen, Anis Yazidi:
On the Online Classification of Data Streams Using Weak Estimators. IEA/AIE 2016: 68-79 - [c163]Spencer Polk, B. John Oommen:
Challenging Established Move Ordering Strategies with Adaptive Data Structures. IEA/AIE 2016: 862-872 - [c162]Akaki Jobava, Anis Yazidi, B. John Oommen, Kyrre M. Begnum:
Achieving Intelligent Traffic-Aware Consolidation of Virtual Machines in a Data Center Using Learning Automata. NTMS 2016: 1-5 - 2015
- [j152]Yifeng Li, B. John Oommen, Alioune Ngom, Luis Rueda:
Pattern classification using a new border identification paradigm: The nearest border technique. Neurocomputing 157: 105-117 (2015) - [c161]Nathan Bell, B. John Oommen:
Particle Field Optimization: A New Paradigm for Swarm Intelligence. AAMAS 2015: 257-265 - [c160]Spencer Polk, B. John Oommen:
Space and depth-related enhancements of the history-ADS strategy in game playing. CIG 2015: 322-327 - [c159]Anis Yazidi, B. John Oommen:
Solving Stochastic Root-Finding with adaptive d-ary search. EAIS 2015: 1-8 - [c158]B. John Oommen, Richard Khoury, Aron Schmidt:
Text Classification Using Novel "Anti-Bayesian" Techniques. ICCCI (1) 2015: 1-15 - [c157]Spencer Polk, B. John Oommen:
Enhancing History-Based Move Ordering in Game Playing Using Adaptive Data Structures. ICCCI (1) 2015: 225-235 - [c156]Spencer Polk, B. John Oommen:
Novel AI Strategies for Multi-Player Games at Intermediate Board States. IEA/AIE 2015: 33-42 - [c155]César A. Astudillo, B. John Oommen:
Pattern Recognition using the TTOCONROT. IEA/AIE 2015: 435-444 - [c154]Hugo Lewi Hammer, Anis Yazidi, B. John Oommen:
A Novel Clustering Algorithm Based on a Non-parametric "Anti-Bayesian" Paradigm. IEA/AIE 2015: 536-545 - [c153]Anis Yazidi, B. John Oommen, Morten Goodwin Olsen:
On Distinguishing between Reliable and Unreliable Sensors Without a Knowledge of the Ground Truth. WI-IAT (2) 2015: 104-111 - [i1]César A. Astudillo, B. John Oommen:
Self Organizing Maps Whose Topologies Can Be Learned With Adaptive Binary Search Trees Using Conditional Rotations. CoRR abs/1506.02750 (2015) - 2014
- [j151]Xuan Zhang, Ole-Christoffer Granmo, B. John Oommen, Lei Jiao:
A formal proof of the ε-optimality of absorbing continuous pursuit algorithms using the theory of regular functions. Appl. Intell. 41(3): 974-985 (2014) - [j150]Qin Ke, B. John Oommen:
Logistic Neural Networks: Their chaotic and pattern recognition properties. Neurocomputing 125: 184-194 (2014) - [j149]César A. Astudillo, B. John Oommen:
Topology-oriented self-organizing maps: a survey. Pattern Anal. Appl. 17(2): 223-248 (2014) - [j148]B. John Oommen, Anu Thomas:
"Anti-Bayesian" parametric pattern classification using order statistics criteria for some members of the exponential family. Pattern Recognit. 47(1): 40-55 (2014) - [j147]César A. Astudillo, B. John Oommen:
Self-organizing maps whose topologies can be learned with adaptive binary search trees using conditional rotations. Pattern Recognit. 47(1): 96-113 (2014) - [j146]Anu Thomas, B. John Oommen:
Corrigendum to three papers that deal with "Anti"-Bayesian Pattern Recognition [Pattern Recognition]. Pattern Recognit. 47(6): 2301-2302 (2014) - [j145]Rokhsareh Sakhravi, Masoud T. Omran, B. John Oommen:
On the Existence and Heuristic Computation of the Solution for the Commons Game. Trans. Comput. Collect. Intell. 14: 71-99 (2014) - [j144]Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen, Morten Goodwin Olsen:
A Novel Strategy for Solving the Stochastic Point Location Problem Using a Hierarchical Searching Scheme. IEEE Trans. Cybern. 44(11): 2202-2220 (2014) - [c152]Anis Yazidi, B. John Oommen, Ole-Christoffer Granmo, Morten Goodwin:
On Utilizing Stochastic Non-linear Fractional Bin Packing to Resolve Distributed Web Crawling. CSE 2014: 32-37 - [c151]Lei Jiao, Xuan Zhang, Ole-Christoffer Granmo, B. John Oommen:
A Bayesian Learning Automata-Based Distributed Channel Selection Scheme for Cognitive Radio Networks. IEA/AIE (2) 2014: 48-57 - [c150]Xuan Zhang, B. John Oommen, Ole-Christoffer Granmo, Lei Jiao:
Using the Theory of Regular Functions to Formally Prove the ε-Optimality of Discretized Pursuit Learning Algorithms. IEA/AIE (1) 2014: 379-388 - [c149]Ke Qin, B. John Oommen:
Cryptanalysis of a Cryptographic Algorithm that Utilizes Chaotic Neural Networks. ISCIS 2014: 167-174 - [c148]César A. Astudillo, B. John Oommen:
Fast BMU Search in SOMs Using Random Hyperplane Trees. PRICAI 2014: 39-51 - 2013
- [j143]Xuan Zhang, Ole-Christoffer Granmo, B. John Oommen:
On incorporating the paradigms of discretization and Bayesian estimation to create a new family of pursuit learning automata. Appl. Intell. 39(4): 782-792 (2013) - [j142]Aleksander Stensby, B. John Oommen, Ole-Christoffer Granmo:
The Use of Weak estimators to Achieve Language Detection and Tracking in Multilingual Documents. Int. J. Pattern Recognit. Artif. Intell. 27(4) (2013) - [j141]B. John Oommen, Ebaa Fayyoumi:
On utilizing dependence-based information to enhance micro-aggregation for secure statistical databases. Pattern Anal. Appl. 16(1): 99-116 (2013) - [j140]César A. Astudillo, B. John Oommen:
On achieving semi-supervised pattern recognition by utilizing tree-based SOMs. Pattern Recognit. 46(1): 293-304 (2013) - [j139]Anu Thomas, B. John Oommen:
The fundamental theory of optimal "Anti-Bayesian" parametric pattern classification using order statistics criteria. Pattern Recognit. 46(1): 376-388 (2013) - [j138]Anu Thomas, B. John Oommen:
Order statistics-based parametric classification for multi-dimensional distributions. Pattern Recognit. 46(12): 3472-3482 (2013) - [j137]Ke Qin, B. John Oommen:
Ideal Chaotic Pattern Recognition Is Achievable: The Ideal-M-AdNN - Its Design and Properties. Trans. Comput. Collect. Intell. 11: 22-51 (2013) - [j136]Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen:
Learning-Automaton-Based Online Discovery and Tracking of Spatiotemporal Event Patterns. IEEE Trans. Cybern. 43(3): 1118-1130 (2013) - [j135]B. John Oommen, M. Khaled Hashem:
Modeling the "Learning Process" of the Teacher in a Tutorial-Like System Using Learning Automata. IEEE Trans. Cybern. 43(6): 2020-2031 (2013) - [c147]Anu Thomas, B. John Oommen:
Ultimate Order Statistics-Based Prototype Reduction Schemes. Australasian Conference on Artificial Intelligence 2013: 421-433 - [c146]Yifeng Li, B. John Oommen, Alioune Ngom, Luis Rueda:
A New Paradigm for Pattern Classification: Nearest Border Techniques. Australasian Conference on Artificial Intelligence 2013: 441-446 - [c145]Anu Thomas, B. John Oommen:
A Novel Border Identification Algorithm Based on an "Anti-Bayesian" Paradigm. CAIP (1) 2013: 196-203 - [c144]Anu Thomas, B. John Oommen:
On Achieving Near-Optimal "Anti-Bayesian" Order Statistics-Based Classification for Asymmetric Exponential Distributions. CAIP (1) 2013: 368-376 - [c143]Anu Thomas, B. John Oommen:
Classification of Multi-dimensional Distributions Using Order Statistics Criteria. CORES 2013: 19-29 - [c142]Xuan Zhang, Ole-Christoffer Granmo, B. John Oommen, Lei Jiao:
On Using the Theory of Regular Functions to Prove the ε-Optimality of the Continuous Pursuit Learning Automaton. IEA/AIE 2013: 262-271 - [c141]Xuan Zhang, Lei Jiao, Ole-Christoffer Granmo, B. John Oommen:
Channel selection in Cognitive Radio Networks: A Switchable Bayesian Learning Automata approach. PIMRC 2013: 2362-2367 - [c140]Spencer Polk, B. John Oommen:
On Applying Adaptive Data Structures to Multi-Player Game Playing. SGAI Conf. 2013: 125-138 - [c139]Spencer Polk, B. John Oommen:
On Enhancing Recent Multi-player Game Playing Strategies Using a Spectrum of Adaptive Data Structures. TAAI 2013: 164-169 - 2012
- [j134]Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen:
Service selection in stochastic environments: a learning-automaton based solution. Appl. Intell. 36(3): 617-637 (2012) - [j133]Ke Qin, B. John Oommen:
The entire range of Chaotic pattern recognition properties possessed by the Adachi neural network. Intell. Decis. Technol. 6(1): 27-41 (2012) - [j132]B. John Oommen, Anis Yazidi, Ole-Christoffer Granmo:
An Adaptive Approach to Learning the Preferences of Users in a Social Network Using Weak Estimators. J. Inf. Process. Syst. 8(2): 191-212 (2012) - [j131]Sang-Woon Kim, B. John Oommen:
On using prototype reduction schemes to optimize locally linear reconstruction methods. Pattern Recognit. 45(1): 498-511 (2012) - [j130]Dragos Calitoiu, B. John Oommen, Doron Nussbaum:
Large-scale neuro-modeling for understanding and explaining some brain-related chaotic behavior. Simul. 88(11): 1316-1337 (2012) - [j129]Colin Bellinger, B. John Oommen:
On the Pattern Recognition and Classification of Stochastically Episodic Events. Trans. Comput. Collect. Intell. 6: 1-35 (2012) - [j128]B. John Oommen, M. Khaled Hashem:
Modeling a Teacher in a Tutorial-like System Using Learning Automata. Trans. Comput. Collect. Intell. 8: 37-62 (2012) - [c138]Anu Thomas, B. John Oommen:
Optimal "Anti-Bayesian" Parametric Pattern Classification Using Order Statistics Criteria. CIARP 2012: 1-13 - [c137]Rokhsareh Sakhravi, Masoud T. Omran, B. John Oommen:
A Fast Heuristic Solution for the Commons Game. DCAI 2012: 81-90 - [c136]Anis Yazidi, B. John Oommen, Ole-Christoffer Granmo:
A novel Stochastic Discretized Weak Estimator operating in non-stationary environments. ICNC 2012: 364-370 - [c135]Anu Thomas, B. John Oommen:
Optimal "Anti-Bayesian" Parametric Pattern Classification for the Exponential Family Using Order Statistics Criteria. ICIAR (1) 2012: 11-18 - [c134]Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen:
A Stochastic Search on the Line-Based Solution to Discretized Estimation. IEA/AIE 2012: 764-773 - [c133]Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen, Morten Goodwin Olsen:
A Hierarchical Learning Scheme for Solving the Stochastic Point Location Problem. IEA/AIE 2012: 774-783 - [c132]Xuan Zhang, Ole-Christoffer Granmo, B. John Oommen:
Discretized Bayesian Pursuit - A New Scheme for Reinforcement Learning. IEA/AIE 2012: 784-793 - 2011
- [j127]Ole-Christoffer Granmo, B. John Oommen:
Learning automata-based solutions to the optimal web polling problem modelled as a nonlinear fractional knapsack problem. Eng. Appl. Artif. Intell. 24(7): 1238-1251 (2011) - [j126]César A. Astudillo, B. John Oommen:
Imposing tree-based topologies onto self organizing maps. Inf. Sci. 181(18): 3798-3815 (2011) - [j125]Justin Zhan, B. John Oommen, Johanna Crisostomo:
Anomaly Detection in Dynamic Systems Using Weak Estimators. ACM Trans. Internet Techn. 11(1): 3:1-3:16 (2011) - [j124]Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen, Martin Gerdes, Frank Reichert:
A User-Centric Approach for Personalized Service Provisioning in Pervasive Environments. Wirel. Pers. Commun. 61(3): 543-566 (2011) - [c131]Colin Bellinger, B. John Oommen:
A New Frontier in Novelty Detection: Pattern Recognition of Stochastically Episodic Events. ACIIDS (1) 2011: 435-444 - [c130]César A. Astudillo, B. John Oommen:
Semi-Supervised Classification Using Tree-Based Self-Organizing Maps. Australasian Conference on Artificial Intelligence 2011: 21-30 - [c129]Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen:
Tracking the Preferences of Users Using Weak Estimators. Australasian Conference on Artificial Intelligence 2011: 799-808 - [c128]Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen:
On the analysis of a new Markov chain which has applications in AI and machine learning. CCECE 2011: 1553-1558 - [c127]Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen:
A New Tool for the Modeling of AI and Machine Learning Applications: Random Walk-Jump Processes. HAIS (1) 2011: 11-21 - [c126]Petro Verkhogliad, B. John Oommen:
Using Artificial Intelligence Techniques for Strategy Generation in the Commons Game. HAIS (1) 2011: 43-50 - [c125]Xuan Zhang, Ole-Christoffer Granmo, B. John Oommen:
The Bayesian Pursuit Algorithm: A New Family of Estimator Learning Automata. IEA/AIE (2) 2011: 522-531 - [c124]Xuan Zhang, B. John Oommen, Ole-Christoffer Granmo:
Generalized Bayesian Pursuit: A Novel Scheme for Multi-Armed Bernoulli Bandit Problems. EANN/AIAI (2) 2011: 122-131 - [c123]Justin Zhan, B. John Oommen, Johanna Crisostomo:
Anomaly detection using weak estimators. ISI 2011: 143-149 - [c122]B. John Oommen:
On Merging the Fields of Neural Networks and Adaptive Data Structures to Yield New Pattern Recognition Methodologies. PReMI 2011: 13-16 - 2010
- [j123]B. John Oommen, M. Khaled Hashem:
Modeling a Domain in a Tutorial-like System Using Learning Automata. Acta Cybern. 19(3): 635-653 (2010) - [j122]Ole-Christoffer Granmo, B. John Oommen:
Optimal sampling for estimation with constrained resources using a learning automaton-based solution for the nonlinear fractional knapsack problem. Appl. Intell. 33(1): 3-20 (2010) - [j121]Luis Rueda, B. John Oommen, Claudio Henríquez:
Multi-class pairwise linear dimensionality reduction using heteroscedastic schemes. Pattern Recognit. 43(7): 2456-2465 (2010) - [j120]Eser Aygün, B. John Oommen, Zehra Cataltepe:
Peptide classification using optimal and information theoretic syntactic modeling. Pattern Recognit. 43(11): 3891-3899 (2010) - [j119]Ebaa Fayyoumi, B. John Oommen:
A survey on statistical disclosure control and micro-aggregation techniques for secure statistical databases. Softw. Pract. Exp. 40(12): 1161-1188 (2010) - [j118]Ole-Christoffer Granmo, B. John Oommen:
Solving Stochastic Nonlinear Resource Allocation Problems Using a Hierarchy of Twofold Resource Allocation Automata. IEEE Trans. Computers 59(4): 545-560 (2010) - [j117]B. John Oommen, Sudip Misra:
Fault-tolerant routing in adversarial mobile ad hoc networks: an efficient route estimation scheme for non-stationary environments. Telecommun. Syst. 44(1-2): 159-169 (2010) - [j116]Geir Horn, B. John Oommen:
Solving Multiconstraint Assignment Problems Using Learning Automata. IEEE Trans. Syst. Man Cybern. Part B 40(1): 6-18 (2010) - [j115]B. John Oommen, M. Khaled Hashem:
Modeling a Student-Classroom Interaction in a Tutorial-Like System Using Learning Automata. IEEE Trans. Syst. Man Cybern. Part B 40(1): 29-42 (2010) - [j114]Sudip Misra, B. John Oommen, Sreekeerthy Yanamandra, Mohammad S. Obaidat:
Random Early Detection for Congestion Avoidance in Wired Networks: A Discretized Pursuit Learning-Automata-Like Solution. IEEE Trans. Syst. Man Cybern. Part B 40(1): 66-76 (2010) - [j113]B. John Oommen, Ebaa Fayyoumi:
On Utilizing Association and Interaction Concepts for Enhancing Microaggregation in Secure Statistical Databases. IEEE Trans. Syst. Man Cybern. Part B 40(1): 198-207 (2010) - [j112]B. John Oommen, M. Khaled Hashem:
Modeling a Student's Behavior in a Tutorial-Like System Using Learning Automata. IEEE Trans. Syst. Man Cybern. Part B 40(2): 481-492 (2010) - [c121]Petro Verkhogliad, B. John Oommen:
Potential AI Strategies to Solve the Commons Game: A Position Paper. Canadian AI 2010: 352-356 - [c120]Sang-Woon Kim, B. John Oommen:
On Optimizing Locally Linear Nearest Neighbour Reconstructions Using Prototype Reduction Schemes. Australasian Conference on Artificial Intelligence 2010: 153-163 - [c119]Thomas Norheim, Terje Brådland, Ole-Christoffer Granmo, B. John Oommen:
A Generic Solution to Multi-Armed Bernoulli Bandit Problems based on Random Sampling from Sibling Conjugate Priors. ICAART (1) 2010: 36-44 - [c118]Dragos Calitoiu, B. John Oommen:
On using Simulation and Stochastic Learning for Pattern Recognition When Training Data is Unavailable - The Case of Disease Outbreak. ICAART (1) 2010: 45-52 - [c117]Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen:
A Learning Automata Based Solution to Service Selection in Stochastic Environments. IEA/AIE (3) 2010: 209-218 - [c116]Anis Yazidi, Ole-Christoffer Granmo, Min Lin, Xifeng Wen, B. John Oommen, Martin Gerdes, Frank Reichert:
Learning Automaton Based On-Line Discovery and Tracking of Spatio-temporal Event Patterns. PRICAI 2010: 327-338 - [c115]Colin Bellinger, B. John Oommen:
On simulating episodic events against a background of noise-like non-episodic events. SummerSim 2010: 452-460 - [c114]Aleksander Stensby, B. John Oommen, Ole-Christoffer Granmo:
Language Detection and Tracking in Multilingual Documents Using Weak Estimators. SSPR/SPR 2010: 600-609
2000 – 2009
- 2009
- [j111]Sudip Misra, B. John Oommen:
An efficient pursuit automata approach for estimating stable all-pairs shortest paths in stochastic network environments. Int. J. Commun. Syst. 22(4): 441-468 (2009) - [j110]Qingxin Zhu, B. John Oommen:
Estimation of distributions involving unobservable events: the case of optimal search with unknown Target Distributions. Pattern Anal. Appl. 12(1): 37-53 (2009) - [j109]Sang-Woon Kim, B. John Oommen:
On using prototype reduction schemes to enhance the computation of volume-based inter-class overlap measures. Pattern Recognit. 42(11): 2695-2704 (2009) - [j108]Ke Qin, B. John Oommen:
Adachi-Like Chaotic Neural Networks Requiring Linear-Time Computations by Enforcing a Tree-Shaped Topology. IEEE Trans. Neural Networks 20(11): 1797-1809 (2009) - [j107]Ebaa Fayyoumi, B. John Oommen:
Achieving Microaggregation for Secure Statistical Databases Using Fixed-Structure Partitioning-Based Learning Automata. IEEE Trans. Syst. Man Cybern. Part B 39(5): 1192-1205 (2009) - [c113]Sudip Misra, B. John Oommen, Sreekeerthy Yanamandra, Mohammad S. Obaidat:
An adaptive learning-like solution of random early detection for congestion avoidance in computer networks. AICCSA 2009: 485-491 - [c112]César A. Astudillo, B. John Oommen:
On Using Adaptive Binary Search Trees to Enhance Self Organizing Maps. Australasian Conference on Artificial Intelligence 2009: 199-209 - [c111]Justin Zhan, B. John Oommen, Johanna Crisostomo:
Anomaly Detection in Dynamic Social Systems Using Weak Estimators. CSE (4) 2009: 18-25 - [c110]Ole-Christoffer Granmo, B. John Oommen:
A Hierarchy of Twofold Resource Allocation Automata Supporting Optimal Sampling. IEA/AIE 2009: 523-534 - [c109]B. John Oommen, M. Khaled Hashem:
Learning Automata Based Intelligent Tutorial-like System. KES (1) 2009: 360-373 - [c108]Eser Aygün, B. John Oommen, Zehra Cataltepe:
On Utilizing Optimal and Information Theoretic Syntactic Modeling for Peptide Classification. PRIB 2009: 24-35 - [p4]B. John Oommen, Sudip Misra:
Cybernetics and Learning Automata. Handbook of Automation 2009: 221-235 - [p3]César A. Astudillo, B. John Oommen:
A Novel Self Organizing Map Which Utilizes Imposed Tree-Based Topologies. Computer Recognition Systems 3 2009: 169-178 - [p2]Ole-Christoffer Granmo, B. John Oommen:
Learning Automata-Based Solutions to Stochastic Nonlinear Resource Allocation Problems. Intelligent Systems for Knowledge Management 2009: 1-30 - 2008
- [j106]Dragos Calitoiu, B. John Oommen, Doron Nussbaum:
Spikes annihilation in the Hodgkin-Huxley neuron. Biol. Cybern. 98(3): 239-257 (2008) - [j105]Luis Rueda, B. John Oommen:
An efficient compression scheme for data communication which uses a new family of self-organizing binary search trees. Int. J. Commun. Syst. 21(10): 1091-1120 (2008) - [j104]B. John Oommen, Sang-Woon Kim, M. T. Samuel, Ole-Christoffer Granmo:
A Solution to the Stochastic Point Location Problem in Metalevel Nonstationary Environments. IEEE Trans. Syst. Man Cybern. Part B 38(2): 466-476 (2008) - [j103]Sang-Woon Kim, B. John Oommen:
On Using Prototype Reduction Schemes to Optimize Kernel-Based Fisher Discriminant Analysis. IEEE Trans. Syst. Man Cybern. Part B 38(2): 564-570 (2008) - [c107]B. John Oommen, Ebaa Fayyoumi:
Enhancing Micro-Aggregation Technique by Utilizing Dependence-Based Information in Secure Statistical Databases. ACISP 2008: 404-418 - [c106]Sang-Woon Kim, B. John Oommen:
A Fast Computation of Inter-class Overlap Measures Using Prototype Reduction Schemes. Canadian AI 2008: 173-184 - [c105]B. John Oommen, Ebaa Fayyoumi:
An AI-Based Causal Strategy for Securing Statistical Databases Using Micro-aggregation. Australasian Conference on Artificial Intelligence 2008: 423-434 - [c104]Luis Rueda, Claudio Henríquez, B. John Oommen:
Chernoff-Based Multi-class Pairwise Linear Dimensionality Reduction. CIARP 2008: 301-308 - [c103]Ole-Christoffer Granmo, B. John Oommen:
A Hierarchy of Twofold Resource Allocation Automata Supporting Optimal Web Polling. IEA/AIE 2008: 347-358 - [c102]B. John Oommen, Dragos Calitoiu:
Modeling and simulating a disease outbreak by learning a contagion parameter-based model. SpringSim 2008: 547-555 - [c101]Dragos Calitoiu, Doron Nussbaum, B. John Oommen:
Large scale modeling of the piriform cortex for analyzing antiepileptic effects. SpringSim 2008: 599-608 - [c100]Ke Qin, B. John Oommen:
Chaotic Pattern Recognition: The Spectrum of Properties of the Adachi Neural Network. SSPR/SPR 2008: 540-550 - 2007
- [j102]Abdelrahman Amer, B. John Oommen:
A Novel Framework for Self-Organizing Lists in Environments with Locality of Reference: Lists-on-Lists. Comput. J. 50(2): 186-196 (2007) - [j101]B. John Oommen, Ghada Hany Badr:
Breadth-first search strategies for trie-based syntactic pattern recognition. Pattern Anal. Appl. 10(1): 1-13 (2007) - [j100]Dragos Calitoiu, B. John Oommen, Doron Nussbaum:
Periodicity and stability issues of a chaotic pattern recognition neural network. Pattern Anal. Appl. 10(3): 175-188 (2007) - [j99]Sang-Woon Kim, B. John Oommen:
On using prototype reduction schemes to optimize dissimilarity-based classification. Pattern Recognit. 40(11): 2946-2957 (2007) - [j98]B. John Oommen, Sang-Woon Kim, Geir Horn:
On the estimation of independent binomial random variables using occurrence and sequential information. Pattern Recognit. 40(11): 3263-3276 (2007) - [j97]B. John Oommen, Sudip Misra, Ole-Christoffer Granmo:
Routing Bandwidth-Guaranteed Paths in MPLS Traffic Engineering: A Multiple Race Track Learning Approach. IEEE Trans. Computers 56(7): 959-976 (2007) - [j96]Pradeep K. Atrey, Mohan S. Kankanhalli, B. John Oommen:
Goal-oriented optimal subset selection of correlated multimedia streams. ACM Trans. Multim. Comput. Commun. Appl. 3(1): 2 (2007) - [j95]Ole-Christoffer Granmo, B. John Oommen, Svein Arild Myrer, Morten Goodwin Olsen:
Learning Automata-Based Solutions to the Nonlinear Fractional Knapsack Problem With Applications to Optimal Resource Allocation. IEEE Trans. Syst. Man Cybern. Part B 37(1): 166-175 (2007) - [j94]Dragos Calitoiu, B. John Oommen, Doron Nussbaum:
Desynchronizing a Chaotic Pattern Recognition Neural Network to Model Inaccurate Perception. IEEE Trans. Syst. Man Cybern. Part B 37(3): 692-704 (2007) - [c99]Dragos Calitoiu, B. John Oommen, Doron Nussbaum:
Analytic Results on the Hodgkin-Huxley Neural Network: Spikes Annihilation. Canadian AI 2007: 320-331 - [c98]Sudip Misra, B. John Oommen:
The Pursuit Automaton Approach for Estimating All-Pairs Shortest Paths in Dynamically Changing Networks. AINA Workshops (1) 2007: 124-129 - [c97]Ole-Christoffer Granmo, B. John Oommen:
On Using a Hierarchy of Twofold Resource Allocation Automata to Solve Stochastic Nonlinear Resource Allocation Problems. Australian Conference on Artificial Intelligence 2007: 36-47 - [c96]Dragos Calitoiu, B. John Oommen, Doron Nussbaum:
Some Analysis on the Network of Bursting Neurons: Quantifying Behavioral Synchronization. Australian Conference on Artificial Intelligence 2007: 110-119 - [c95]Dragos Calitoiu, B. John Oommen, Doron Nussbaum:
Numerical Results on the Hodgkin-Huxley Neural Network: Spikes Annihilation. BVAI 2007: 378-387 - [c94]B. John Oommen, Ole-Christoffer Granmo, Asle Pedersen:
Using Stochastic AI Techniques to Achieve Unbounded Resolution in Finite Player Goore Games and its Applications. CIG 2007: 161-167 - [c93]B. John Oommen, Ebaa Fayyoumi:
A Novel Method for Micro-Aggregation in Secure Statistical Databases Using Association and Interaction. ICICS 2007: 126-140 - [c92]M. Khaled Hashem, B. John Oommen:
On Using Learning Automata to Model a Student's Behavior in a Tutorial-like System. IEA/AIE 2007: 813-822 - [c91]B. John Oommen, Sang-Woon Kim, Mathew Samuel, Ole-Christoffer Granmo:
Stochastic Point Location in Non-stationary Environments and Its Applications. IEA/AIE 2007: 845-854 - [c90]M. Khaled Hashem, B. John Oommen:
Using learning automata to model the behavior of a teacher in a tutorial-like system. SMC 2007: 76-82 - [c89]M. Khaled Hashem, B. John Oommen:
Using learning automata to model a student-classroom interaction in a tutorial-like system. SMC 2007: 1177-1182 - 2006
- [j93]Luis Rueda, B. John Oommen:
A fast and efficient nearly-optimal adaptive Fano coding scheme. Inf. Sci. 176(12): 1656-1683 (2006) - [j92]Ghada Badr, B. John Oommen:
A novel look-ahead optimization strategy for trie-based approximate string matching. Pattern Anal. Appl. 9(2-3): 177-187 (2006) - [j91]Sang-Woon Kim, B. John Oommen:
Prototype reduction schemes applicable for non-stationary data sets. Pattern Recognit. 39(2): 209-222 (2006) - [j90]B. John Oommen, Luis Rueda:
Stochastic learning-based weak estimation of multinomial random variables and its applications to pattern recognition in non-stationary environments. Pattern Recognit. 39(3): 328-341 (2006) - [j89]Sudip Misra, B. John Oommen:
An Efficient Dynamic Algorithm for Maintaining All-Pairs Shortest Paths in Stochastic Networks. IEEE Trans. Computers 55(6): 686-702 (2006) - [j88]Ghada Badr, B. John Oommen:
On optimizing syntactic pattern recognition using tries and AI-based heuristic-search strategies. IEEE Trans. Syst. Man Cybern. Part B 36(3): 611-622 (2006) - [j87]B. John Oommen, Govindachari Raghunath, Benjamin Kuipers:
Parameter learning from stochastic teachers and stochastic compulsive liars. IEEE Trans. Syst. Man Cybern. Part B 36(4): 820-834 (2006) - [j86]Luis Rueda, B. John Oommen:
Stochastic Automata-Based Estimators for Adaptively Compressing Files With Nonstationary Distributions. IEEE Trans. Syst. Man Cybern. Part B 36(5): 1196-1200 (2006) - [c88]Xavier Hilaire, B. John Oommen:
The averaged mappings problem: statement, applications, and approximate solution. ACM Southeast Regional Conference 2006: 24-29 - [c87]Ebaa Fayyoumi, B. John Oommen:
On Optimizing the k-Ward Micro-aggregation Technique for Secure Statistical Databases. ACISP 2006: 324-335 - [c86]Denis V. Batalov, B. John Oommen:
Turning Lights Out with DQ-Learning. Artificial Intelligence and Applications 2006: 451-456 - [c85]B. John Oommen, Ole-Christoffer Granmo, Asle Pedersen:
Empirical Verification of a Strategy for Unbounded Resolution in Finite Player Goore Games. Australian Conference on Artificial Intelligence 2006: 1252-1258 - [c84]B. John Oommen, Jing Chen:
On Utilizing Attribute Cardinality Maps to Enhance Query Optimization in the Oracle Database System. ICEIS (1) 2006: 23-35 - [c83]B. John Oommen, Jing Chen:
On Enhancing Query Optimization in the Oracle Database System by Utilizing Attribute Cardinality Maps. ICEIS (Selected Papers) 2006: 38-71 - [c82]Sang-Woon Kim, B. John Oommen:
On Optimizing Dissimilarity-Based Classification Using Prototype Reduction Schemes. ICIAR (1) 2006: 15-28 - [c81]Ole-Christoffer Granmo, B. John Oommen:
On Allocating Limited Sampling Resources Using a Learning Automata-based Solution to the Fractional Knapsack Problem. Intelligent Information Systems 2006: 263-272 - [c80]B. John Oommen, Sudip Misra, Ole-Christoffer Granmo:
A Stochastic Random-Races Algorithm for Routing in MPLS Traffic Engineering. INFOCOM 2006 - [c79]Ebaa Fayyoumi, B. John Oommen:
A Fixed Structure Learning Automaton Micro-aggregation Technique for Secure Statistical Databases. Privacy in Statistical Databases 2006: 114-128 - [c78]Geir Horn, B. John Oommen:
An Application of a Game of Discrete Generalised Pursuit Automata to Solve a Multi-Constraint Partitioning Problem. SMC 2006: 1042-1049 - [c77]B. John Oommen, Sang-Woon Kim, Geir Horn:
On the Theory and Applications of Sequence Based Estimation of Independent Binomial Random Variables. SSPR/SPR 2006: 8-21 - [c76]Sang-Woon Kim, B. John Oommen:
On Optimizing Kernel-Based Fisher Discriminant Analysis Using Prototype Reduction Schemes. SSPR/SPR 2006: 826-834 - [c75]Abdelrahman Amer, B. John Oommen:
Lists on Lists: A Framework for Self-organizing Lists in Environments with Locality of Reference. WEA 2006: 109-120 - [c74]B. John Oommen, Sudip Misra:
A Fault-Tolerant Routing Algorithm for Mobile Ad Hoc Networks Using a Stochastic Learning-Based Weak Estimation Procedure. WiMob 2006: 31-37 - 2005
- [j85]B. John Oommen, Luís G. Rueda:
A formal analysis of why heuristic functions work. Artif. Intell. 164(1-2): 1-22 (2005) - [j84]Ghada Hany Badr, B. John Oommen:
Self-Adjusting of Ternary Search Tries Using Conditional Rotations and Randomized Heuristics. Comput. J. 48(2): 200-219 (2005) - [j83]Sang-Woon Kim, B. John Oommen:
On Utilizing Search Methods to Select Subspace Dimensions for Kernel-Based Nonlinear Subspace Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 27(1): 136-141 (2005) - [j82]Sang-Woon Kim, B. John Oommen:
On Using Prototype Reduction Schemes and Classifier Fusion Strategies to Optimize Kernel-Based Nonlinear Subspace Methods. IEEE Trans. Pattern Anal. Mach. Intell. 27(3): 455-460 (2005) - [j81]Sudip Misra, B. John Oommen:
Dynamic algorithms for the shortest path routing problem: learning automata-based solutions. IEEE Trans. Syst. Man Cybern. Part B 35(6): 1179-1192 (2005) - [c73]Ghada Badr, B. John Oommen:
On using conditional rotations and randomized heuristics for self-organizing ternary search tries. ACM Southeast Regional Conference (1) 2005: 109-115 - [c72]Sang-Woon Kim, B. John Oommen:
Time-Varying Prototype Reduction Schemes Applicable for Non-stationary Data Sets. Australian Conference on Artificial Intelligence 2005: 614-623 - [c71]Dragos Calitoiu, B. John Oommen, Doron Nussbaum:
Neural Network-Based Chaotic Pattern Recognition - Part 2: Stability and Algorithmic Issues. CORES 2005: 3-16 - [c70]Ghada Badr, B. John Oommen:
A Look-Ahead Branch and Bound Pruning Scheme for Trie-Based Approximate String Matching. CORES 2005: 87-94 - [c69]Ghada Badr, B. John Oommen:
Enhancing Trie-Based Syntactic Pattern Recognition Using AI Heuristic Search Strategies. ICAPR (1) 2005: 1-17 - [c68]Geir Horn, B. John Oommen:
A Fixed-Structure Learning Automaton Solution to the Stochastic Static Mapping Problem. IPDPS 2005 - [c67]Sudip Misra, B. John Oommen:
New Algorithms for Maintaining All-Pairs Shortest Paths. ISCC 2005: 116-121 - [c66]Luís G. Rueda, B. John Oommen:
Efficient Adaptive Data Compression Using Fano Binary Search Trees. ISCIS 2005: 768-779 - [c65]B. John Oommen, Luís G. Rueda:
On Utilizing Stochastic Learning Weak Estimators for Training and Classification of Patterns with Non-stationary Distributions. KI 2005: 107-120 - [c64]Dragos Calitoiu, B. John Oommen, Dorin Nusbaumm:
Modeling Inaccurate Perception: Desynchronization Issues of a Chaotic Pattern Recognition Neural Network. SCIA 2005: 821-830 - 2004
- [j80]Sudip Misra, B. John Oommen:
GPSPA: a new adaptive algorithm for maintaining shortest path routing trees in stochastic networks. Int. J. Commun. Syst. 17(10): 963-984 (2004) - [j79]Luís G. Rueda, B. John Oommen:
A nearly-optimal Fano-based coding algorithm. Inf. Process. Manag. 40(2): 257-268 (2004) - [j78]M. Ouerd, B. John Oommen, Stan Matwin:
A formal approach to using data distributions for building causal polytree structures. Inf. Sci. 168(1-4): 111-132 (2004) - [j77]Sang-Woon Kim, B. John Oommen:
On using prototype reduction schemes to optimize kernel-based nonlinear subspace methods. Pattern Recognit. 37(2): 227-239 (2004) - [j76]Sang-Woon Kim, B. John Oommen:
Enhancing prototype reduction schemes with recursion: a method applicable for "large" data sets. IEEE Trans. Syst. Man Cybern. Part B 34(3): 1384-1397 (2004) - [c63]B. John Oommen, Jack R. Zgierski, Doron Nussbaum:
Deterministic Majority filters applied to stochastic sorting. ACM Southeast Regional Conference 2004: 228-233 - [c62]Sudip Misra, B. John Oommen:
Adaptive Algorithms for Routing and Traffic Engineering in Stochastic Networks. AAAI 2004: 993-994 - [c61]Luís G. Rueda, B. John Oommen:
On Families of New Adaptive Compression Algorithms Suitable for Time-Varying Source Data. ADVIS 2004: 234-244 - [c60]Sang-Woon Kim, B. John Oommen:
Selecting Subspace Dimensions for Kernel-Based Nonlinear Subspace Classifiers Using Intelligent Search Methods. Australian Conference on Artificial Intelligence 2004: 1115-1121 - [c59]Sudip Misra, B. John Oommen:
Stochastic Learning Automata-Based Dynamic Algorithms for the Single Source Shortest Path Problem. IEA/AIE 2004: 239-248 - [c58]Sudip Misra, B. John Oommen:
Generalized pursuit learning algorithms for shortest path routing tree computation. ISCC 2004: 891-896 - [c57]B. John Oommen, Jack R. Zgierski, Doron Nussbaum:
Stochastic Sorting Using Deterministic Consecutive and Leader Filters. MSV/AMCS 2004: 399-405 - [c56]B. John Oommen:
Recent Results on Learning from Stochastic Teachers and Compulsive Liars/Con-Men. PRIS 2004: 4 - [c55]Qun Wang, B. John Oommen:
On Designing Pattern Classifiers Using Artificially Created Bootstrap Samples. PRIS 2004: 159-168 - [c54]B. John Oommen, Ghada Badr:
Dictionary-Based Syntactic Pattern Recognition Using Tries. SSPR/SPR 2004: 251-259 - [c53]B. John Oommen, Luís G. Rueda:
A New Family of Weak Estimators for Training in Non-stationary Distributions. SSPR/SPR 2004: 644-652 - 2003
- [j75]Sang-Woon Kim, B. John Oommen:
A brief taxonomy and ranking of creative prototype reduction schemes. Pattern Anal. Appl. 6(3): 232-244 (2003) - [j74]Luís G. Rueda, B. John Oommen:
On optimal pairwise linear classifiers for normal distributions: the d-dimensional case. Pattern Recognit. 36(1): 13-23 (2003) - [j73]Sang-Woon Kim, B. John Oommen:
Enhancing prototype reduction schemes with LVQ3-type algorithms. Pattern Recognit. 36(5): 1083-1093 (2003) - [j72]Necati Aras, I. Kuban Altinel, B. John Oommen:
A Kohonen-like decomposition method for the Euclidean traveling salesman problem-KNIES_DECOMPOSE. IEEE Trans. Neural Networks 14(4): 869-890 (2003) - [j71]B. John Oommen, Murali Thiyagarajah:
Benchmarking attribute cardinality maps for database systems using the TPC-D specifications. IEEE Trans. Syst. Man Cybern. Part B 33(6): 913-924 (2003) - [c52]Ouerd Messaouda, B. John Oommen, Stan Matwin:
Enhancing Caching in Distributed Databases Using Intelligent Polytree Representations. AI 2003: 498-504 - [c51]B. John Oommen, Govindachari Raghunath, Benjamin Kuipers:
On How to Learn from a Stochastic Teacher or a Stochastic Compulsive Liar of Unknown Identity. Australian Conference on Artificial Intelligence 2003: 24-40 - [c50]Sang-Woon Kim, B. John Oommen:
On Using Prototype Reduction Schemes and Classifier Fusion Strategies to Optimize Kernel-Based Nonlinear Subspace Methods. Australian Conference on Artificial Intelligence 2003: 783-795 - [c49]B. John Oommen, Jing Chen:
A new histogram method for sparse attributes: the averaged rectangular attribute cardinality map. ISICT 2003: 119-125 - [c48]I. Kuban Altinel, Necati Aras, B. John Oommen:
A self-organizing method for map reconstruction. NNSP 2003: 677-687 - [c47]Qun Wang, B. John Oommen:
Classification Error-Rate Estimation Using New Pseudo-Sample Bootstrap Methods. PRIS 2003: 96-103 - 2002
- [j70]B. John Oommen, Luís G. Rueda:
The Efficiency of Histogram-like Techniques for Database Query Optimization. Comput. J. 45(5): 494-510 (2002) - [j69]Luís G. Rueda, B. John Oommen:
On Optimal Pairwise Linear Classifiers for Normal Distributions: The Two-Dimensional Case. IEEE Trans. Pattern Anal. Mach. Intell. 24(2): 274-280 (2002) - [j68]Gopal Racherla, Sridhar Radhakrishnan, B. John Oommen:
Enhanced layered segment trees: a pragmatic data structure for real-time processing of geometric objects. Pattern Recognit. 35(10): 2303-2309 (2002) - [j67]M. Agache, B. John Oommen:
Generalized pursuit learning schemes: new families of continuous and discretized learning automata. IEEE Trans. Syst. Man Cybern. Part B 32(6): 738-749 (2002) - [j66]B. John Oommen, T. Dale Roberts:
Discretized learning automata solutions to the capacity assignment problem for prioritized networks. IEEE Trans. Syst. Man Cybern. Part B 32(6): 821-831 (2002) - [c46]Sang-Woon Kim, B. John Oommen:
Optimizing Kernel-Based Nonlinear Subspace Methods Using Prototype Reduction Schemes. Australian Joint Conference on Artificial Intelligence 2002: 155-166 - [c45]B. John Oommen, Luís G. Rueda:
Using Pattern Recognition Techniques to Derive a Formal Analysis of Why Heuristics Functions Work. PRIS 2002: 45-58 - [c44]Sang-Woon Kim, B. John Oommen:
On Utilizing LVQ3-Type Algorithms to Enhance Prototype Reduction Schemes. PRIS 2002: 242-256 - [c43]Sang-Woon Kim, B. John Oommen:
Creative prototype reduction schemes: a taxonomy and ranking. SMC (2) 2002: 6 - [c42]Ouerd Messaouda, B. John Oommen, Stan Matwin:
Data generation for testing DAG-structured Bayesian networks. SMC 2002: 6 - [c41]Sang-Woon Kim, B. John Oommen:
Recursive Prototype Reduction Schemes Applicable for Large Data Sets. SSPR/SPR 2002: 528-537 - 2001
- [j65]B. John Oommen, R. K. S. Loke:
On the Pattern Recognition of Noisy Subsequence Trees. IEEE Trans. Pattern Anal. Mach. Intell. 23(9): 929-946 (2001) - [j64]B. John Oommen, M. Agache:
Continuous and discretized pursuit learning schemes: various algorithms and their comparison. IEEE Trans. Syst. Man Cybern. Part B 31(3): 277-287 (2001) - [c40]Luís G. Rueda, B. John Oommen:
Resolving Minsky's Paradox: The d-Dimensional Normal Distribution Case. Australian Joint Conference on Artificial Intelligence 2001: 25-36 - [c39]B. John Oommen, Luís G. Rueda:
Histogram Methods in Query Optimization: The Relation between Accuracy and Optimality. DASFAA 2001: 320-326 - [c38]Gopal Racherla, Sridhar Radhakrishnan, B. John Oommen:
A New Geometric Tool for Pattern Recognition - An Algorithm for Real Time Insertion of Layered Segment Trees. ICAPR 2001: 212-221 - [c37]B. John Oommen, Qun Wang:
Distance Bias Adjustment Bootstrap Estimation for Bhattacharyya Error Bound in Classifiers. PRIS 2001: 103-117 - [c36]Luís G. Rueda, B. John Oommen:
Enhanced static Fano coding. SMC 2001: 2163-2169 - 2000
- [j63]I. Kuban Altinel, Necati Aras, B. John Oommen:
Fast, efficient and accurate solutions to the Hamiltonian path problem using neural approaches. Comput. Oper. Res. 27(5): 461-494 (2000) - [j62]B. John Oommen, T. Dale Roberts:
Continuous Learning Automata Solutions to the Capacity Assignment Problem. IEEE Trans. Computers 49(6): 608-620 (2000) - [c35]Necati Aras, I. Kuban Altinel, B. John Oommen:
A Kohonen-like Decomposition Method for the Traveling Salesman Problem: KNIESDECOMPOSE. ECAI 2000: 261-265 - [c34]B. John Oommen, Luis Rueda:
An Empirical Comparison of Histogram-Like Techniques for Query Optimization. ICEIS 2000: 71-78 - [c33]B. John Oommen, Murali Thiyagarajah:
Query Result Size Estimation Using the Trapezoidal Attribute Cardinality Map. IDEAS 2000: 236-242 - [c32]M. Ouerd, B. John Oommen, Stan Matwin:
A Formalism for Building Causal Polytree Structures Using Data Distributions. ISMIS 2000: 629-637 - [c31]Luis Rueda, B. John Oommen:
The Foundational Theory of Optimal Bayesian Pairwise Linear Classifiers. SSPR/SPR 2000: 581-590
1990 – 1999
- 1999
- [j61]Necati Aras, B. John Oommen, I. Kuban Altinel:
The Kohonen network incorporating explicit statistics and its application to the travelling salesman problem. Neural Networks 12(9): 1273-1284 (1999) - [j60]B. John Oommen, R. K. S. Loke:
Designing syntactic pattern classifiers using vector quantization and parametric string editing. IEEE Trans. Syst. Man Cybern. Part B 29(6): 881-888 (1999) - [c30]Murali Thiyagarajah, B. John Oommen:
Prototype Validation of the Rectangular Attribute Cardinality Map for Query Optimization in Database Systems. BIS 1999: 250-262 - [c29]Murali Thiyagarajah, B. John Oommen:
On Benchmarking Attribute Cardinality Maps for Database Systems Using the TPC-D Specification. DEXA 1999: 292-301 - [c28]Murali Thiyagarajah, B. John Oommen:
Prototype Validation of the Trapezoidal Attribute Cardinality Map for Query Optimization in Database Systems. ICEIS 1999: 156-162 - [c27]B. John Oommen, Murali Thiyagarajah:
Query Result Size Estimation Using a Novel Histogram-like Technique: The Rectangular Attribute Cardinality Map. IDEAS 1999: 3-15 - [c26]B. John Oommen, T. Dale Roberts:
On Solving the Capacity Assignment Problem Using Continous Learning Automata. IEA/AIE 1999: 622-631 - 1998
- [j59]B. John Oommen, Rangasami L. Kashyap:
A formal theory for optimal and information theoretic syntactic pattern recognition. Pattern Recognit. 31(8): 1159-1177 (1998) - [j58]B. John Oommen, I. Kuban Altinel, Necati Aras:
Discrete vector quantization for arbitrary distance function estimation. IEEE Trans. Syst. Man Cybern. Part B 28(4): 496-510 (1998) - [j57]B. John Oommen, Govindachari Raghunath:
Automata learning and intelligent tertiary searching for stochastic point location. IEEE Trans. Syst. Man Cybern. Part B 28(6): 947-954 (1998) - [c25]B. John Oommen, T. Dale Roberts:
A Fast Efficient Solution to the Capacity Assignment Problem Using Discretized Learning Automata. IEA/AIE (Vol. 2) 1998: 56-65 - [c24]B. John Oommen, R. K. S. Loke:
The Noisy Subsequence Tree Recognition Problem. SSPR/SPR 1998: 169-180 - 1997
- [j56]I. Kuban Altinel, B. John Oommen, Necati Aras:
Vector Quantization for Arbitrary Distance Function Estimation. INFORMS J. Comput. 9(4): 439-451 (1997) - [j55]Thai B. Nguyen, B. John Oommen:
Moment-Preserving Piecewise Linear Approximations of Signals and Images. IEEE Trans. Pattern Anal. Mach. Intell. 19(1): 84-91 (1997) - [j54]B. John Oommen, Richard K. S. Loke:
Pattern recognition of strings with substitutions, insertions, deletions and generalized transpositions. Pattern Recognit. 30(5): 789-800 (1997) - [j53]B. John Oommen, Edward V. de St. Croix:
String taxonomy using learning automata. IEEE Trans. Syst. Man Cybern. Part B 27(2): 354-365 (1997) - [j52]B. John Oommen:
Stochastic searching on the line and its applications to parameter learning in nonlinear optimization. IEEE Trans. Syst. Man Cybern. Part B 27(4): 733-739 (1997) - [c23]B. John Oommen, I. Kuban Altmel, Necati Aras:
Arbitrary distance function estimation using discrete vector quantization. ICNN 1997: 1272-1277 - [c22]B. John Oommen, Juan Dong:
Generalized Swap-with-Parent Schemes for Self-Organizing Sequential Linear Lists. ISAAC 1997: 414-423 - [c21]Qingxin Zhu, B. John Oommen:
On the Optimal Search Problem: The Case when the Target Distribution is Unknown. SCCC 1997: 268-277 - 1996
- [j51]B. John Oommen, K. Zhang:
The Normalized String Editing Problem Revisited. IEEE Trans. Pattern Anal. Mach. Intell. 18(6): 669-672 (1996) - [j50]B. John Oommen, Edward V. de St. Croix:
Graph Partitioning Using Learning Automata. IEEE Trans. Computers 45(2): 195-208 (1996) - [j49]B. John Oommen, K. Zhang, William Lee:
Numerical Similarity and Dissimilarity Measures Between Two Trees. IEEE Trans. Computers 45(12): 1426-1434 (1996) - [c20]B. John Oommen, R. K. S. Loke:
Optimal and Information Theoretic Syntactic Pattern Recognition Involving Traditional and Transposition Errors. FSTTCS 1996: 224-237 - [c19]B. John Oommen, Richard K. S. Loke:
Probabilistic syntactic pattern recognition for traditional and generalized transposition errors. ICPR 1996: 685-689 - [c18]B. John Oommen, Rangasami L. Kashyap:
Optimal and Information Theoretic Syntactic Pattern Recognition for Traditional Errors. SSPR 1996: 11-20 - 1995
- [j48]B. John Oommen:
String Alignment with Substitution, Insertion, Deletion, Squashing and Expansion Operations. Inf. Sci. 83(1&2): 89-107 (1995) - [j47]S. T. Sum, B. John Oommen:
Mixture decomposition for distributions from the exponential family using a generalized method of moments. IEEE Trans. Syst. Man Cybern. 25(7): 1139-1149 (1995) - [j46]B. John Oommen, Hassan Masum:
Switching models for nonstationary random environments. IEEE Trans. Syst. Man Cybern. 25(9): 1334-1339 (1995) - [c17]B. John Oommen, I. Kuban Altinel, Necati Aras:
Arbitrary distance function estimation using vector quantization. ICNN 1995: 3062-3067 - [c16]B. John Oommen, R. K. S. Loke:
Noisy Subsequence Recognition Using Constrained String Editing Involving Substitutions, Insertions, Deletions and Generalized Transpositions. ICSC 1995: 116-123 - [c15]B. John Oommen, Edward V. de St. Croix:
On Using Learning Automata for Fast Graph Partitioning. LATIN 1995: 449-460 - 1994
- [j45]B. John Oommen, David T. H. Ng:
A New Technique for Enhancing Linked-List Data Retrieval: Reorganize Data Using Artificially synthesized Queries. Comput. J. 37(7): 598-609 (1994) - [j44]B. John Oommen, William Lee:
Constrained Tree Editing. Inf. Sci. 77(3-4): 253-273 (1994) - [j43]Jack R. Zgierski, B. John Oommen:
SEATER: An Object-Oriented Simulation Environment Using Learning Automata for Telephone Traffic Routing. IEEE Trans. Syst. Man Cybern. Syst. 24(2): 349-356 (1994) - 1993
- [j42]B. John Oommen:
Transforming Ill-Conditioned Constrained Problems using Projections. Comput. J. 36(3): 282-285 (1993) - [j41]B. John Oommen, Chris Fothergill:
Fast Learning Automaton-Based Image Examination and Retrieval. Comput. J. 36(6): 542-553 (1993) - [j40]Radhakrishna S. Valiveti, B. John Oommen:
Self-Organizing Doubly-Linked Lists. J. Algorithms 14(1): 88-114 (1993) - [j39]B. John Oommen, Jack R. Zgierski:
Breaking Substitution Cyphers Using Stochastic Automata. IEEE Trans. Pattern Anal. Mach. Intell. 15(2): 185-192 (1993) - [j38]Radhakrishna S. Valiveti, B. John Oommen:
Determining stochastic dependence for normally distributed vectors using the chi-squared metric. Pattern Recognit. 26(6): 975-987 (1993) - [j37]B. John Oommen, David T. H. Ng:
An Optimal Absorbing List Organization Strategy with Constant Memory Requirements. Theor. Comput. Sci. 119(2): 355-361 (1993) - [j36]Robert P. Cheetham, B. John Oommen, David T. H. Ng:
Adaptive Structuring of Binary Search Trees Using Conditional Rotations. IEEE Trans. Knowl. Data Eng. 5(4): 695-704 (1993) - [j35]David T. H. Ng, B. John Oommen, E. R. Hansen:
Adaptive learning mechanisms for ordering actions using random races. IEEE Trans. Syst. Man Cybern. 23(5): 1450-1465 (1993) - 1992
- [j34]David T. H. Ng, B. John Oommen:
A Short Note on Doubly-Linked List Reorganizing Heuristics. Comput. J. 35(5): 533-535 (1992) - [j33]B. John Oommen, Irwin Reichstein:
On the problem of multiple mobile robots cluttering a workspace. Inf. Sci. 63(1-2): 55-85 (1992) - [j32]Radhakrishna S. Valiveti, B. John Oommen:
On using the chi-squared metric for determining stochastic dependence. Pattern Recognit. 25(11): 1389-1400 (1992) - [j31]J. Kevin Lanctôt, B. John Oommen:
Discretized estimator learning automata. IEEE Trans. Syst. Man Cybern. 22(6): 1473-1483 (1992) - [p1]B. John Oommen, David T. H. Ng:
Enhancing Data Retrieval using Artificially synthesized Queries. Computer Science and Operations Research 1992: 513-532 - 1991
- [j30]B. John Oommen, Daniel C. Y. Ma:
Stochastic Automata Solutions to the Object Partitioning Problem. Comput. J. 34(Additional-Papers): A105-A120 (1991) - [j29]B. John Oommen, Nicte Andrade, S. Sitharama Iyengar:
Trajectory Planning of Robot Manipulators in Noisy Work Spaces Using Stochastic Automata. Int. J. Robotics Res. 10(2): 135-148 (1991) - [j28]Radhakrishna S. Valiveti, B. John Oommen:
Recognizing Sources of Random Strings. IEEE Trans. Pattern Anal. Mach. Intell. 13(4): 386-394 (1991) - [j27]B. John Oommen, Radhakrishna S. Valiveti, Jack R. Zgierski:
An adaptive learning solution to the keyboard optimization problem. IEEE Trans. Syst. Man Cybern. 21(6): 1608-1618 (1991) - [c14]Radhakrishna S. Valiveti, B. John Oommen, Jack R. Zgierski:
Adaptive Linear List Reorganization for a System Processing Set Queries. FCT 1991: 405-414 - 1990
- [j26]B. John Oommen, David T. H. Ng:
On Generating Random Permutations with Arbitrary Distributions. Comput. J. 33(4): 368-374 (1990) - [j25]B. John Oommen, E. R. Hansen, J. Ian Munro:
Deterministic Optimal and Expedient Move-to-Rear List Organizing Strategies. Theor. Comput. Sci. 74(2): 183-197 (1990) - [j24]B. John Oommen, J. Kevin Lanctôt:
Discretized pursuit learning automata. IEEE Trans. Syst. Man Cybern. 20(4): 931-938 (1990) - [j23]Jens Peter Reus Christensen, B. John Oommen:
Epsilon-optimal stubborn learning mechanisms. IEEE Trans. Syst. Man Cybern. 20(5): 1209-1216 (1990) - [c13]B. John Oommen, Radhakrishna S. Valiveti, Jack R. Zgierski:
A Fast Learning Automaton Solution to the Keyboard Optimization Problem. IEA/AIE (Vol. 2) 1990: 981-990
1980 – 1989
- 1989
- [c12]B. John Oommen, David T. H. Ng:
On Generating Random Permutations with Arbitrary Distributions. ACM Conference on Computer Science 1989: 27-32 - [c11]David T. H. Ng, B. John Oommen:
Generalizing Singly-Linked List Reorganizing Heuristics for Doubly-Linked Lists. MFCS 1989: 380-389 - [c10]B. John Oommen, David T. H. Ng:
Optimal Constant Space Move-to-Rear List Organization. Optimal Algorithms 1989: 115-125 - [c9]B. John Oommen, J. Kevin Lanctôt:
Epsilon-optimal discretized pursuit learning automata. SMC 1989: 6-12 - [c8]Jens Peter Reus Christensen, B. John Oommen:
On using distribution theory to prove the epsilon-optimality of stubborn learning mechanisms. SMC 1989: 286-291 - 1988
- [j22]B. John Oommen:
Correction to "Recognition of Noisy Subsequences Using Constrained Edit Distances". IEEE Trans. Pattern Anal. Mach. Intell. 10(6): 983-984 (1988) - [j21]B. John Oommen, Daniel C. Y. Ma:
Deterministic Learning Automata Solutions to the Equipartitioning Problem. IEEE Trans. Computers 37(1): 2-13 (1988) - [j20]Nageswara S. V. Rao, S. Sitharama Iyengar, B. John Oommen, Rangasami L. Kashyap:
On terrain acquisition by a point robot amidst polyhedral obstacles. IEEE J. Robotics Autom. 4(4): 450-455 (1988) - [j19]B. John Oommen, Jens Peter Reus Christensen:
ϵ-optimal discretized linear reward-penalty learning automata. IEEE Trans. Syst. Man Cybern. 18(3): 451-458 (1988) - [c7]Robert P. Cheetham, B. John Oommen, David T. H. Ng:
On Using Conditional Rotation Operations to Adaptively Structure Binary Search Trees. ICDT 1988: 161-175 - 1987
- [j18]B. John Oommen:
An Efficient Geometric Solution to the Minimum Spanning Circle Problem. Oper. Res. 35(1): 80-86 (1987) - [j17]B. John Oommen:
Recognition of Noisy Subsequences Using Constrained Edit Distances. IEEE Trans. Pattern Anal. Mach. Intell. 9(5): 676-685 (1987) - [j16]B. John Oommen, Irwin Reichstein:
On the problem of translating an elliptic object through a workspace of elliptic obstacles. Robotica 5(3): 187-196 (1987) - [j15]B. John Oommen, E. R. Hansen:
List Organizing Strategies Using Stochastic Move-to-Front and Stochastic Move-to-Rear Operations. SIAM J. Comput. 16(4): 705-716 (1987) - [j14]B. John Oommen, S. Sitharama Iyengar, Nageswara S. V. Rao, Rangasami L. Kashyap:
Robot navigation in unknown terrains using learned visibility graphs. Part I: The disjoint convex obstacle case. IEEE J. Robotics Autom. 3(6): 672-681 (1987) - [j13]B. John Oommen:
Ergodic Learning Automata Capable of Incorporating a Priori Information. IEEE Trans. Syst. Man Cybern. 17(4): 717-723 (1987) - [c6]B. John Oommen, Daniel C. Y. Ma:
Fast Object Partitioning Using Stochastic Learning Automata. SIGIR 1987: 111-122 - 1986
- [j12]B. John Oommen:
Constrained string editing. Inf. Sci. 40(3): 267-284 (1986) - [j11]B. John Oommen:
Absorbing and Ergodic Discretized Two-Action Learning Automata. IEEE Trans. Syst. Man Cybern. 16(2): 282-293 (1986) - [j10]B. John Oommen:
A Learning Automaton Solution to the Stochastic Minimum-Spanning Circle Problem. IEEE Trans. Syst. Man Cybern. 16(4): 598-603 (1986) - [c5]B. John Oommen, S. Sitharama Iyengar, Nageswara S. V. Rao, Rangasami L. Kashyap:
Robot Navigation in Unknown Terrains of Convex Polygonal Obstacles Using Learned Visibility Graphs. AAAI 1986: 1101-1106 - [c4]B. John Oommen, E. R. Hansen:
Expedient Stochastic Move-to-Front and optimal Move-to-Rear List Organizing Strategies. ICDT 1986: 349-364 - [c3]B. John Oommen, Irwin Reichstein:
On translating ellipses amidst elliptic obstacles. ICRA 1986: 1755-1760 - 1985
- [j9]B. John Oommen, M. A. L. Thathachar:
Multiaction learning automata possessing ergodicity of the mean. Inf. Sci. 35(3): 183-198 (1985) - [c2]B. John Oommen:
On the Futility of Arbitrarily Increasing Memory Capabilities of Stochastic Learning Automata. CAIA 1985: 308-312 - 1984
- [j8]Rangasami L. Kashyap, B. John Oommen:
Spelling correction using probabilistic methods. Pattern Recognit. Lett. 2(3): 147-154 (1984) - [j7]B. John Oommen, E. R. Hansen:
The asymptotic optimality of discretized linear reward-inaction learning automata. IEEE Trans. Syst. Man Cybern. 14(3): 542-545 (1984) - [c1]B. John Oommen:
Algorithms for String Editing which Permit Arbitrarily Complex Editing Constraints. MFCS 1984: 443-451 - 1983
- [j6]Rangasami L. Kashyap, B. John Oommen:
Scale Preserving Smoothing of Polygons. IEEE Trans. Pattern Anal. Mach. Intell. 5(6): 667-671 (1983) - [j5]Rangasami L. Kashyap, B. John Oommen:
The Noisy Substring Matching Problem. IEEE Trans. Software Eng. 9(3): 365-370 (1983) - [j4]M. A. L. Thathachar, B. John Oommen:
Learning automata processing ergodicity of the mean: The two-action case. IEEE Trans. Syst. Man Cybern. 13(6): 1143-1148 (1983) - 1982
- [j3]Rangasami L. Kashyap, B. John Oommen:
A Geometrical Approach to Polygonal Dissimilarity and Shape Matching. IEEE Trans. Pattern Anal. Mach. Intell. 4(6): 649-654 (1982) - 1981
- [j2]Rangasami L. Kashyap, B. John Oommen:
An effective algorithm for string correction using generalized edit distances--I. Description of the algorithm and its optimality. Inf. Sci. 23(2): 123-142 (1981) - [j1]Rangasami L. Kashyap, B. John Oommen:
An effective algorithm for string correction using generalized edit distance - II. Computational complexity of the algorithm and some applications. Inf. Sci. 23(3): 201-217 (1981)
Coauthor Index
aka: Luís G. Rueda
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:18 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint