default search action
Zhaoran Wang 0001
Person information
- affiliation: Northwestern University, Evanston, IL, USA
Other persons with the same name
- Zhaoran Wang
- Zhaoran Wang 0002 — Inner Mongolia University, Hohhot, China
- Zhaoran Wang 0003 — Tsinghua University, Beijing, China
- Zhaoran Wang 0004 — Shanghai University, School of Mechatronic Engineering and Automation, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j20]Xiao-Yang Liu, Ziyi Xia, Hongyang Yang, Jiechao Gao, Daochen Zha, Ming Zhu, Christina Dan Wang, Zhaoran Wang, Jian Guo:
Dynamic datasets and market environments for financial reinforcement learning. Mach. Learn. 113(5): 2795-2839 (2024) - [j19]Qi Cai, Zhuoran Yang, Jason D. Lee, Zhaoran Wang:
Neural Temporal Difference and Q Learning Provably Converge to Global Optima. Math. Oper. Res. 49(1): 619-651 (2024) - [j18]Zhihong Deng, Zuyue Fu, Lingxiao Wang, Zhuoran Yang, Chenjia Bai, Tianyi Zhou, Zhaoran Wang, Jing Jiang:
False Correlation Reduction for Offline Reinforcement Learning. IEEE Trans. Pattern Anal. Mach. Intell. 46(2): 1199-1211 (2024) - [j17]Chenjia Bai, Ting Xiao, Zhoufan Zhu, Lingxiao Wang, Fan Zhou, Animesh Garg, Bin He, Peng Liu, Zhaoran Wang:
Monotonic Quantile Network for Worst-Case Offline Reinforcement Learning. IEEE Trans. Neural Networks Learn. Syst. 35(7): 8954-8968 (2024) - [j16]Jiayang Li, Zhaoran Wang, Yu Marco Nie:
Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice. Transp. Sci. 58(5): 973-994 (2024) - [c129]Chau Pham, Boyi Liu, Yingxiang Yang, Zhengyu Chen, Tianyi Liu, Jianbo Yuan, Bryan A. Plummer, Zhaoran Wang, Hongxia Yang:
Let Models Speak Ciphers: Multiagent Debate through Embeddings. ICLR 2024 - [c128]Nuoya Xiong, Zhihan Liu, Zhaoran Wang, Zhuoran Yang:
Sample-Efficient Multi-Agent RL: An Optimization Perspective. ICLR 2024 - [c127]Feng Gao, Liangzhi Shi, Shenao Zhang, Zhaoran Wang, Yi Wu:
Adaptive-Gradient Policy Optimization: Enhancing Policy Learning in Non-Smooth Differentiable Simulations. ICML 2024 - [c126]Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, Zhaoran Wang:
Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents. ICML 2024 - [c125]Nuoya Xiong, Zhaoran Wang, Zhuoran Yang:
A General Framework for Sequential Decision-Making under Adaptivity Constraints. ICML 2024 - [c124]Sirui Zheng, Chenjia Bai, Zhuoran Yang, Zhaoran Wang:
How Does Goal Relabeling Improve Sample Efficiency? ICML 2024 - [i150]Hongyi Guo, Yuanshun Yao, Wei Shen, Jiaheng Wei, Xiaoying Zhang, Zhaoran Wang, Yang Liu:
Human-Instruction-Free LLM Self-Alignment with Limited Samples. CoRR abs/2401.06785 (2024) - [i149]Zihao Li, Boyi Liu, Zhuoran Yang, Zhaoran Wang, Mengdi Wang:
Double Duality: Variational Primal-Dual Policy Optimization for Constrained Reinforcement Learning. CoRR abs/2402.10810 (2024) - [i148]Shenao Zhang, Sirui Zheng, Shuqi Ke, Zhihan Liu, Wanxin Jin, Jianbo Yuan, Yingxiang Yang, Hongxia Yang, Zhaoran Wang:
How Can LLM Guide RL? A Value-Based Approach. CoRR abs/2402.16181 (2024) - [i147]Hongyi Guo, Zhihan Liu, Yufeng Zhang, Zhaoran Wang:
Can Large Language Models Play Games? A Case Study of A Self-Play Approach. CoRR abs/2403.05632 (2024) - [i146]Mengying Lin, Yaran Chen, Dongbin Zhao, Zhaoran Wang:
Advancing Object Goal Navigation Through LLM-enhanced Object Affinities Transfer. CoRR abs/2403.09971 (2024) - [i145]Yuchen Zhu, Yufeng Zhang, Zhaoran Wang, Zhuoran Yang, Xiaohong Chen:
A Mean-Field Analysis of Neural Gradient Descent-Ascent: Applications to Functional Conditional Moment Equations. CoRR abs/2404.12312 (2024) - [i144]Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose H. Blanchet, Zhaoran Wang:
Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer. CoRR abs/2405.16436 (2024) - [i143]Shenao Zhang, Donghan Yu, Hiteshi Sharma, Ziyi Yang, Shuohang Wang, Hany Hassan, Zhaoran Wang:
Self-Exploring Language Models: Active Preference Elicitation for Online Alignment. CoRR abs/2405.19332 (2024) - [i142]Rui Zheng, Hongyi Guo, Zhihan Liu, Xiaoying Zhang, Yuanshun Yao, Xiaojun Xu, Zhaoran Wang, Zhiheng Xi, Tao Gui, Qi Zhang, Xuanjing Huang, Hang Li, Yang Liu:
Toward Optimal LLM Alignments Using Two-Player Games. CoRR abs/2406.10977 (2024) - [i141]Zhixian Xie, Wenlong Zhang, Yi Ren, Zhaoran Wang, George J. Pappas, Wanxin Jin:
Safe MPC Alignment with Human Directional Feedback. CoRR abs/2407.04216 (2024) - [i140]Ruijie Xu, Zhihan Liu, Yongfei Liu, Shipeng Yan, Zhaoran Wang, Zhi Zhang, Xuming He:
Just say what you want: only-prompting self-rewarding online preference optimization. CoRR abs/2409.17534 (2024) - [i139]Shenao Zhang, Zhihan Liu, Boyi Liu, Yufeng Zhang, Yingxiang Yang, Yongfei Liu, Liyu Chen, Tao Sun, Zhaoran Wang:
Reward-Augmented Data Enhances Direct Preference Alignment of LLMs. CoRR abs/2410.08067 (2024) - [i138]Harsh Mahesheka, Zhixian Xie, Zhaoran Wang, Wanxin Jin:
Language-Model-Assisted Bi-Level Programming for Reward Learning from Internet Videos. CoRR abs/2410.09286 (2024) - [i137]Zhihan Liu, Shenao Zhang, Zhaoran Wang:
DSTC: Direct Preference Learning with Only Self-Generated Tests and Code to Improve Code LMs. CoRR abs/2411.13611 (2024) - [i136]Rui Ai, Boxiang Lyu, Zhaoran Wang, Zhuoran Yang, Haifeng Xu:
An Instrumental Value for Data Production and its Application to Data Pricing. CoRR abs/2412.18140 (2024) - 2023
- [j15]Han Zhong, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan:
Can Reinforcement Learning Find Stackelberg-Nash Equilibria in General-Sum Markov Games with Myopically Rational Followers? J. Mach. Learn. Res. 24: 35:1-35:52 (2023) - [j14]Zihao Li, Boyi Liu, Zhuoran Yang, Zhaoran Wang, Mengdi Wang:
Double Duality: Variational Primal-Dual Policy Optimization for Constrained Reinforcement Learning. J. Mach. Learn. Res. 24: 385:1-385:43 (2023) - [j13]Qiaomin Xie, Yudong Chen, Zhaoran Wang, Zhuoran Yang:
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium. Math. Oper. Res. 48(1): 433-462 (2023) - [j12]Chi Jin, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan:
Provably Efficient Reinforcement Learning with Linear Function Approximation. Math. Oper. Res. 48(3): 1496-1521 (2023) - [j11]Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang:
A Two-Timescale Stochastic Algorithm Framework for Bilevel Optimization: Complexity Analysis and Application to Actor-Critic. SIAM J. Optim. 33(1): 147-180 (2023) - [j10]Chenjia Bai, Lingxiao Wang, Yixin Wang, Zhaoran Wang, Rui Zhao, Chenyao Bai, Peng Liu:
Addressing Hindsight Bias in Multigoal Reinforcement Learning. IEEE Trans. Cybern. 53(1): 392-405 (2023) - [j9]Chenjia Bai, Peng Liu, Kaiyu Liu, Lingxiao Wang, Yingnan Zhao, Lei Han, Zhaoran Wang:
Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning. IEEE Trans. Neural Networks Learn. Syst. 34(8): 4776-4790 (2023) - [c123]Ruitu Xu, Yifei Min, Tianhao Wang, Michael I. Jordan, Zhaoran Wang, Zhuoran Yang:
Finding Regularized Competitive Equilibria of Heterogeneous Agent Macroeconomic Models via Reinforcement Learning. AISTATS 2023: 375-407 - [c122]Jing Wang, Meichen Song, Feng Gao, Boyi Liu, Zhaoran Wang, Yi Wu:
Differentiable Arbitrating in Zero-sum Markov Games. AAMAS 2023: 1034-1043 - [c121]Yixuan Wang, Simon Sinong Zhan, Zhilu Wang, Chao Huang, Zhaoran Wang, Zhuoran Yang, Qi Zhu:
Joint Differentiable Optimization and Verification for Certified Reinforcement Learning. ICCPS 2023: 132-141 - [c120]Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Represent to Control Partially Observed Systems: Representation Learning with Provable Sample Efficiency. ICLR 2023 - [c119]Miao Lu, Yifei Min, Zhaoran Wang, Zhuoran Yang:
Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes. ICLR 2023 - [c118]Tongzheng Ren, Chenjun Xiao, Tianjun Zhang, Na Li, Zhaoran Wang, Sujay Sanghavi, Dale Schuurmans, Bo Dai:
Latent Variable Representation for Reinforcement Learning. ICLR 2023 - [c117]Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Wai Kin Victor Chan, Xianyuan Zhan:
Offline RL with No OOD Actions: In-Sample Learning via Implicit Value Regularization. ICLR 2023 - [c116]Sirui Zheng, Lingxiao Wang, Shuang Qiu, Zuyue Fu, Zhuoran Yang, Csaba Szepesvári, Zhaoran Wang:
Optimistic Exploration with Learned Features Provably Solves Markov Decision Processes with Neural Dynamics. ICLR 2023 - [c115]Jiayang Li, Jing Yu, Boyi Liu, Yu Marco Nie, Zhaoran Wang:
Achieving Hierarchy-Free Approximation for Bilevel Programs with Equilibrium Constraints. ICML 2023: 20312-20335 - [c114]Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran Wang, Chao Huang, Qi Zhu:
Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement Learning in Unknown Stochastic Environments. ICML 2023: 36593-36604 - [c113]Shenao Zhang, Wanxin Jin, Zhaoran Wang:
Adaptive Barrier Smoothing for First-Order Policy Gradient with Contact Dynamics. ICML 2023: 41219-41243 - [c112]Yulai Zhao, Zhuoran Yang, Zhaoran Wang, Jason D. Lee:
Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning. ICML 2023: 42200-42226 - [c111]Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, Mihailo R. Jovanovic:
Provably Efficient Generalized Lagrangian Policy Optimization for Safe Multi-Agent Reinforcement Learning. L4DC 2023: 315-332 - [c110]Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang, Zhaoran Wang:
Maximize to Explore: One Objective Function Fusing Estimation, Planning, and Exploration. NeurIPS 2023 - [c109]Shuang Qiu, Ziyu Dai, Han Zhong, Zhaoran Wang, Zhuoran Yang, Tong Zhang:
Posterior Sampling for Competitive RL: Function Approximation and Partial Observation. NeurIPS 2023 - [c108]Shenao Zhang, Boyi Liu, Zhaoran Wang, Tuo Zhao:
Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms. NeurIPS 2023 - [c107]Fengzhuo Zhang, Vincent Y. F. Tan, Zhaoran Wang, Zhuoran Yang:
Learning Regularized Monotone Graphon Mean-Field Games. NeurIPS 2023 - [i135]Jiayang Li, Jing Yu, Boyi Liu, Zhaoran Wang, Yu Marco Nie:
Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints. CoRR abs/2302.09734 (2023) - [i134]Jing Wang, Meichen Song, Feng Gao, Boyi Liu, Zhaoran Wang, Yi Wu:
Differentiable Arbitrating in Zero-sum Markov Games. CoRR abs/2302.10058 (2023) - [i133]Ruitu Xu, Yifei Min, Tianhao Wang, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang:
Finding Regularized Competitive Equilibria of Heterogeneous Agent Macroeconomic Models with Reinforcement Learning. CoRR abs/2303.04833 (2023) - [i132]Siyu Chen, Yitan Wang, Zhaoran Wang, Zhuoran Yang:
A Unified Framework of Policy Learning for Contextual Bandit with Confounding Bias and Missing Observations. CoRR abs/2303.11187 (2023) - [i131]Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Wai Kin Victor Chan, Xianyuan Zhan:
Offline RL with No OOD Actions: In-Sample Learning via Implicit Value Regularization. CoRR abs/2303.15810 (2023) - [i130]Jiayang Li, Zhaoran Wang, Yu Marco Nie:
Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice. CoRR abs/2304.02500 (2023) - [i129]Xiao-Yang Liu, Ziyi Xia, Hongyang Yang, Jiechao Gao, Daochen Zha, Ming Zhu, Christina Dan Wang, Zhaoran Wang, Jian Guo:
Dynamic Datasets and Market Environments for Financial Reinforcement Learning. CoRR abs/2304.13174 (2023) - [i128]Yulai Zhao, Zhuoran Yang, Zhaoran Wang, Jason D. Lee:
Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning. CoRR abs/2305.04819 (2023) - [i127]Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang, Zhaoran Wang:
One Objective to Rule Them All: A Maximization Objective Fusing Estimation and Planning for Exploration. CoRR abs/2305.18258 (2023) - [i126]Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, Zhaoran Wang:
What and How does In-Context Learning Learn? Bayesian Model Averaging, Parameterization, and Generalization. CoRR abs/2305.19420 (2023) - [i125]Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, Mihailo R. Jovanovic:
Provably Efficient Generalized Lagrangian Policy Optimization for Safe Multi-Agent Reinforcement Learning. CoRR abs/2306.00212 (2023) - [i124]Nuoya Xiong, Zhaoran Wang, Zhuoran Yang:
A General Framework for Sequential Decision-Making under Adaptivity Constraints. CoRR abs/2306.14468 (2023) - [i123]Pangpang Liu, Zhuoran Yang, Zhaoran Wang, Will Wei Sun:
Contextual Dynamic Pricing with Strategic Buyers. CoRR abs/2307.04055 (2023) - [i122]Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, Zhaoran Wang:
Reason for Future, Act for Now: A Principled Framework for Autonomous LLM Agents with Provable Sample Efficiency. CoRR abs/2309.17382 (2023) - [i121]Nuoya Xiong, Zhihan Liu, Zhaoran Wang, Zhuoran Yang:
Sample-Efficient Multi-Agent RL: An Optimization Perspective. CoRR abs/2310.06243 (2023) - [i120]Chau Pham, Boyi Liu, Yingxiang Yang, Zhengyu Chen, Tianyi Liu, Jianbo Yuan, Bryan A. Plummer, Zhaoran Wang, Hongxia Yang:
Let Models Speak Ciphers: Multiagent Debate through Embeddings. CoRR abs/2310.06272 (2023) - [i119]Fengzhuo Zhang, Vincent Y. F. Tan, Zhaoran Wang, Zhuoran Yang:
Learning Regularized Monotone Graphon Mean-Field Games. CoRR abs/2310.08089 (2023) - [i118]Fengzhuo Zhang, Vincent Y. F. Tan, Zhaoran Wang, Zhuoran Yang:
Learning Regularized Graphon Mean-Field Games with Unknown Graphons. CoRR abs/2310.17531 (2023) - [i117]Shuang Qiu, Ziyu Dai, Han Zhong, Zhaoran Wang, Zhuoran Yang, Tong Zhang:
Posterior Sampling for Competitive RL: Function Approximation and Partial Observation. CoRR abs/2310.19861 (2023) - [i116]Shenao Zhang, Boyi Liu, Zhaoran Wang, Tuo Zhao:
Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms. CoRR abs/2310.19927 (2023) - [i115]Saizhuo Wang, Zhihan Liu, Zhaoran Wang, Jian Guo:
A Principled Framework for Knowledge-enhanced Large Language Model. CoRR abs/2311.11135 (2023) - [i114]Jianqing Fan, Zhaoran Wang, Zhuoran Yang, Chenlu Ye:
Provably Efficient High-Dimensional Bandit Learning with Batched Feedbacks. CoRR abs/2311.13180 (2023) - [i113]Yixuan Wang, Ruochen Jiao, Chengtian Lang, Simon Sinong Zhan, Chao Huang, Zhaoran Wang, Zhuoran Yang, Qi Zhu:
Empowering Autonomous Driving with Large Language Models: A Safety Perspective. CoRR abs/2312.00812 (2023) - [i112]Quanquan Gu, Zhaoran Wang, Han Liu:
Sparse PCA with Oracle Property. CoRR abs/2312.16793 (2023) - 2022
- [c106]Zehao Dou, Zhuoran Yang, Zhaoran Wang, Simon S. Du:
Gap-Dependent Bounds for Two-Player Markov Games. AISTATS 2022: 432-455 - [c105]Yixuan Wang, Chao Huang, Zhaoran Wang, Zhilu Wang, Qi Zhu:
Design-while-verify: correct-by-construction control learning with verification in the loop. DAC 2022: 925-930 - [c104]Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, Zhaoran Wang:
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning. ICLR 2022 - [c103]Baihe Huang, Jason D. Lee, Zhaoran Wang, Zhuoran Yang:
Towards General Function Approximation in Zero-Sum Markov Games. ICLR 2022 - [c102]Qi Cai, Zhuoran Yang, Zhaoran Wang:
Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency. ICML 2022: 2485-2522 - [c101]Siyu Chen, Donglin Yang, Jiayang Li, Senmiao Wang, Zhuoran Yang, Zhaoran Wang:
Adaptive Model Design for Markov Decision Process. ICML 2022: 3679-3700 - [c100]Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, Liwei Wang:
Human-in-the-loop: Provably Efficient Preference-based Reinforcement Learning with General Function Approximation. ICML 2022: 3773-3793 - [c99]Hongyi Guo, Qi Cai, Yufeng Zhang, Zhuoran Yang, Zhaoran Wang:
Provably Efficient Offline Reinforcement Learning for Partially Observable Markov Decision Processes. ICML 2022: 8016-8038 - [c98]Zhihan Liu, Miao Lu, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang:
Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy. ICML 2022: 13870-13911 - [c97]Zhihan Liu, Yufeng Zhang, Zuyue Fu, Zhuoran Yang, Zhaoran Wang:
Learning from Demonstration: Provably Efficient Adversarial Policy Imitation with Linear Function Approximation. ICML 2022: 14094-14138 - [c96]Boxiang Lyu, Zhaoran Wang, Mladen Kolar, Zhuoran Yang:
Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning. ICML 2022: 14601-14638 - [c95]Shuang Qiu, Lingxiao Wang, Chenjia Bai, Zhuoran Yang, Zhaoran Wang:
Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning. ICML 2022: 18168-18210 - [c94]Han Zhong, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, Zhuoran Yang:
Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets. ICML 2022: 27117-27142 - [c93]Gene Li, Junbo Li, Anmol Kabra, Nati Srebro, Zhaoran Wang, Zhuoran Yang:
Exponential Family Model-Based Reinforcement Learning via Score Matching. NeurIPS 2022 - [c92]Boyi Liu, Jiayang Li, Zhuoran Yang, Hoi-To Wai, Mingyi Hong, Yu Marco Nie, Zhaoran Wang:
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Ensures Global Convergence. NeurIPS 2022 - [c91]Xiao-Yang Liu, Ziyi Xia, Jingyang Rui, Jiechao Gao, Hongyang Yang, Ming Zhu, Christina Dan Wang, Zhaoran Wang, Jian Guo:
FinRL-Meta: Market Environments and Benchmarks for Data-Driven Financial Reinforcement Learning. NeurIPS 2022 - [c90]Yifei Min, Tianhao Wang, Ruitu Xu, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang:
Learn to Match with No Regret: Reinforcement Learning in Markov Matching Markets. NeurIPS 2022 - [c89]Tengyu Xu, Zhuoran Yang, Zhaoran Wang, Yingbin Liang:
A Unifying Framework of Off-Policy General Value Function Evaluation. NeurIPS 2022 - [c88]Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, Lei Han:
RORL: Robust Offline Reinforcement Learning via Conservative Smoothing. NeurIPS 2022 - [c87]Fengzhuo Zhang, Boyi Liu, Kaixin Wang, Vincent Y. F. Tan, Zhuoran Yang, Zhaoran Wang:
Relational Reasoning via Set Transformers: Provable Efficiency and Applications to MARL. NeurIPS 2022 - [c86]Shichao Xu, Yangyang Fu, Yixuan Wang, Zhuoran Yang, Zheng O'Neill, Zhaoran Wang, Qi Zhu:
Accelerate online reinforcement learning for building HVAC control with heterogeneous expert guidances. BuildSys 2022: 89-98 - [c85]Jibang Wu, Zixuan Zhang, Zhe Feng, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan, Haifeng Xu:
Sequential Information Design: Markov Persuasion Process and Its Efficient Reinforcement Learning. EC 2022: 471-472 - [i111]Yixuan Wang, Chao Huang, Zhaoran Wang, Zhuoran Yang, Qi Zhu:
Joint Differentiable Optimization and Verification for Certified Reinforcement Learning. CoRR abs/2201.12243 (2022) - [i110]Han Zhong, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhaoran Wang, Zhuoran Yang:
Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets. CoRR abs/2202.07511 (2022) - [i109]Jibang Wu, Zixuan Zhang, Zhe Feng, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan, Haifeng Xu:
Sequential Information Design: Markov Persuasion Process and Its Efficient Reinforcement Learning. CoRR abs/2202.10678 (2022) - [i108]Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, Zhaoran Wang:
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning. CoRR abs/2202.11566 (2022) - [i107]Boxiang Lyu, Qinglin Meng, Shuang Qiu, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan:
Learning Dynamic Mechanisms in Unknown Environments: A Reinforcement Learning Approach. CoRR abs/2202.12797 (2022) - [i106]Yifei Min, Tianhao Wang, Ruitu Xu, Zhaoran Wang, Michael I. Jordan, Zhuoran Yang:
Learn to Match with No Regret: Reinforcement Learning in Markov Matching Markets. CoRR abs/2203.03684 (2022) - [i105]Qi Cai, Zhuoran Yang, Zhaoran Wang:
Sample-Efficient Reinforcement Learning for POMDPs with Linear Function Approximations. CoRR abs/2204.09787 (2022) - [i104]Boxiang Lyu, Zhaoran Wang, Mladen Kolar, Zhuoran Yang:
Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning. CoRR abs/2205.02450 (2022) - [i103]Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, Liwei Wang:
Human-in-the-loop: Provably Efficient Preference-based Reinforcement Learning with General Function Approximation. CoRR abs/2205.11140 (2022) - [i102]Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Embed to Control Partially Observed Systems: Representation Learning with Provable Sample Efficiency. CoRR abs/2205.13476 (2022) - [i101]Miao Lu, Yifei Min, Zhaoran Wang, Zhuoran Yang:
Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes. CoRR abs/2205.13589 (2022) - [i100]Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, Lei Han:
RORL: Robust Offline Reinforcement Learning via Conservative Smoothing. CoRR abs/2206.02829 (2022) - [i99]Doudou Zhou, Yufeng Zhang, Aaron Sonabend W., Zhaoran Wang, Junwei Lu, Tianxi Cai:
Federated Offline Reinforcement Learning. CoRR abs/2206.05581 (2022) - [i98]Shuang Qiu, Xiaohan Wei, Jieping Ye, Zhaoran Wang, Zhuoran Yang:
Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions. CoRR abs/2207.12463 (2022) - [i97]Shuang Qiu, Lingxiao Wang, Chenjia Bai, Zhuoran Yang, Zhaoran Wang:
Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning. CoRR abs/2207.14800 (2022) - [i96]Jiayang Li, Jing Yu, Qianni Wang, Boyi Liu, Zhaoran Wang, Yu Marco Nie:
Differentiable Bilevel Programming for Stackelberg Congestion Games. CoRR abs/2209.07618 (2022) - [i95]Zuyue Fu, Zhengling Qi, Zhaoran Wang, Zhuoran Yang, Yanxun Xu, Michael R. Kosorok:
Offline Reinforcement Learning with Instrumental Variables in Confounded Markov Decision Processes. CoRR abs/2209.08666 (2022) - [i94]Fengzhuo Zhang, Boyi Liu, Kaixin Wang, Vincent Y. F. Tan, Zhuoran Yang, Zhaoran Wang:
Relational Reasoning via Set Transformers: Provable Efficiency and Applications to MARL. CoRR abs/2209.09845 (2022) - [i93]Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran Wang, Chao Huang, Qi Zhu:
Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement Learning in Unknown Stochastic Environments. CoRR abs/2209.15090 (2022) - [i92]Rui Ai, Boxiang Lyu, Zhaoran Wang, Zhuoran Yang, Michael I. Jordan:
A Reinforcement Learning Approach in Multi-Phase Second-Price Auction Design. CoRR abs/2210.10278 (2022) - [i91]Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, Tong Zhang:
GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP, and Beyond. CoRR abs/2211.01962 (2022) - [i90]Tongzheng Ren, Chenjun Xiao, Tianjun Zhang, Na Li, Zhaoran Wang, Sujay Sanghavi, Dale Schuurmans, Bo Dai:
Latent Variable Representation for Reinforcement Learning. CoRR abs/2212.08765 (2022) - [i89]Ying Jin, Zhimei Ren, Zhuoran Yang, Zhaoran Wang:
Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality. CoRR abs/2212.09900 (2022) - [i88]Zuyue Fu, Zhengling Qi, Zhuoran Yang, Zhaoran Wang, Lan Wang:
Offline Reinforcement Learning for Human-Guided Human-Machine Interaction with Private Information. CoRR abs/2212.12167 (2022) - [i87]Riashat Islam, Samarth Sinha, Homanga Bharadhwaj, Samin Yeasar Arnob, Zhuoran Yang, Animesh Garg, Zhaoran Wang, Lihong Li, Doina Precup:
Offline Policy Optimization in RL with Variance Regularizaton. CoRR abs/2212.14405 (2022) - [i86]Yufeng Zhang, Boyi Liu, Qi Cai, Lingxiao Wang, Zhaoran Wang:
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models. CoRR abs/2212.14852 (2022) - 2021
- [j8]Shuang Qiu, Zhuoran Yang, Jieping Ye, Zhaoran Wang:
On Finite-Time Convergence of Actor-Critic Algorithm. IEEE J. Sel. Areas Inf. Theory 2(2): 652-664 (2021) - [j7]Lewis Liu, Songtao Lu, Tuo Zhao, Zhaoran Wang:
Spectrum Truncation Power Iteration for Agnostic Matrix Phase Retrieval. IEEE Trans. Signal Process. 69: 3991-4006 (2021) - [c84]Jiaheng Wei, Zuyue Fu, Yang Liu, Xingyu Li, Zhuoran Yang, Zhaoran Wang:
Sample Elicitation. AISTATS 2021: 2692-2700 - [c83]Yufeng Zhang, Zhuoran Yang, Zhaoran Wang:
Provably Efficient Actor-Critic for Risk-Sensitive and Robust Adversarial RL: A Linear-Quadratic Case. AISTATS 2021: 2764-2772 - [c82]Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, Mihailo R. Jovanovic:
Provably Efficient Safe Exploration via Primal-Dual Policy Optimization. AISTATS 2021: 3304-3312 - [c81]Yixuan Wang, Chao Huang, Zhilu Wang, Shichao Xu, Zhaoran Wang, Qi Zhu:
Cocktail: Learn a Better Neural Network Controller from Multiple Experts via Adaptive Mixing and Robust Distillation. DAC 2021: 397-402 - [c80]Zechu Li, Xiao-Yang Liu, Jiahao Zheng, Zhaoran Wang, Anwar Walid, Jian Guo:
FinRL-podracer: high performance and scalable deep reinforcement learning for quantitative finance. ICAIF 2021: 48:1-48:9 - [c79]Zuyue Fu, Zhuoran Yang, Zhaoran Wang:
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy. ICLR 2021 - [c78]Chenjia Bai, Lingxiao Wang, Lei Han, Jianye Hao, Animesh Garg, Peng Liu, Zhaoran Wang:
Principled Exploration via Optimistic Bootstrapping and Backward Induction. ICML 2021: 577-587 - [c77]Yingjie Fei, Zhuoran Yang, Zhaoran Wang:
Risk-Sensitive Reinforcement Learning with Function Approximation: A Debiasing Approach. ICML 2021: 3198-3207 - [c76]Hongyi Guo, Zuyue Fu, Zhuoran Yang, Zhaoran Wang:
Decentralized Single-Timescale Actor-Critic on Zero-Sum Two-Player Stochastic Games. ICML 2021: 3899-3909 - [c75]Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup, Lin Yang:
Randomized Exploration in Reinforcement Learning with General Value Function Approximation. ICML 2021: 4607-4616 - [c74]Ying Jin, Zhuoran Yang, Zhaoran Wang:
Is Pessimism Provably Efficient for Offline RL? ICML 2021: 5084-5096 - [c73]Lewis Liu, Yufeng Zhang, Zhuoran Yang, Reza Babanezhad, Zhaoran Wang:
Infinite-Dimensional Optimization for Zero-Sum Games via Variational Transport. ICML 2021: 7033-7044 - [c72]Shuang Qiu, Xiaohan Wei, Jieping Ye, Zhaoran Wang, Zhuoran Yang:
Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions. ICML 2021: 8715-8725 - [c71]Shuang Qiu, Jieping Ye, Zhaoran Wang, Zhuoran Yang:
On Reward-Free RL with Kernel and Neural Function Approximations: Single-Agent MDP and Markov Game. ICML 2021: 8737-8747 - [c70]Weichen Wang, Jiequn Han, Zhuoran Yang, Zhaoran Wang:
Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field Control/Game in Continuous Time. ICML 2021: 10772-10782 - [c69]Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, Andreea Minca:
Learning While Playing in Mean-Field Games: Convergence and Optimality. ICML 2021: 11436-11447 - [c68]Tengyu Xu, Zhuoran Yang, Zhaoran Wang, Yingbin Liang:
Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality. ICML 2021: 11581-11591 - [c67]Jingwei Zhang, Zhuoran Yang, Zhengyuan Zhou, Zhaoran Wang:
Provably Sample Efficient Reinforcement Learning in Competitive Linear Quadratic Systems. L4DC 2021: 597-598 - [c66]Boyi Liu, Qi Cai, Zhuoran Yang, Zhaoran Wang:
BooVI: Provably Efficient Bootstrapped Value Iteration. NeurIPS 2021: 7041-7053 - [c65]Yufeng Zhang, Siyu Chen, Zhuoran Yang, Michael I. Jordan, Zhaoran Wang:
Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic. NeurIPS 2021: 15993-16006 - [c64]Chenjia Bai, Lingxiao Wang, Lei Han, Animesh Garg, Jianye Hao, Peng Liu, Zhaoran Wang:
Dynamic Bottleneck for Robust Self-Supervised Exploration. NeurIPS 2021: 17007-17020 - [c63]Minshuo Chen, Yan Li, Ethan Wang, Zhuoran Yang, Zhaoran Wang, Tuo Zhao:
Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL. NeurIPS 2021: 17913-17926 - [c62]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang:
Exponential Bellman Equation and Improved Regret Bounds for Risk-Sensitive Reinforcement Learning. NeurIPS 2021: 20436-20446 - [c61]Lingxiao Wang, Zhuoran Yang, Zhaoran Wang:
Provably Efficient Causal Reinforcement Learning with Confounded Observational Data. NeurIPS 2021: 21164-21175 - [c60]Runzhe Wu, Yufeng Zhang, Zhuoran Yang, Zhaoran Wang:
Offline Constrained Multi-Objective Reinforcement Learning via Pessimistic Dual Value Iteration. NeurIPS 2021: 25439-25451 - [c59]Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang:
A Near-Optimal Algorithm for Stochastic Bilevel Optimization via Double-Momentum. NeurIPS 2021: 30271-30283 - [i85]Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang:
A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm for Bilevel Optimization. CoRR abs/2102.07367 (2021) - [i84]Luofeng Liao, Zuyue Fu, Zhuoran Yang, Mladen Kolar, Zhaoran Wang:
Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning. CoRR abs/2102.09907 (2021) - [i83]Tengyu Xu, Zhuoran Yang, Zhaoran Wang, Yingbin Liang:
Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality. CoRR abs/2102.11866 (2021) - [i82]Yixuan Wang, Chao Huang, Zhilu Wang, Shichao Xu, Zhaoran Wang, Qi Zhu:
Cocktail: Learn a Better Neural Network Controller from Multiple Experts via Adaptive Mixing and Robust Distillation. CoRR abs/2103.05046 (2021) - [i81]Chenjia Bai, Lingxiao Wang, Lei Han, Jianye Hao, Animesh Garg, Peng Liu, Zhaoran Wang:
Principled Exploration via Optimistic Bootstrapping and Backward Induction. CoRR abs/2105.06022 (2021) - [i80]Yan Li, Lingxiao Wang, Jiachen Yang, Ethan Wang, Zhaoran Wang, Tuo Zhao, Hongyuan Zha:
Permutation Invariant Policy Optimization for Mean-Field Multi-Agent Reinforcement Learning: A Principled Approach. CoRR abs/2105.08268 (2021) - [i79]Yixuan Wang, Chao Huang, Zhaoran Wang, Zhilu Wang, Qi Zhu:
Verification in the Loop: Correct-by-Construction Control Learning with Reach-avoid Guarantees. CoRR abs/2106.03245 (2021) - [i78]Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup, Lin F. Yang:
Randomized Exploration for Reinforcement Learning with General Value Function Approximation. CoRR abs/2106.07841 (2021) - [i77]Zehao Dou, Zhuoran Yang, Zhaoran Wang, Simon S. Du:
Gap-Dependent Bounds for Two-Player Markov Games. CoRR abs/2107.00685 (2021) - [i76]Tengyu Xu, Zhuoran Yang, Zhaoran Wang, Yingbin Liang:
A Unified Off-Policy Evaluation Approach for General Value Function. CoRR abs/2107.02711 (2021) - [i75]Baihe Huang, Jason D. Lee, Zhaoran Wang, Zhuoran Yang:
Towards General Function Approximation in Zero-Sum Markov Games. CoRR abs/2107.14702 (2021) - [i74]Pratik Ramprasad, Yuantong Li, Zhuoran Yang, Zhaoran Wang, Will Wei Sun, Guang Cheng:
Online Bootstrap Inference For Policy Evaluation in Reinforcement Learning. CoRR abs/2108.03706 (2021) - [i73]Zhihan Liu, Yufeng Zhang, Zuyue Fu, Zhuoran Yang, Zhaoran Wang:
Provably Efficient Generative Adversarial Imitation Learning for Online and Offline Setting with Linear Function Approximation. CoRR abs/2108.08765 (2021) - [i72]Boyi Liu, Jiayang Li, Zhuoran Yang, Hoi-To Wai, Mingyi Hong, Yu Marco Nie, Zhaoran Wang:
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Finds Global Optima. CoRR abs/2110.01212 (2021) - [i71]Han Zhong, Zhuoran Yang, Zhaoran Wang, Csaba Szepesvári:
Optimistic Policy Optimization is Provably Efficient in Non-stationary MDPs. CoRR abs/2110.08984 (2021) - [i70]Shuang Qiu, Jieping Ye, Zhaoran Wang, Zhuoran Yang:
On Reward-Free RL with Kernel and Neural Function Approximations: Single-Agent MDP and Markov Game. CoRR abs/2110.09771 (2021) - [i69]Chenjia Bai, Lingxiao Wang, Lei Han, Animesh Garg, Jianye Hao, Peng Liu, Zhaoran Wang:
Dynamic Bottleneck for Robust Self-Supervised Exploration. CoRR abs/2110.10735 (2021) - [i68]Zhihong Deng, Zuyue Fu, Lingxiao Wang, Zhuoran Yang, Chenjia Bai, Zhaoran Wang, Jing Jiang:
SCORE: Spurious COrrelation REduction for Offline Reinforcement Learning. CoRR abs/2110.12468 (2021) - [i67]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang:
Exponential Bellman Equation and Improved Regret Bounds for Risk-Sensitive Reinforcement Learning. CoRR abs/2111.03947 (2021) - [i66]Zechu Li, Xiao-Yang Liu, Jiahao Zheng, Zhaoran Wang, Anwar Walid, Jian Guo:
FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance. CoRR abs/2111.05188 (2021) - [i65]Xiao-Yang Liu, Zechu Li, Zhuoran Yang, Jiahao Zheng, Zhaoran Wang, Anwar Walid, Jian Guo, Michael I. Jordan:
ElegantRL-Podracer: Scalable and Elastic Library for Cloud-Native Deep Reinforcement Learning. CoRR abs/2112.05923 (2021) - [i64]Xiao-Yang Liu, Jingyang Rui, Jiechao Gao, Liuqing Yang, Hongyang Yang, Zhaoran Wang, Christina Dan Wang, Jian Guo:
FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in Quantitative Finance. CoRR abs/2112.06753 (2021) - [i63]Han Zhong, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan:
Can Reinforcement Learning Find Stackelberg-Nash Equilibria in General-Sum Markov Games with Myopic Followers? CoRR abs/2112.13521 (2021) - [i62]Yufeng Zhang, Siyu Chen, Zhuoran Yang, Michael I. Jordan, Zhaoran Wang:
Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic. CoRR abs/2112.13530 (2021) - [i61]Gene Li, Junbo Li, Nathan Srebro, Zhaoran Wang, Zhuoran Yang:
Exponential Family Model-Based Reinforcement Learning via Score Matching. CoRR abs/2112.14195 (2021) - 2020
- [j6]Matey Neykov, Zhaoran Wang, Han Liu:
Agnostic Estimation for Phase Retrieval. J. Mach. Learn. Res. 21: 121:1-121:39 (2020) - [j5]Xiang Lyu, Will Wei Sun, Zhaoran Wang, Han Liu, Jian Yang, Guang Cheng:
Tensor Graphical Model: Non-Convex Optimization and Statistical Inference. IEEE Trans. Pattern Anal. Mach. Intell. 42(8): 2024-2037 (2020) - [c58]Chi Jin, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan:
Provably efficient reinforcement learning with linear function approximation. COLT 2020: 2137-2143 - [c57]Qiaomin Xie, Yudong Chen, Zhaoran Wang, Zhuoran Yang:
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium. COLT 2020: 3674-3682 - [c56]Minshuo Chen, Yizhou Wang, Tianyi Liu, Zhuoran Yang, Xingguo Li, Zhaoran Wang, Tuo Zhao:
On Computation and Generalization of Generative Adversarial Imitation Learning. ICLR 2020 - [c55]Zuyue Fu, Zhuoran Yang, Yongxin Chen, Zhaoran Wang:
Actor-Critic Provably Finds Nash Equilibria of Linear-Quadratic Mean-Field Games. ICLR 2020 - [c54]Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence. ICLR 2020 - [c53]Qi Cai, Zhuoran Yang, Chi Jin, Zhaoran Wang:
Provably Efficient Exploration in Policy Optimization. ICML 2020: 1283-1294 - [c52]Ying Jin, Zhaoran Wang, Junwei Lu:
Computational and Statistical Tradeoffs in Inferring Combinatorial Structures of Ising Model. ICML 2020: 4901-4910 - [c51]Sen Na, Yuwei Luo, Zhuoran Yang, Zhaoran Wang, Mladen Kolar:
Semiparametric Nonlinear Bipartite Graph Representation Learning with Provable Guarantees. ICML 2020: 7141-7152 - [c50]Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, Tuo Zhao:
Deep Reinforcement Learning with Robust and Smooth Policy. ICML 2020: 8707-8718 - [c49]Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
On the Global Optimality of Model-Agnostic Meta-Learning. ICML 2020: 9837-9846 - [c48]Lingxiao Wang, Zhuoran Yang, Zhaoran Wang:
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning. ICML 2020: 10092-10103 - [c47]Yufeng Zhang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Generative Adversarial Imitation Learning with Neural Network Parameterization: Global Optimality and Convergence Rate. ICML 2020: 11044-11054 - [c46]Jianqing Fan, Zhaoran Wang, Yuchen Xie, Zhuoran Yang:
A Theoretical Analysis of Deep Q-Learning. L4DC 2020: 486-489 - [c45]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang, Qiaomin Xie:
Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret. NeurIPS 2020 - [c44]Yingjie Fei, Zhuoran Yang, Zhaoran Wang, Qiaomin Xie:
Dynamic Regret of Policy Optimization in Non-Stationary Environments. NeurIPS 2020 - [c43]Wanxin Jin, Zhaoran Wang, Zhuoran Yang, Shaoshuai Mou:
Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework. NeurIPS 2020 - [c42]Jiayang Li, Jing Yu, Yu Marco Nie, Zhaoran Wang:
End-to-End Learning and Intervention in Games. NeurIPS 2020 - [c41]Luofeng Liao, You-Lin Chen, Zhuoran Yang, Bo Dai, Mladen Kolar, Zhaoran Wang:
Provably Efficient Neural Estimation of Structural Equation Models: An Adversarial Approach. NeurIPS 2020 - [c40]Shuang Qiu, Xiaohan Wei, Zhuoran Yang, Jieping Ye, Zhaoran Wang:
Upper Confidence Primal-Dual Reinforcement Learning for CMDP with Adversarial Loss. NeurIPS 2020 - [c39]Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:
Provably Efficient Neural GTD for Off-Policy Learning. NeurIPS 2020 - [c38]Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, Michael I. Jordan:
Provably Efficient Reinforcement Learning with Kernel and Neural Function Approximations. NeurIPS 2020 - [c37]Yufeng Zhang, Qi Cai, Zhuoran Yang, Yongxin Chen, Zhaoran Wang:
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory. NeurIPS 2020 - [i60]Minshuo Chen, Yizhou Wang, Tianyi Liu, Zhuoran Yang, Xingguo Li, Zhaoran Wang, Tuo Zhao:
On Computation and Generalization of Generative Adversarial Imitation Learning. CoRR abs/2001.02792 (2020) - [i59]Qiaomin Xie, Yudong Chen, Zhaoran Wang, Zhuoran Yang:
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium. CoRR abs/2002.07066 (2020) - [i58]Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, Mihailo R. Jovanovic:
Provably Efficient Safe Exploration via Primal-Dual Policy Optimization. CoRR abs/2003.00534 (2020) - [i57]Shuang Qiu, Xiaohan Wei, Zhuoran Yang, Jieping Ye, Zhaoran Wang:
Upper Confidence Primal-Dual Optimization: Stochastically Constrained Markov Decision Processes with Adversarial Losses and Unknown Transitions. CoRR abs/2003.00660 (2020) - [i56]Sen Na, Yuwei Luo, Zhuoran Yang, Zhaoran Wang, Mladen Kolar:
Semiparametric Nonlinear Bipartite Graph Representation Learning with Provable Guarantees. CoRR abs/2003.01013 (2020) - [i55]Yufeng Zhang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Generative Adversarial Imitation Learning with Neural Networks: Global Optimality and Convergence Rate. CoRR abs/2003.03709 (2020) - [i54]Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, Tuo Zhao:
Deep Reinforcement Learning with Smooth Policy. CoRR abs/2003.09534 (2020) - [i53]Yufeng Zhang, Qi Cai, Zhuoran Yang, Yongxin Chen, Zhaoran Wang:
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory. CoRR abs/2006.04761 (2020) - [i52]Wanxin Jin, Zhaoran Wang, Zhuoran Yang, Shaoshuai Mou:
Neural Certificates for Safe Control Policies. CoRR abs/2006.08465 (2020) - [i51]Lingxiao Wang, Zhuoran Yang, Zhaoran Wang:
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning. CoRR abs/2006.11917 (2020) - [i50]Lingxiao Wang, Zhuoran Yang, Zhaoran Wang:
Provably Efficient Causal Reinforcement Learning with Confounded Observational Data. CoRR abs/2006.12311 (2020) - [i49]Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
On the Global Optimality of Model-Agnostic Meta-Learning. CoRR abs/2006.13182 (2020) - [i48]Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang, Qiaomin Xie:
Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret. CoRR abs/2006.13827 (2020) - [i47]Yingjie Fei, Zhuoran Yang, Zhaoran Wang, Qiaomin Xie:
Dynamic Regret of Policy Optimization in Non-stationary Environments. CoRR abs/2007.00148 (2020) - [i46]Luofeng Liao, You-Lin Chen, Zhuoran Yang, Bo Dai, Zhaoran Wang, Mladen Kolar:
Provably Efficient Neural Estimation of Structural Equation Model: An Adversarial Approach. CoRR abs/2007.01290 (2020) - [i45]Yi Chen, Jinglin Chen, Jing Dong, Jian Peng, Zhaoran Wang:
Accelerating Nonconvex Learning via Replica Exchange Langevin Diffusion. CoRR abs/2007.01990 (2020) - [i44]Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang:
A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis and Application to Actor-Critic. CoRR abs/2007.05170 (2020) - [i43]Zuyue Fu, Zhuoran Yang, Zhaoran Wang:
Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy. CoRR abs/2008.00483 (2020) - [i42]Shuang Qiu, Zhuoran Yang, Xiaohan Wei, Jieping Ye, Zhaoran Wang:
Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth Nonlinear TD Learning. CoRR abs/2008.10103 (2020) - [i41]Yining Wang, Yi Chen, Ethan X. Fang, Zhaoran Wang, Runze Li:
Nearly Dimension-Independent Sparse Linear Bandit over Small Action Spaces via Best Subset Selection. CoRR abs/2009.02003 (2020) - [i40]Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, Andreea Minca:
Provable Fictitious Play for General Mean-Field Games. CoRR abs/2010.04211 (2020) - [i39]Chenjia Bai, Peng Liu, Zhaoran Wang, Kaiyu Liu, Lingxiao Wang, Yingnan Zhao:
Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning. CoRR abs/2010.08755 (2020) - [i38]Jiayang Li, Jing Yu, Yu Marco Nie, Zhaoran Wang:
End-to-End Learning and Intervention in Games. CoRR abs/2010.13834 (2020) - [i37]Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, Michael I. Jordan:
Bridging Exploration and General Function Approximation in Reinforcement Learning: Provably Efficient Kernel and Neural Value Iterations. CoRR abs/2011.04622 (2020) - [i36]Zhuoran Yang, Yufeng Zhang, Yongxin Chen, Zhaoran Wang:
Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization. CoRR abs/2012.11554 (2020) - [i35]Han Zhong, Ethan X. Fang, Zhuoran Yang, Zhaoran Wang:
Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds Globally Optimal Policy. CoRR abs/2012.14098 (2020) - [i34]Ying Jin, Zhuoran Yang, Zhaoran Wang:
Is Pessimism Provably Efficient for Offline RL? CoRR abs/2012.15085 (2020) - [i33]You-Lin Chen, Zhaoran Wang, Mladen Kolar:
Provably Training Neural Network Classifiers under Fairness Constraints. CoRR abs/2012.15274 (2020)
2010 – 2019
- 2019
- [j4]Sen Na, Zhuoran Yang, Zhaoran Wang, Mladen Kolar:
High-dimensional Varying Index Coefficient Models via Stein's Identity. J. Mach. Learn. Res. 20: 152:1-152:44 (2019) - [j3]Zhuoran Yang, Lin F. Yang, Ethan X. Fang, Tuo Zhao, Zhaoran Wang, Matey Neykov:
Misspecified nonconvex statistical optimization for sparse phase retrieval. Math. Program. 176(1-2): 545-571 (2019) - [j2]Xingguo Li, Junwei Lu, Raman Arora, Jarvis D. Haupt, Han Liu, Zhaoran Wang, Tuo Zhao:
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization. IEEE Trans. Inf. Theory 65(6): 3489-3514 (2019) - [c36]Yixuan Lin, Kaiqing Zhang, Zhuoran Yang, Zhaoran Wang, Tamer Basar, Romeil Sandhu, Ji Liu:
A Communication-Efficient Multi-Agent Actor-Critic Algorithm for Distributed Reinforcement Learning. CDC 2019: 5562-5567 - [c35]Kejun Huang, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:
Learning Partially Observable Markov Decision Processes Using Coupled Canonical Polyadic Decomposition. DSW 2019: 295-299 - [c34]Yi Chen, Jinglin Chen, Jing Dong, Jian Peng, Zhaoran Wang:
Accelerating Nonconvex Learning via Replica Exchange Langevin diffusion. ICLR (Poster) 2019 - [c33]Yuan Xie, Boyi Liu, Qiang Liu, Zhaoran Wang, Yuan Zhou, Jian Peng:
Off-Policy Evaluation and Learning from Logged Bandit Feedback: Error Reduction via Surrogate Policy. ICLR (Poster) 2019 - [c32]Xiaohan Wei, Zhuoran Yang, Zhaoran Wang:
On the statistical rate of nonlinear recovery in generative models with heavy-tailed data. ICML 2019: 6697-6706 - [c31]Ming Yu, Zhuoran Yang, Mladen Kolar, Zhaoran Wang:
Convergent Policy Optimization for Safe Reinforcement Learning. NeurIPS 2019: 3121-3133 - [c30]Hoi-To Wai, Mingyi Hong, Zhuoran Yang, Zhaoran Wang, Kexin Tang:
Variance Reduced Policy Evaluation with Smooth Function Approximation. NeurIPS 2019: 5776-5787 - [c29]Zhuoran Yang, Yongxin Chen, Mingyi Hong, Zhaoran Wang:
Provably Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost. NeurIPS 2019: 8351-8363 - [c28]Lingxiao Wang, Zhuoran Yang, Zhaoran Wang:
Statistical-Computational Tradeoff in Single Index Models. NeurIPS 2019: 10419-10426 - [c27]Boyi Liu, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Neural Trust Region/Proximal Policy Optimization Attains Globally Optimal Policy. NeurIPS 2019: 10564-10575 - [c26]Qi Cai, Zhuoran Yang, Jason D. Lee, Zhaoran Wang:
Neural Temporal-Difference Learning Converges to Global Optima. NeurIPS 2019: 11312-11322 - [i32]Zhuoran Yang, Yuchen Xie, Zhaoran Wang:
A Theoretical Analysis of Deep Q-Learning. CoRR abs/1901.00137 (2019) - [i31]Qi Cai, Mingyi Hong, Yongxin Chen, Zhaoran Wang:
On the Global Convergence of Imitation Learning: A Case for Linear Quadratic Regulator. CoRR abs/1901.03674 (2019) - [i30]Wesley Suttle, Zhuoran Yang, Kaiqing Zhang, Zhaoran Wang, Tamer Basar, Ji Liu:
A Multi-Agent Off-Policy Actor-Critic Algorithm for Distributed Reinforcement Learning. CoRR abs/1903.06372 (2019) - [i29]Qi Cai, Zhuoran Yang, Jason D. Lee, Zhaoran Wang:
Neural Temporal-Difference Learning Converges to Global Optima. CoRR abs/1905.10027 (2019) - [i28]Boyi Liu, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy. CoRR abs/1906.10306 (2019) - [i27]Yixuan Lin, Kaiqing Zhang, Zhuoran Yang, Zhaoran Wang, Tamer Basar, Romeil Sandhu, Ji Liu:
A Communication-Efficient Multi-Agent Actor-Critic Algorithm for Distributed Reinforcement Learning. CoRR abs/1907.03053 (2019) - [i26]Chi Jin, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan:
Provably Efficient Reinforcement Learning with Linear Function Approximation. CoRR abs/1907.05388 (2019) - [i25]Zhuoran Yang, Yongxin Chen, Mingyi Hong, Zhaoran Wang:
On the Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost. CoRR abs/1907.06246 (2019) - [i24]Xinyang Yi, Zhaoran Wang, Zhuoran Yang, Constantine Caramanis, Han Liu:
More Supervision, Less Computation: Statistical-Computational Tradeoffs in Weakly Supervised Learning. CoRR abs/1907.06257 (2019) - [i23]Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, Mihailo R. Jovanovic:
Fast Multi-Agent Temporal-Difference Learning via Homotopy Stochastic Primal-Dual Optimization. CoRR abs/1908.02805 (2019) - [i22]Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang:
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence. CoRR abs/1909.01150 (2019) - [i21]Yang Liu, Zuyue Fu, Zhuoran Yang, Zhaoran Wang:
Credible Sample Elicitation by Deep Learning, for Deep Learning. CoRR abs/1910.03155 (2019) - [i20]Zuyue Fu, Zhuoran Yang, Yongxin Chen, Zhaoran Wang:
Actor-Critic Provably Finds Nash Equilibria of Linear-Quadratic Mean-Field Games. CoRR abs/1910.07498 (2019) - [i19]Ming Yu, Zhuoran Yang, Mladen Kolar, Zhaoran Wang:
Convergent Policy Optimization for Safe Reinforcement Learning. CoRR abs/1910.12156 (2019) - [i18]Qi Cai, Zhuoran Yang, Chi Jin, Zhaoran Wang:
Provably Efficient Exploration in Policy Optimization. CoRR abs/1912.05830 (2019) - [i17]Yuwei Luo, Zhuoran Yang, Zhaoran Wang, Mladen Kolar:
Natural Actor-Critic Converges Globally for Hierarchical Linear Quadratic Regulator. CoRR abs/1912.06875 (2019) - [i16]Wanxin Jin, Zhaoran Wang, Zhuoran Yang, Shaoshuai Mou:
Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework. CoRR abs/1912.12970 (2019) - 2018
- [b1]Zhaoran Wang:
Nonconvex Statistical Optimization. Princeton University, USA, 2018 - [c25]Kaiqing Zhang, Zhuoran Yang, Zhaoran Wang:
Nonlinear Structured Signal Estimation in High Dimensions via Iterative Hard Thresholding. AISTATS 2018: 258-268 - [c24]Jason Ge, Zhaoran Wang, Mengdi Wang, Han Liu:
Minimax-Optimal Privacy-Preserving Sparse PCA in Distributed Systems. AISTATS 2018: 1589-1598 - [c23]Shi Zhi, Fan Yang, Zheyi Zhu, Qi Li, Zhaoran Wang, Jiawei Han:
Dynamic Truth Discovery on Numerical Data. ICDM 2018: 817-826 - [c22]Hao Lu, Yuan Cao, Junwei Lu, Han Liu, Zhaoran Wang:
The Edge Density Barrier: Computational-Statistical Tradeoffs in Combinatorial Inference. ICML 2018: 3253-3262 - [c21]Xingguo Li, Jarvis D. Haupt, Junwei Lu, Zhaoran Wang, Raman Arora, Han Liu, Tuo Zhao:
Symmetry. Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization. ITA 2018: 1-9 - [c20]Ming Yu, Zhuoran Yang, Tuo Zhao, Mladen Kolar, Zhaoran Wang:
Provable Gaussian Embedding with One Observation. NeurIPS 2018: 6765-6775 - [c19]Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:
Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization. NeurIPS 2018: 9672-9683 - [c18]Yi Chen, Zhuoran Yang, Yuchen Xie, Zhaoran Wang:
Contrastive Learning from Pairwise Measurements. NeurIPS 2018: 10932-10941 - [i15]Yingxiang Yang, Adams Wei Yu, Zhaoran Wang, Tuo Zhao:
Detecting Nonlinear Causality in Multivariate Time Series with Sparse Additive Models. CoRR abs/1803.03919 (2018) - [i14]Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:
Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization. CoRR abs/1806.00877 (2018) - [i13]Xingguo Li, Junwei Lu, Zhaoran Wang, Jarvis D. Haupt, Tuo Zhao:
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond. CoRR abs/1806.05159 (2018) - [i12]Yuan Xie, Boyi Liu, Qiang Liu, Zhaoran Wang, Yuan Zhou, Jian Peng:
Off-Policy Evaluation and Learning from Logged Bandit Feedback: Error Reduction via Surrogate Policy. CoRR abs/1808.00232 (2018) - [i11]Jianqing Fan, Han Liu, Zhaoran Wang, Zhuoran Yang:
Curse of Heterogeneity: Computational Barriers in Sparse Mixture Models and Phase Retrieval. CoRR abs/1808.06996 (2018) - [i10]Chris Junchi Li, Zhaoran Wang, Han Liu:
Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes. CoRR abs/1808.09642 (2018) - [i9]Kean Ming Tan, Zhaoran Wang, Tong Zhang, Han Liu, R. Dennis Cook:
A convex formulation for high-dimensional sparse sliced inverse regression. CoRR abs/1809.06024 (2018) - [i8]Sen Na, Zhuoran Yang, Zhaoran Wang, Mladen Kolar:
High-dimensional Varying Index Coefficient Models via Stein's Identity. CoRR abs/1810.07128 (2018) - [i7]Ming Yu, Zhuoran Yang, Tuo Zhao, Mladen Kolar, Zhaoran Wang:
Provable Gaussian Embedding with One Observation. CoRR abs/1810.11098 (2018) - 2017
- [c17]Zhuoran Yang, Krishnakumar Balasubramanian, Zhaoran Wang, Han Liu:
Estimating High-dimensional Non-Gaussian Multiple Index Models via Stein's Lemma. NIPS 2017: 6097-6106 - [i6]Zhuoran Yang, Lin F. Yang, Ethan X. Fang, Tuo Zhao, Zhaoran Wang, Matey Neykov:
Misspecified Nonconvex Statistical Optimization for Phase Retrieval. CoRR abs/1712.06245 (2017) - 2016
- [c16]Quanquan Gu, Zhaoran Wang, Han Liu:
Low-Rank and Sparse Structure Pursuit via Alternating Minimization. AISTATS 2016: 600-609 - [c15]Zhaoran Wang, Quanquan Gu, Han Liu:
On the Statistical Limits of Convex Relaxations. ICML 2016: 1368-1377 - [c14]Zhuoran Yang, Zhaoran Wang, Han Liu, Yonina C. Eldar, Tong Zhang:
Sparse Nonlinear Regression: Parameter Estimation under Nonconvexity. ICML 2016: 2472-2481 - [c13]Houping Xiao, Jing Gao, Zhaoran Wang, Shiyu Wang, Lu Su, Han Liu:
A Truth Discovery Approach with Theoretical Guarantee. KDD 2016: 1925-1934 - [c12]Alex Beatson, Zhaoran Wang, Han Liu:
Blind Attacks on Machine Learners. NIPS 2016: 2397-2405 - [c11]Davood Hajinezhad, Mingyi Hong, Tuo Zhao, Zhaoran Wang:
NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization. NIPS 2016: 3207-3215 - [c10]Matey Neykov, Zhaoran Wang, Han Liu:
Agnostic Estimation for Misspecified Phase Retrieval Models. NIPS 2016: 4089-4097 - [c9]Xinyang Yi, Zhaoran Wang, Zhuoran Yang, Constantine Caramanis, Han Liu:
More Supervision, Less Computation: Statistical-Computational Tradeoffs in Weakly Supervised Learning. NIPS 2016: 4475-4483 - [c8]Chris Junchi Li, Zhaoran Wang, Han Liu:
Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes. NIPS 2016: 4961-4969 - [i5]Davood Hajinezhad, Mingyi Hong, Tuo Zhao, Zhaoran Wang:
NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization. CoRR abs/1605.07747 (2016) - [i4]Xingguo Li, Zhaoran Wang, Junwei Lu, Raman Arora, Jarvis D. Haupt, Han Liu, Tuo Zhao:
Symmetry, Saddle Points, and Global Geometry of Nonconvex Matrix Factorization. CoRR abs/1612.09296 (2016) - 2015
- [c7]Tuo Zhao, Zhaoran Wang, Han Liu:
A Nonconvex Optimization Framework for Low Rank Matrix Estimation. NIPS 2015: 559-567 - [c6]Wei Sun, Zhaoran Wang, Han Liu, Guang Cheng:
Non-convex Statistical Optimization for Sparse Tensor Graphical Model. NIPS 2015: 1081-1089 - [c5]Xinyang Yi, Zhaoran Wang, Constantine Caramanis, Han Liu:
Optimal Linear Estimation under Unknown Nonlinear Transform. NIPS 2015: 1549-1557 - [c4]Zhaoran Wang, Quanquan Gu, Yang Ning, Han Liu:
High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality. NIPS 2015: 2521-2529 - [i3]Xinyang Yi, Zhaoran Wang, Constantine Caramanis, Han Liu:
Optimal linear estimation under unknown nonlinear transform. CoRR abs/1505.03257 (2015) - [i2]Zhuoran Yang, Zhaoran Wang, Han Liu, Yonina C. Eldar, Tong Zhang:
Sparse Nonlinear Regression: Parameter Estimation and Asymptotic Inference. CoRR abs/1511.04514 (2015) - 2014
- [j1]Bingsheng He, Han Liu, Zhaoran Wang, Xiaoming Yuan:
A Strictly Contractive Peaceman-Rachford Splitting Method for Convex Programming. SIAM J. Optim. 24(3): 1011-1040 (2014) - [c3]Quanquan Gu, Zhaoran Wang, Han Liu:
Sparse PCA with Oracle Property. NIPS 2014: 1529-1537 - [c2]Zhaoran Wang, Huanran Lu, Han Liu:
Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time. NIPS 2014: 3383-3391 - [i1]Zhaoran Wang, Huanran Lu, Han Liu:
Nonconvex Statistical Optimization: Minimax-Optimal Sparse PCA in Polynomial Time. CoRR abs/1408.5352 (2014) - 2013
- [c1]Zhaoran Wang, Fang Han, Han Liu:
Sparse Principal Component Analysis for High Dimensional Multivariate Time Series. AISTATS 2013: 48-56
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-27 21:42 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint