default search action
Tuo Zhao
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j26]Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao, Wenjing Liao:
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces. J. Mach. Learn. Res. 25: 24:1-24:67 (2024) - [j25]Zhenghao Xu, Xiang Ji, Minshuo Chen, Mengdi Wang, Tuo Zhao:
Sample Complexity of Neural Policy Mirror Descent for Policy Optimization on Low-Dimensional Manifolds. J. Mach. Learn. Res. 25: 226:1-226:67 (2024) - [j24]Yan Li, Guanghui Lan, Tuo Zhao:
Homotopic policy mirror descent: policy convergence, algorithmic regularization, and improved sample complexity. Math. Program. 207(1): 457-513 (2024) - [j23]Tingting Zhao, Guixi Li, Tuo Zhao, Yarui Chen, Ning Xie, Gang Niu, Masashi Sugiyama:
Learning explainable task-relevant state representation for model-free deep reinforcement learning. Neural Networks 180: 106741 (2024) - [c111]Haoyu Wang, Tianci Liu, Ruirui Li, Monica Xiao Cheng, Tuo Zhao, Jing Gao:
RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning. EMNLP 2024: 996-1008 - [c110]Haoyu Wang, Ruirui Li, Haoming Jiang, Jinjin Tian, Zhengyang Wang, Chen Luo, Xianfeng Tang, Monica Xiao Cheng, Tuo Zhao, Jing Gao:
BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering. EMNLP 2024: 1009-1025 - [c109]Alexander Bukharin, Shiyang Li, Zhengyang Wang, Jingfeng Yang, Bing Yin, Xian Li, Chao Zhang, Tuo Zhao, Haoming Jiang:
Data Diversity Matters for Robust Instruction Tuning. EMNLP (Findings) 2024: 3411-3425 - [c108]Tuo Zhao, Xinxue Wang, Tingting Zhao, Yuan Wang, Yarui Chen, Jucheng Yang:
Hybrid Deep Generative and Sequential Learning Approach for Stock Market Prediction. ICIC (LNAI 5) 2024: 263-274 - [c107]Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, Tuo Zhao:
LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models. ICLR 2024 - [c106]Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, Tuo Zhao:
Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs. ICLR 2024 - [c105]Zichong Li, Qunzhi Xu, Zhenghao Xu, Yajun Mei, Tuo Zhao, Hongyuan Zha:
Beyond Point Prediction: Score Matching-based Pseudolikelihood Estimation of Neural Marked Spatio-Temporal Point Process. ICML 2024 - [c104]Zi-Hao Qiu, Siqi Guo, Mao Xu, Tuo Zhao, Lijun Zhang, Tianbao Yang:
To Cool or not to Cool? Temperature Network Meets Large Foundation Models via DRO. ICML 2024 - [c103]Zhen Shao, Tuo Zhao, Lin Zhang, Yu Liu:
Trust in Digital Commerce: the Moderating Effect of Blockchain Teability Labels. PACIS 2024 - [i120]Haoyu Wang, Tuo Zhao, Jing Gao:
BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering. CoRR abs/2402.11129 (2024) - [i119]Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, Tuo Zhao:
GEAR: An Efficient KV Cache Compression Recipe for Near-Lossless Generative Inference of LLM. CoRR abs/2403.05527 (2024) - [i118]Hoang Huy Nguyen, Yan Li, Tuo Zhao:
Stochastic Constrained Decentralized Optimization for Machine Learning with Fewer Data Oracles: a Gradient Sliding Approach. CoRR abs/2404.02511 (2024) - [i117]Zi-Hao Qiu, Siqi Guo, Mao Xu, Tuo Zhao, Lijun Zhang, Tianbao Yang:
To Cool or not to Cool? Temperature Network Meets Large Foundation Models via DRO. CoRR abs/2404.04575 (2024) - [i116]Ilgee Hong, Zichong Li, Alexander Bukharin, Yixiao Li, Haoming Jiang, Tianbao Yang, Tuo Zhao:
Adaptive Preference Scaling for Reinforcement Learning with Human Feedback. CoRR abs/2406.02764 (2024) - [i115]Haoyu Wang, Tianci Liu, Tuo Zhao, Jing Gao:
RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning. CoRR abs/2406.10777 (2024) - [i114]Alexander Bukharin, Ilgee Hong, Haoming Jiang, Qingru Zhang, Zixuan Zhang, Tuo Zhao:
Robust Reinforcement Learning from Corrupted Human Feedback. CoRR abs/2406.15568 (2024) - [i113]Qingru Zhang, Xiaodong Yu, Chandan Singh, Xiaodong Liu, Liyuan Liu, Jianfeng Gao, Tuo Zhao, Dan Roth, Hao Cheng:
Model Tells Itself Where to Attend: Faithfulness Meets Automatic Attention Steering. CoRR abs/2409.10790 (2024) - [i112]Kuan Wang, Alexander Bukharin, Haoming Jiang, Qingyu Yin, Zhengyang Wang, Tuo Zhao, Jingbo Shang, Chao Zhang, Bing Yin, Xian Li, Jianshu Chen, Shiyang Li:
RNR: Teaching Large Language Models to Follow Roles and Rules. CoRR abs/2409.13733 (2024) - [i111]Zhenghao Xu, Yuqing Wang, Tuo Zhao, Rachel Ward, Molei Tao:
Provable Acceleration of Nesterov's Accelerated Gradient for Rectangular Matrix Factorization and Linear Neural Networks. CoRR abs/2410.09640 (2024) - 2023
- [j22]Ethan X. Fang, Yajun Mei, Yuyang Shi, Qunzhi Xu, Tuo Zhao:
Pivotal Estimation of Linear Discriminant Analysis in High Dimensions. J. Mach. Learn. Res. 24: 302:1-302:45 (2023) - [j21]Guanghui Lan, Yan Li, Tuo Zhao:
Block Policy Mirror Descent. SIAM J. Optim. 33(3): 2341-2378 (2023) - [c102]Simiao Zuo, Qingyu Yin, Haoming Jiang, Shaohui Xi, Bing Yin, Chao Zhang, Tuo Zhao:
Context-Aware Query Rewriting for Improving Users' Search Experience on E-commerce Websites. ACL (industry) 2023: 616-628 - [c101]Jiachen Yang, Tarik Dzanic, Brenden K. Petersen, Jun Kudo, Ketan Mittal, Vladimir Z. Tomov, Jean-Sylvain Camier, Tuo Zhao, Hongyuan Zha, Tzanio V. Kolev, Robert W. Anderson, Daniel M. Faissol:
Reinforcement Learning for Adaptive Mesh Refinement. AISTATS 2023: 5997-6014 - [c100]Qingru Zhang, Dhananjay Ram, Cole Hawkins, Sheng Zha, Tuo Zhao:
Efficient Long-Range Transformers: You Need to Attend More, but Not Necessarily at Every Layer. EMNLP (Findings) 2023: 2775-2786 - [c99]Haoyu Wang, Yaqing Wang, Tianci Liu, Tuo Zhao, Jing Gao:
HadSkip: Homotopic and Adaptive Layer Skipping of Pre-trained Language Models for Efficient Inference. EMNLP (Findings) 2023: 4283-4294 - [c98]Suliang Bu, Tuo Zhao, Yunxin Zhao:
Joint Estimation of DOA and Distance in Noisy Reverberant Conditions. ICASSP 2023: 1-5 - [c97]Xiang Ji, Minshuo Chen, Mengdi Wang, Tuo Zhao:
Sample Complexity of Nonparametric Off-Policy Evaluation on Low-Dimensional Manifolds using Deep Networks. ICLR 2023 - [c96]Chen Liang, Haoming Jiang, Zheng Li, Xianfeng Tang, Bing Yin, Tuo Zhao:
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained Transformers. ICLR 2023 - [c95]Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, Tuo Zhao:
Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. ICLR 2023 - [c94]Alexander Bukharin, Tianyi Liu, Shengjie Wang, Simiao Zuo, Weihao Gao, Wen Yan, Tuo Zhao:
Machine Learning Force Fields with Data Cost Aware Training. ICML 2023: 3219-3232 - [c93]Minshuo Chen, Kaixuan Huang, Tuo Zhao, Mengdi Wang:
Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data. ICML 2023: 4672-4712 - [c92]Zichong Li, Yanbo Xu, Simiao Zuo, Haoming Jiang, Chao Zhang, Tuo Zhao, Hongyuan Zha:
SMURF-THP: Score Matching-based UnceRtainty quantiFication for Transformer Hawkes Process. ICML 2023: 20210-20220 - [c91]Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, Tuo Zhao:
LoSparse: Structured Compression of Large Language Models based on Low-Rank and Sparse Approximation. ICML 2023: 20336-20350 - [c90]Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, Tuo Zhao:
Less is More: Task-aware Layer-wise Distillation for Language Model Compression. ICML 2023: 20852-20867 - [c89]Zixuan Zhang, Minshuo Chen, Mengdi Wang, Wenjing Liao, Tuo Zhao:
Effective Minkowski Dimension of Deep Nonparametric Regression: Function Approximation and Statistical Theories. ICML 2023: 40911-40931 - [c88]Haoyu Wang, Ruirui Li, Haoming Jiang, Zhengyang Wang, Xianfeng Tang, Bin Bi, Monica Xiao Cheng, Bing Yin, Yaqing Wang, Tuo Zhao, Jing Gao:
LightToken: A Task and Model-agnostic Lightweight Token Embedding Framework for Pre-trained Language Models. KDD 2023: 2302-2313 - [c87]Chen Liang, Jiahui Yu, Ming-Hsuan Yang, Matthew Brown, Yin Cui, Tuo Zhao, Boqing Gong, Tianyi Zhou:
Module-wise Adaptive Distillation for Multimodality Foundation Models. NeurIPS 2023 - [c86]Alexander Bukharin, Yan Li, Yue Yu, Qingru Zhang, Zhehui Chen, Simiao Zuo, Chao Zhang, Songan Zhang, Tuo Zhao:
Robust Multi-Agent Reinforcement Learning via Adversarial Regularization: Theoretical Foundation and Stable Algorithms. NeurIPS 2023 - [c85]Shenao Zhang, Boyi Liu, Zhaoran Wang, Tuo Zhao:
Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms. NeurIPS 2023 - [i110]Minshuo Chen, Kaixuan Huang, Tuo Zhao, Mengdi Wang:
Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data. CoRR abs/2302.07194 (2023) - [i109]Chen Liang, Haoming Jiang, Zheng Li, Xianfeng Tang, Bin Yin, Tuo Zhao:
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained Transformers. CoRR abs/2302.09632 (2023) - [i108]Biraj Dahal, Alexander Havrilla, Minshuo Chen, Tuo Zhao, Wenjing Liao:
On Deep Generative Models for Approximation and Estimation of Distributions on Manifolds. CoRR abs/2302.13183 (2023) - [i107]Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, Tuo Zhao:
Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. CoRR abs/2303.10512 (2023) - [i106]Alexander Bukharin, Tianyi Liu, Shengjie Wang, Simiao Zuo, Weihao Gao, Wen Yan, Tuo Zhao:
Machine Learning Force Fields with Data Cost Aware Training. CoRR abs/2306.03109 (2023) - [i105]Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, Tuo Zhao:
LoSparse: Structured Compression of Large Language Models based on Low-Rank and Sparse Approximation. CoRR abs/2306.11222 (2023) - [i104]Zixuan Zhang, Minshuo Chen, Mengdi Wang, Wenjing Liao, Tuo Zhao:
Effective Minkowski Dimension of Deep Nonparametric Regression: Function Approximation and Statistical Theories. CoRR abs/2306.14859 (2023) - [i103]Kaiqi Zhang, Zixuan Zhang, Minshuo Chen, Mengdi Wang, Tuo Zhao, Yu-Xiang Wang:
Nonparametric Classification on Low Dimensional Manifolds using Overparameterized Convolutional Residual Networks. CoRR abs/2307.01649 (2023) - [i102]Xiang Ji, Huazheng Wang, Minshuo Chen, Tuo Zhao, Mengdi Wang:
Provable Benefits of Policy Learning from Human Preferences in Contextual Bandit Problems. CoRR abs/2307.12975 (2023) - [i101]Alexander Bukharin, Yixiao Li, Pengcheng He, Weizhu Chen, Tuo Zhao:
Deep Reinforcement Learning from Hierarchical Weak Preference Feedback. CoRR abs/2309.02632 (2023) - [i100]Zhenghao Xu, Xiang Ji, Minshuo Chen, Mengdi Wang, Tuo Zhao:
Sample Complexity of Neural Policy Mirror Descent for Policy Optimization on Low-Dimensional Manifolds. CoRR abs/2309.13915 (2023) - [i99]Chen Liang, Jiahui Yu, Ming-Hsuan Yang, Matthew Brown, Yin Cui, Tuo Zhao, Boqing Gong, Tianyi Zhou:
Module-wise Adaptive Distillation for Multimodality Foundation Models. CoRR abs/2310.04550 (2023) - [i98]Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, Tuo Zhao:
LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models. CoRR abs/2310.08659 (2023) - [i97]Alexander Bukharin, Yan Li, Yue Yu, Qingru Zhang, Zhehui Chen, Simiao Zuo, Chao Zhang, Songan Zhang, Tuo Zhao:
Robust Multi-Agent Reinforcement Learning via Adversarial Regularization: Theoretical Foundation and Stable Algorithms. CoRR abs/2310.10810 (2023) - [i96]Qingru Zhang, Dhananjay Ram, Cole Hawkins, Sheng Zha, Tuo Zhao:
Efficient Long-Range Transformers: You Need to Attend More, but Not Necessarily at Every Layer. CoRR abs/2310.12442 (2023) - [i95]Zichong Li, Qunzhi Xu, Zhenghao Xu, Yajun Mei, Tuo Zhao, Hongyuan Zha:
Score Matching-based Pseudolikelihood Estimation of Neural Marked Spatio-Temporal Point Process with Uncertainty Quantification. CoRR abs/2310.16310 (2023) - [i94]Zichong Li, Yanbo Xu, Simiao Zuo, Haoming Jiang, Chao Zhang, Tuo Zhao, Hongyuan Zha:
SMURF-THP: Score Matching-based UnceRtainty quantiFication for Transformer Hawkes Process. CoRR abs/2310.16336 (2023) - [i93]Yuqing Wang, Zhenghao Xu, Tuo Zhao, Molei Tao:
Good regularity creates large learning rate implicit biases: edge of stability, balancing, and catapult. CoRR abs/2310.17087 (2023) - [i92]Shenao Zhang, Boyi Liu, Zhaoran Wang, Tuo Zhao:
Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms. CoRR abs/2310.19927 (2023) - [i91]Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, Tuo Zhao:
Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs. CoRR abs/2311.02262 (2023) - [i90]Alexander Bukharin, Tuo Zhao:
Data Diversity Matters for Robust Instruction Tuning. CoRR abs/2311.14736 (2023) - 2022
- [j20]Zhen Shao, Lin Zhang, Susan A. Brown, Tuo Zhao:
Understanding users' trust transfer mechanism in a blockchain-enabled platform: A mixed methods study. Decis. Support Syst. 155: 113716 (2022) - [j19]Suliang Bu, Yunxin Zhao, Tuo Zhao, Shaojun Wang, Mei Han:
Modeling Speech Structure to Improve T-F Masks for Speech Enhancement and Recognition. IEEE ACM Trans. Audio Speech Lang. Process. 30: 2705-2715 (2022) - [c84]Chen Liang, Pengcheng He, Yelong Shen, Weizhu Chen, Tuo Zhao:
CAMERO: Consistency Regularized Ensemble of Perturbed Language Models with Weight Sharing. ACL (1) 2022: 7162-7175 - [c83]Tianyi Liu, Yan Li, Enlu Zhou, Tuo Zhao:
Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably. AISTATS 2022: 2784-2802 - [c82]Jiachen Yang, Ethan Wang, Rakshit Trivedi, Tuo Zhao, Hongyuan Zha:
Adaptive Incentive Design with Multi-Agent Meta-Gradient Reinforcement Learning. AAMAS 2022: 1436-1445 - [c81]Yan Li, Dhruv Choudhary, Xiaohan Wei, Baichuan Yuan, Bhargav Bhushanam, Tuo Zhao, Guanghui Lan:
Frequency-aware SGD for Efficient Embedding Learning with Provable Benefits. ICLR 2022 - [c80]Chen Liang, Haoming Jiang, Simiao Zuo, Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, Tuo Zhao:
No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for Training Large Transformer Models. ICLR 2022 - [c79]Yuqing Wang, Minshuo Chen, Tuo Zhao, Molei Tao:
Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect. ICLR 2022 - [c78]Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Jianfeng Gao, Tuo Zhao:
Taming Sparsely Activated Transformer with Stochastic Experts. ICLR 2022 - [c77]Hao Liu, Minshuo Chen, Siawpeng Er, Wenjing Liao, Tong Zhang, Tuo Zhao:
Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint. ICML 2022: 13669-13703 - [c76]Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, Tuo Zhao:
PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance. ICML 2022: 26809-26823 - [c75]Suliang Bu, Yunxin Zhao, Tuo Zhao:
Steering vector correction in MVDR beamformer for speech enhancement. INTERSPEECH 2022: 5468-5472 - [c74]Zhigen Zhao, Simiao Zuo, Tuo Zhao, Ye Zhao:
Adversarially Regularized Policy Learning Guided by Trajectory Optimization. L4DC 2022: 844-857 - [c73]Rui Feng, Chen Luo, Qingyu Yin, Bing Yin, Tuo Zhao, Chao Zhang:
CERES: Pretraining of Graph-Conditioned Transformer for Semi-Structured Session Data. NAACL-HLT 2022: 219-230 - [c72]Simiao Zuo, Yue Yu, Chen Liang, Haoming Jiang, Siawpeng Er, Chao Zhang, Tuo Zhao, Hongyuan Zha:
Self-Training with Differentiable Teacher. NAACL-HLT (Findings) 2022: 933-949 - [c71]Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He, Tuo Zhao, Weizhu Chen:
MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation. NAACL-HLT 2022: 1610-1623 - [c70]Biraj Dahal, Alexander Havrilla, Minshuo Chen, Tuo Zhao, Wenjing Liao:
On Deep Generative Models for Approximation and Estimation of Distributions on Manifolds. NeurIPS 2022 - [c69]Suliang Bu, Tuo Zhao, Yunxin Zhao:
TDOA Estimation of Speech Source in Noisy Reverberant Environments. SLT 2022: 1059-1066 - [i89]Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao, Wenjing Liao:
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces. CoRR abs/2201.00217 (2022) - [i88]Siawpeng Er, Edward Liu, Minshuo Chen, Yan Li, Yuqi Liu, Tuo Zhao, Hua Wang:
Deep Learning Assisted End-to-End Synthesis of mm-Wave Passive Networks with 3D EM Structures: A Study on A Transformer-Based Matching Network. CoRR abs/2201.02141 (2022) - [i87]Guanghui Lan, Yan Li, Tuo Zhao:
Block Policy Mirror Descent. CoRR abs/2201.05756 (2022) - [i86]Yan Li, Tuo Zhao, Guanghui Lan:
Homotopic Policy Mirror Descent: Policy Convergence, Implicit Regularization, and Improved Sample Complexity. CoRR abs/2201.09457 (2022) - [i85]Chen Liang, Haoming Jiang, Simiao Zuo, Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, Tuo Zhao:
No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for Training Large Transformer Models. CoRR abs/2202.02664 (2022) - [i84]Tianyi Liu, Yan Li, Enlu Zhou, Tuo Zhao:
Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably. CoRR abs/2202.03535 (2022) - [i83]Rui Feng, Chen Luo, Qingyu Yin, Bing Yin, Tuo Zhao, Chao Zhang:
CERES: Pretraining of Graph-Conditioned Transformer for Semi-Structured Session Data. CoRR abs/2204.04303 (2022) - [i82]Chen Liang, Pengcheng He, Yelong Shen, Weizhu Chen, Tuo Zhao:
CAMERO: Consistency Regularized Ensemble of Perturbed Language Models with Weight Sharing. CoRR abs/2204.06625 (2022) - [i81]Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He, Tuo Zhao, Weizhu Chen:
MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation. CoRR abs/2204.07675 (2022) - [i80]Jie Wang, Minshuo Chen, Tuo Zhao, Wenjing Liao, Yao Xie:
A Manifold Two-Sample Test Study: Integral Probability Metric with Neural Networks. CoRR abs/2205.02043 (2022) - [i79]Xiang Ji, Minshuo Chen, Mengdi Wang, Tuo Zhao:
Sample Complexity of Nonparametric Off-Policy Evaluation on Low-Dimensional Manifolds using Deep Networks. CoRR abs/2206.02887 (2022) - [i78]Hao Liu, Minshuo Chen, Siawpeng Er, Wenjing Liao, Tong Zhang, Tuo Zhao:
Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint. CoRR abs/2206.04569 (2022) - [i77]Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, Tuo Zhao:
PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance. CoRR abs/2206.12562 (2022) - [i76]Simiao Zuo, Tianyi Liu, Tuo Zhao, Hongyuan Zha:
Differentially Private Estimation of Hawkes Process. CoRR abs/2209.07303 (2022) - [i75]Simiao Zuo, Haoming Jiang, Qingyu Yin, Xianfeng Tang, Bing Yin, Tuo Zhao:
DiP-GNN: Discriminative Pre-Training of Graph Neural Networks. CoRR abs/2209.07499 (2022) - [i74]Simiao Zuo, Qingyu Yin, Haoming Jiang, Shaohui Xi, Bing Yin, Chao Zhang, Tuo Zhao:
Context-Aware Query Rewriting for Improving Users' Search Experience on E-commerce Websites. CoRR abs/2209.07584 (2022) - [i73]Yan Li, Tuo Zhao, Guanghui Lan:
First-order Policy Optimization for Robust Markov Decision Process. CoRR abs/2209.10579 (2022) - [i72]Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, Tuo Zhao:
Less is More: Task-aware Layer-wise Distillation for Language Model Compression. CoRR abs/2210.01351 (2022) - [i71]Jiahui Cheng, Minshuo Chen, Hao Liu, Tuo Zhao, Wenjing Liao:
High Dimensional Binary Classification under Label Shift: Phase Transition and Regularization. CoRR abs/2212.00700 (2022) - [i70]Simiao Zuo, Xiaodong Liu, Jian Jiao, Denis Charles, Eren Manavoglu, Tuo Zhao, Jianfeng Gao:
Efficient Long Sequence Modeling via State Space Augmented Transformer. CoRR abs/2212.08136 (2022) - 2021
- [j18]Lewis Liu, Songtao Lu, Tuo Zhao, Zhaoran Wang:
Spectrum Truncation Power Iteration for Agnostic Matrix Phase Retrieval. IEEE Trans. Signal Process. 69: 3991-4006 (2021) - [c68]Haoming Jiang, Danqing Zhang, Tianyu Cao, Bing Yin, Tuo Zhao:
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data. ACL/IJCNLP (1) 2021: 1775-1789 - [c67]Chen Liang, Simiao Zuo, Minshuo Chen, Haoming Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, Weizhu Chen:
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization. ACL/IJCNLP (1) 2021: 6524-6538 - [c66]Haoming Jiang, Zhehui Chen, Yuyang Shi, Bo Dai, Tuo Zhao:
Learning to Defend by Learning to Attack. AISTATS 2021: 577-585 - [c65]Tianyi Liu, Yan Li, Song Wei, Enlu Zhou, Tuo Zhao:
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization. AISTATS 2021: 1891-1899 - [c64]Danqing Zhang, Zheng Li, Tianyu Cao, Chen Luo, Tony Wu, Hanqing Lu, Yiwei Song, Bing Yin, Tuo Zhao, Qiang Yang:
QUEACO: Borrowing Treasures from Weakly-labeled Behavior Data for Query Attribute Value Extraction. CIKM 2021: 4362-4372 - [c63]Chen Liang, Haoming Jiang, Xiaodong Liu, Pengcheng He, Weizhu Chen, Jianfeng Gao, Tuo Zhao:
Token-wise Curriculum Learning for Neural Machine Translation. EMNLP (Findings) 2021: 3658-3670 - [c62]Simiao Zuo, Chen Liang, Haoming Jiang, Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, Tuo Zhao:
ARCH: Efficient Adversarial Regularized Training with Caching. EMNLP (Findings) 2021: 4118-4131 - [c61]Simiao Zuo, Chen Liang, Haoming Jiang, Xiaodong Liu, Pengcheng He, Jianfeng Gao, Weizhu Chen, Tuo Zhao:
Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach. EMNLP (1) 2021: 6562-6577 - [c60]Haoming Jiang, Bo Dai, Mengjiao Yang, Tuo Zhao, Wei Wei:
Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy Evaluation Approach. EMNLP (1) 2021: 7419-7451 - [c59]Yujia Xie, Yixiu Mao, Simiao Zuo, Hongteng Xu, Xiaojing Ye, Tuo Zhao, Hongyuan Zha:
A Hypergradient Approach to Robust Regression without Correspondence. ICLR 2021 - [c58]Yu Bai, Minshuo Chen, Pan Zhou, Tuo Zhao, Jason D. Lee, Sham M. Kakade, Huan Wang, Caiming Xiong:
How Important is the Train-Validation Split in Meta-Learning? ICML 2021: 543-553 - [c57]Hao Liu, Minshuo Chen, Tuo Zhao, Wenjing Liao:
Besov Function Approximation and Binary Classification on Low-Dimensional Manifolds Using Convolutional Residual Networks. ICML 2021: 6770-6780 - [c56]Tuo Zhao, Yunxin Zhao, Shaojun Wang, Mei Han:
UNet++-Based Multi-Channel Speech Dereverberation and Distant Speech Recognition. ISCSLP 2021: 1-5 - [c55]Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo Zhao, Chao Zhang:
Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach. NAACL-HLT 2021: 1063-1077 - [c54]Minshuo Chen, Yan Li, Ethan Wang, Zhuoran Yang, Zhaoran Wang, Tuo Zhao:
Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL. NeurIPS 2021: 17913-17926 - [i69]Haoming Jiang, Bo Dai, Mengjiao Yang, Wei Wei, Tuo Zhao:
Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy Evaluation Approach. CoRR abs/2102.10242 (2021) - [i68]Tianyi Liu, Yan Li, Song Wei, Enlu Zhou, Tuo Zhao:
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization. CoRR abs/2102.12430 (2021) - [i67]Jiachen Yang, Tarik Dzanic, Brenden K. Petersen, Jun Kudo, Ketan Mittal, Vladimir Z. Tomov, Jean-Sylvain Camier, Tuo Zhao, Hongyuan Zha, Tzanio V. Kolev, Robert W. Anderson, Daniel M. Faissol:
Reinforcement Learning for Adaptive Mesh Refinement. CoRR abs/2103.01342 (2021) - [i66]Chen Liang, Haoming Jiang, Xiaodong Liu, Pengcheng He, Weizhu Chen, Jianfeng Gao, Tuo Zhao:
Token-wise Curriculum Learning for Neural Machine Translation. CoRR abs/2103.11088 (2021) - [i65]Simiao Zuo, Chen Liang, Haoming Jiang, Xiaodong Liu, Pengcheng He, Jianfeng Gao, Weizhu Chen, Tuo Zhao:
Adversarial Training as Stackelberg Game: An Unrolled Optimization Approach. CoRR abs/2104.04886 (2021) - [i64]Siawpeng Er, Shihao Yang, Tuo Zhao:
COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 Prediction. CoRR abs/2105.00620 (2021) - [i63]Yan Li, Lingxiao Wang, Jiachen Yang, Ethan Wang, Zhaoran Wang, Tuo Zhao, Hongyuan Zha:
Permutation Invariant Policy Optimization for Mean-Field Multi-Agent Reinforcement Learning: A Principled Approach. CoRR abs/2105.08268 (2021) - [i62]Chen Liang, Simiao Zuo, Minshuo Chen, Haoming Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, Weizhu Chen:
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization. CoRR abs/2105.12002 (2021) - [i61]Haoming Jiang, Danqing Zhang, Tianyu Cao, Bing Yin, Tuo Zhao:
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data. CoRR abs/2106.08977 (2021) - [i60]Yan Li, Caleb Ju, Ethan X. Fang, Tuo Zhao:
Implicit Regularization of Bregman Proximal Point Algorithm and Mirror Descent on Separable Data. CoRR abs/2108.06808 (2021) - [i59]Danqing Zhang, Zheng Li, Tianyu Cao, Chen Luo, Tony Wu, Hanqing Lu, Yiwei Song, Bing Yin, Tuo Zhao, Qiang Yang:
QUEACO: Borrowing Treasures from Weakly-labeled Behavior Data for Query Attribute Value Extraction. CoRR abs/2108.08468 (2021) - [i58]Hao Liu, Minshuo Chen, Tuo Zhao, Wenjing Liao:
Besov Function Approximation and Binary Classification on Low-Dimensional Manifolds Using Convolutional Residual Networks. CoRR abs/2109.02832 (2021) - [i57]Simiao Zuo, Chen Liang, Haoming Jiang, Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, Tuo Zhao:
ARCH: Efficient Adversarial Regularized Training with Caching. CoRR abs/2109.07048 (2021) - [i56]Simiao Zuo, Yue Yu, Chen Liang, Haoming Jiang, Siawpeng Er, Chao Zhang, Tuo Zhao, Hongyuan Zha:
Self-Training with Differentiable Teacher. CoRR abs/2109.07049 (2021) - [i55]Zhigen Zhao, Simiao Zuo, Tuo Zhao, Ye Zhao:
Adversarially Regularized Policy Learning Guided by Trajectory Optimization. CoRR abs/2109.07627 (2021) - [i54]Yuqing Wang, Minshuo Chen, Tuo Zhao, Molei Tao:
Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect. CoRR abs/2110.03677 (2021) - [i53]Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Tuo Zhao, Jianfeng Gao:
Taming Sparsely Activated Transformer with Stochastic Experts. CoRR abs/2110.04260 (2021) - [i52]Yan Li, Dhruv Choudhary, Xiaohan Wei, Baichuan Yuan, Bhargav Bhushanam, Tuo Zhao, Guanghui Lan:
Frequency-aware SGD for Efficient Embedding Learning with Provable Benefits. CoRR abs/2110.04844 (2021) - [i51]Yunhai Han, Rahul Batra, Nathan Boyd, Tuo Zhao, Yu She, Seth Hutchinson, Ye Zhao:
Learning Generalizable Vision-Tactile Robotic Grasping Strategy for Deformable Objects via Transformer. CoRR abs/2112.06374 (2021) - [i50]Jiachen Yang, Ethan Wang, Rakshit Trivedi, Tuo Zhao, Hongyuan Zha:
Adaptive Incentive Design with Multi-Agent Meta-Gradient Reinforcement Learning. CoRR abs/2112.10859 (2021) - 2020
- [j17]Yifan Zhang, Jin Tian, Tuo Zhao, Shaohui Mei:
Spatial Resolution Enhancement of Remote Sensing Hyperspectral Images With Localized Spatial-Spectral Dictionary Pair. IEEE Access 8: 61051-61069 (2020) - [c53]Haoming Jiang, Chen Liang, Chong Wang, Tuo Zhao:
Multi-Domain Neural Machine Translation with Word-Level Adaptive Layer-wise Domain Mixing. ACL 2020: 1823-1834 - [c52]Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, Tuo Zhao:
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization. ACL 2020: 2177-2190 - [c51]Minshuo Chen, Xingguo Li, Tuo Zhao:
On Generalization Bounds of a Family of Recurrent Neural Networks. AISTATS 2020: 1233-1243 - [c50]Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie Lyu, Tuo Zhao, Chao Zhang:
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data. EMNLP (1) 2020: 1326-1340 - [c49]Minshuo Chen, Yizhou Wang, Tianyi Liu, Zhuoran Yang, Xingguo Li, Zhaoran Wang, Tuo Zhao:
On Computation and Generalization of Generative Adversarial Imitation Learning. ICLR 2020 - [c48]Yan Li, Ethan X. Fang, Huan Xu, Tuo Zhao:
Implicit Bias of Gradient Descent based Adversarial Training on Separable Data. ICLR 2020 - [c47]Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, Tuo Zhao:
Deep Reinforcement Learning with Robust and Smooth Policy. ICML 2020: 8707-8718 - [c46]Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, Hongyuan Zha:
Transformer Hawkes Process. ICML 2020: 11692-11702 - [c45]Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, Chao Zhang:
BOND: BERT-Assisted Open-Domain Named Entity Recognition with Distant Supervision. KDD 2020: 1054-1064 - [c44]Minshuo Chen, Yu Bai, Jason D. Lee, Tuo Zhao, Huan Wang, Caiming Xiong, Richard Socher:
Towards Understanding Hierarchical Learning: Benefits of Neural Representations. NeurIPS 2020 - [c43]Kaixuan Huang, Yuqing Wang, Molei Tao, Tuo Zhao:
Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? - A Neural Tangent Kernel Perspective. NeurIPS 2020 - [c42]Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, Tomas Pfister:
Differentiable Top-k with Optimal Transport. NeurIPS 2020 - [c41]Lin Zhang, Zhen Shao, Tuo Zhao, Susan A. Brown:
The Role of Mobile Social Application in Stimulating Learning Stickiness in Blended Learning. PACIS 2020: 235 - [i49]Minshuo Chen, Yizhou Wang, Tianyi Liu, Zhuoran Yang, Xingguo Li, Zhaoran Wang, Tuo Zhao:
On Computation and Generalization of Generative Adversarial Imitation Learning. CoRR abs/2001.02792 (2020) - [i48]Minshuo Chen, Wenjing Liao, Hongyuan Zha, Tuo Zhao:
Statistical Guarantees of Generative Adversarial Networks for Distribution Estimation. CoRR abs/2002.03938 (2020) - [i47]Kaixuan Huang, Yuqing Wang, Molei Tao, Tuo Zhao:
Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? - A Neural Tangent Kernel Perspective. CoRR abs/2002.06262 (2020) - [i46]Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, Tomas Pfister:
Differentiable Top-k Operator with Optimal Transport. CoRR abs/2002.06504 (2020) - [i45]Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, Hongyuan Zha:
Transformer Hawkes Process. CoRR abs/2002.09291 (2020) - [i44]Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, Tuo Zhao:
Deep Reinforcement Learning with Smooth Policy. CoRR abs/2003.09534 (2020) - [i43]Minshuo Chen, Yu Bai, Jason D. Lee, Tuo Zhao, Huan Wang, Caiming Xiong, Richard Socher:
Towards Understanding Hierarchical Learning: Benefits of Neural Representations. CoRR abs/2006.13436 (2020) - [i42]Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, Larry A. Wasserman:
The huge Package for High-dimensional Undirected Graph Estimation in R. CoRR abs/2006.14781 (2020) - [i41]Jason Ge, Xingguo Li, Haoming Jiang, Han Liu, Tong Zhang, Mengdi Wang, Tuo Zhao:
Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python. CoRR abs/2006.15261 (2020) - [i40]Xingguo Li, Tuo Zhao, Xiaoming Yuan, Han Liu:
The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R. CoRR abs/2006.15419 (2020) - [i39]Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, Chao Zhang:
BOND: BERT-Assisted Open-Domain Named Entity Recognition with Distant Supervision. CoRR abs/2006.15509 (2020) - [i38]David Joseph Munzer, Siawpeng Er, Minshuo Chen, Yan Li, Naga Sasikanth Mannem, Tuo Zhao, Hua Wang:
Residual Network Based Direct Synthesis of EM Structures: A Study on One-to-One Transformers. CoRR abs/2008.10755 (2020) - [i37]Yu Bai, Minshuo Chen, Pan Zhou, Tuo Zhao, Jason D. Lee, Sham M. Kakade, Huan Wang, Caiming Xiong:
How Important is the Train-Validation Split in Meta-Learning? CoRR abs/2010.05843 (2020) - [i36]Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo Zhao, Chao Zhang:
Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach. CoRR abs/2010.07835 (2020) - [i35]Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie Lyu, Tuo Zhao, Chao Zhang:
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data. CoRR abs/2010.11506 (2020) - [i34]Minshuo Chen, Hao Liu, Wenjing Liao, Tuo Zhao:
Doubly Robust Off-Policy Learning on Low-Dimensional Manifolds by Deep Neural Networks. CoRR abs/2011.01797 (2020) - [i33]Yujia Xie, Yixiu Mao, Simiao Zuo, Hongteng Xu, Xiaojing Ye, Tuo Zhao, Hongyuan Zha:
A Hypergradient Approach to Robust Regression without Correspondence. CoRR abs/2012.00123 (2020)
2010 – 2019
- 2019
- [j16]Gelan Yang, Wei Tan, Huixia Jin, Tuo Zhao, Li Tu:
Review wearable sensing system for gait recognition. Clust. Comput. 22(Supplement): 3021-3029 (2019) - [j15]Jason Ge, Xingguo Li, Haoming Jiang, Han Liu, Tong Zhang, Mengdi Wang, Tuo Zhao:
Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python. J. Mach. Learn. Res. 20: 44:1-44:5 (2019) - [j14]Zhuoran Yang, Lin F. Yang, Ethan X. Fang, Tuo Zhao, Zhaoran Wang, Matey Neykov:
Misspecified nonconvex statistical optimization for sparse phase retrieval. Math. Program. 176(1-2): 545-571 (2019) - [j13]Xingguo Li, Junwei Lu, Raman Arora, Jarvis D. Haupt, Han Liu, Zhaoran Wang, Tuo Zhao:
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization. IEEE Trans. Inf. Theory 65(6): 3489-3514 (2019) - [c40]Zhehui Chen, Xingguo Li, Lin Yang, Jarvis D. Haupt, Tuo Zhao:
On Constrained Nonconvex Stochastic Optimization: A Case Study for Generalized Eigenvalue Decomposition. AISTATS 2019: 916-925 - [c39]Zhehui Chen, Haoming Jiang, Yuyang Shi, Bo Dai, Tuo Zhao:
Learning to Defense by Learning to Attack. DGS@ICLR 2019 - [c38]Haoming Jiang, Zhehui Chen, Minshuo Chen, Feng Liu, Dingding Wang, Tuo Zhao:
On Computation and Generalization of Generative Adversarial Networks under Spectrum Control. ICLR (Poster) 2019 - [c37]Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, Hongyuan Zha:
On Scalable and Efficient Computation of Large Scale Optimal Transport. DGS@ICLR 2019 - [c36]Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, Hongyuan Zha:
On Scalable and Efficient Computation of Large Scale Optimal Transport. ICML 2019: 6882-6892 - [c35]Mo Zhou, Tianyi Liu, Yan Li, Dachao Lin, Enlu Zhou, Tuo Zhao:
Toward Understanding the Importance of Noise in Training Neural Networks. ICML 2019: 7594-7602 - [c34]Tianyi Liu, Minshuo Chen, Mo Zhou, Simon S. Du, Enlu Zhou, Tuo Zhao:
Towards Understanding the Importance of Shortcut Connections in Residual Networks. NeurIPS 2019: 7890-7900 - [c33]Minshuo Chen, Haoming Jiang, Wenjing Liao, Tuo Zhao:
Efficient Approximation of Deep ReLU Networks for Functions on Low Dimensional Manifolds. NeurIPS 2019: 8172-8182 - [c32]Yujia Xie, Haoming Jiang, Feng Liu, Tuo Zhao, Hongyuan Zha:
Meta Learning with Relational Information for Short Sequences. NeurIPS 2019: 9901-9912 - [c31]Xingguo Li, Haoming Jiang, Jarvis D. Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao:
On Fast Convergence of Proximal Algorithms for SQRT-Lasso Optimization: Don't Worry About its Nonsmooth Loss Function. UAI 2019: 49-59 - [c30]Lin F. Yang, Zheng Yu, Vladimir Braverman, Tuo Zhao, Mengdi Wang:
Online Factorization and Partition of Complex Networks by Random Walk. UAI 2019: 820-830 - [i32]Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, Hongyuan Zha:
On Scalable and Efficient Computation of Large Scale Optimal Transport. CoRR abs/1905.00158 (2019) - [i31]Yan Li, Ethan X. Fang, Huan Xu, Tuo Zhao:
Inductive Bias of Gradient Descent based Adversarial Training on Separable Data. CoRR abs/1906.02931 (2019) - [i30]Minshuo Chen, Haoming Jiang, Wenjing Liao, Tuo Zhao:
Efficient Approximation of Deep ReLU Networks for Functions on Low Dimensional Manifolds. CoRR abs/1908.01842 (2019) - [i29]Yujia Xie, Haoming Jiang, Feng Liu, Tuo Zhao, Hongyuan Zha:
Meta Learning with Relational Information for Short Sequences. CoRR abs/1909.02105 (2019) - [i28]Mo Zhou, Tianyi Liu, Yan Li, Dachao Lin, Enlu Zhou, Tuo Zhao:
Towards Understanding the Importance of Noise in Training Neural Networks. CoRR abs/1909.03172 (2019) - [i27]Tianyi Liu, Minshuo Chen, Mo Zhou, Simon S. Du, Enlu Zhou, Tuo Zhao:
Towards Understanding the Importance of Shortcut Connections in Residual Networks. CoRR abs/1909.04653 (2019) - [i26]Minshuo Chen, Xingguo Li, Tuo Zhao:
On Generalization Bounds of a Family of Recurrent Neural Networks. CoRR abs/1910.12947 (2019) - [i25]Haoming Jiang, Chen Liang, Chong Wang, Tuo Zhao:
Multi-Domain Neural Machine Translation with Word-Level Adaptive Layer-wise Domain Mixing. CoRR abs/1911.02692 (2019) - [i24]Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, Tuo Zhao:
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization. CoRR abs/1911.03437 (2019) - 2018
- [c29]Xingguo Li, Jarvis D. Haupt, Junwei Lu, Zhaoran Wang, Raman Arora, Han Liu, Tuo Zhao:
Symmetry. Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization. ITA 2018: 1-9 - [c28]Minshuo Chen, Lin Yang, Mengdi Wang, Tuo Zhao:
Dimensionality Reduction for Stationary Time Series via Stochastic Nonconvex Optimization. NeurIPS 2018: 3500-3510 - [c27]Tianyi Liu, Shiyang Li, Jianping Shi, Enlu Zhou, Tuo Zhao:
Towards Understanding Acceleration Tradeoff between Momentum and Asynchrony in Nonconvex Stochastic Optimization. NeurIPS 2018: 3686-3696 - [c26]Lin F. Yang, Raman Arora, Vladimir Braverman, Tuo Zhao:
The Physical Systems Behind Optimization Algorithms. NeurIPS 2018: 4377-4386 - [c25]Ming Yu, Zhuoran Yang, Tuo Zhao, Mladen Kolar, Zhaoran Wang:
Provable Gaussian Embedding with One Observation. NeurIPS 2018: 6765-6775 - [i23]Tianyi Liu, Zhehui Chen, Enlu Zhou, Tuo Zhao:
Toward Deeper Understanding of Nonconvex Stochastic Optimization with Momentum using Diffusion Approximations. CoRR abs/1802.05155 (2018) - [i22]Minshuo Chen, Lin Yang, Mengdi Wang, Tuo Zhao:
Dimensionality Reduction for Stationary Time Series via Stochastic Nonconvex Optimization. CoRR abs/1803.02312 (2018) - [i21]Yingxiang Yang, Adams Wei Yu, Zhaoran Wang, Tuo Zhao:
Detecting Nonlinear Causality in Multivariate Time Series with Sparse Additive Models. CoRR abs/1803.03919 (2018) - [i20]Tianyi Liu, Shiyang Li, Jianping Shi, Enlu Zhou, Tuo Zhao:
Towards Understanding Acceleration Tradeoff between Momentum and Asynchrony in Nonconvex Stochastic Optimization. CoRR abs/1806.01660 (2018) - [i19]Zhehui Chen, Xingguo Li, Lin F. Yang, Jarvis D. Haupt, Tuo Zhao:
On Landscape of Lagrangian Functions and Stochastic Search for Constrained Nonconvex Optimization. CoRR abs/1806.05151 (2018) - [i18]Xingguo Li, Junwei Lu, Zhaoran Wang, Jarvis D. Haupt, Tuo Zhao:
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond. CoRR abs/1806.05159 (2018) - [i17]Ming Yu, Zhuoran Yang, Tuo Zhao, Mladen Kolar, Zhaoran Wang:
Provable Gaussian Embedding with One Observation. CoRR abs/1810.11098 (2018) - [i16]Zhehui Chen, Haoming Jiang, Bo Dai, Tuo Zhao:
Learning to Defense by Learning to Attack. CoRR abs/1811.01213 (2018) - [i15]Haoming Jiang, Zhehui Chen, Minshuo Chen, Feng Liu, Dingding Wang, Tuo Zhao:
On Computation and Generalization of GANs with Spectrum Control. CoRR abs/1812.10912 (2018) - 2017
- [j12]Jiuwen Cao, Tuo Zhao, Jianzhong Wang, Ruirong Wang, Yun Chen:
Excavation equipment classification based on improved MFCC features and ELM. Neurocomputing 261: 231-241 (2017) - [j11]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:
On Faster Convergence of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. J. Mach. Learn. Res. 18: 184:1-184:24 (2017) - [j10]Jiuwen Cao, Wuhao Huang, Tuo Zhao, Jianzhong Wang, Ruirong Wang:
An enhance excavation equipments classification algorithm based on acoustic spectrum dynamic feature. Multidimens. Syst. Signal Process. 28(3): 921-943 (2017) - [c24]Yifan Zhang, Tuo Zhao, Mingyi He:
Hyperspectral and multispectral image fusion using local spatial-spectral dictionary pair. APSIPA 2017: 242-246 - [c23]Zhehui Chen, Lin F. Yang, Chris Junchi Li, Tuo Zhao:
Online Partial Least Square Optimization: Dropping Convexity for Better Efficiency and Scalability. ICML 2017: 777-786 - [c22]Gang Liu, Qi Qian, Zhibin Wang, Qingen Zhao, Tianzhou Wang, Hao Li, Jian Xue, Shenghuo Zhu, Rong Jin, Tuo Zhao:
The Opensesame NIST 2016 Speaker Recognition Evaluation System. INTERSPEECH 2017: 2854-2858 - [c21]Haotian Pang, Han Liu, Robert J. Vanderbei, Tuo Zhao:
Parametric Simplex Method for Sparse Learning. NIPS 2017: 188-197 - [c20]Xingguo Li, Lin Yang, Jason Ge, Jarvis D. Haupt, Tong Zhang, Tuo Zhao:
On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning. NIPS 2017: 2742-2752 - [c19]Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhen Liu, Bo Dai, Tuo Zhao, Le Song:
Deep Hyperspherical Learning. NIPS 2017: 3950-3960 - [i14]Zhehui Chen, Forest L. Yang, Chris Junchi Li, Tuo Zhao:
Online Multiview Representation Learning: Dropping Convexity for Better Efficiency. CoRR abs/1702.08134 (2017) - [i13]Haotian Pang, Tuo Zhao, Robert J. Vanderbei, Han Liu:
Homotopy Parametric Simplex Method for Sparse Learning. CoRR abs/1704.01079 (2017) - [i12]Lin F. Yang, Vladimir Braverman, Tuo Zhao, Mengdi Wang:
Dynamic Factorization and Partition of Complex Networks. CoRR abs/1705.07881 (2017) - [i11]Xingguo Li, Lin F. Yang, Jason Ge, Jarvis D. Haupt, Tong Zhang, Tuo Zhao:
On Quadratic Convergence of DC Proximal Newton Algorithm for Nonconvex Sparse Learning in High Dimensions. CoRR abs/1706.06066 (2017) - [i10]Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, Le Song:
Deep Hyperspherical Learning. CoRR abs/1711.03189 (2017) - [i9]Zhuoran Yang, Lin F. Yang, Ethan X. Fang, Tuo Zhao, Zhaoran Wang, Matey Neykov:
Misspecified Nonconvex Statistical Optimization for Phase Retrieval. CoRR abs/1712.06245 (2017) - 2016
- [j9]Tuo Zhao, Yunxin Zhao, Xin Chen:
Ensemble Acoustic Modeling for CD-DNN-HMM Using Random Forests of Phonetic Decision Trees. J. Signal Process. Syst. 82(2): 187-196 (2016) - [c18]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:
An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. AISTATS 2016: 491-499 - [c17]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Jarvis D. Haupt:
Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning. ICML 2016: 917-925 - [c16]Xiaoqin Xue, Yifan Zhang, Tuo Zhao, Mingyi He:
Subpixel mapping of hyperspectral images based on collaborative representation. IGARSS 2016: 3298-3301 - [c15]Tuo Zhao, Yifan Zhang, Xiaoqin Xue, Mingyi He:
Hyperspectral and multispectral image fusion using collaborative representation with local adaptive dictionary pair. IGARSS 2016: 7212-7215 - [c14]Davood Hajinezhad, Mingyi Hong, Tuo Zhao, Zhaoran Wang:
NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization. NIPS 2016: 3207-3215 - [i8]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Jarvis D. Haupt:
Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning. CoRR abs/1605.02711 (2016) - [i7]Davood Hajinezhad, Mingyi Hong, Tuo Zhao, Zhaoran Wang:
NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization. CoRR abs/1605.07747 (2016) - [i6]Xingguo Li, Jarvis D. Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao:
A First Order Free Lunch for SQRT-Lasso. CoRR abs/1605.07950 (2016) - [i5]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:
An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. CoRR abs/1607.02793 (2016) - [i4]Lin F. Yang, Raman Arora, Vladimir Braverman, Tuo Zhao:
The Physical Systems Behind Optimization Algorithms. CoRR abs/1612.02803 (2016) - [i3]Xingguo Li, Zhaoran Wang, Junwei Lu, Raman Arora, Jarvis D. Haupt, Han Liu, Tuo Zhao:
Symmetry, Saddle Points, and Global Geometry of Nonconvex Matrix Factorization. CoRR abs/1612.09296 (2016) - 2015
- [j8]Xingguo Li, Tuo Zhao, Xiaoming Yuan, Han Liu:
The flare package for high dimensional linear regression and precision matrix estimation in R. J. Mach. Learn. Res. 16: 553-557 (2015) - [j7]Han Liu, Lie Wang, Tuo Zhao:
Calibrated multivariate regression with application to neural semantic basis discovery. J. Mach. Learn. Res. 16: 1579-1606 (2015) - [c13]Tuo Zhao, Yunxin Zhao, Xin Chen:
Time-frequency kernel-based CNN for speech recognition. INTERSPEECH 2015: 1888-1892 - [c12]Tuo Zhao, Zhaoran Wang, Han Liu:
A Nonconvex Optimization Framework for Low Rank Matrix Estimation. NIPS 2015: 559-567 - 2014
- [j6]Tuo Zhao, Han Liu:
Calibrated Precision Matrix Estimation for High-Dimensional Elliptical Distributions. IEEE Trans. Inf. Theory 60(12): 7874-7887 (2014) - [c11]Yunxin Zhao, Tuo Zhao, Xin Chen:
Multilevel sampling and aggregation for discriminative training. ISCSLP 2014: 93-97 - [c10]Tuo Zhao, Yunxin Zhao, Xin Chen:
Building an ensemble of CD-DNN-HMM acoustic model using random forests of phonetic decision trees. ISCSLP 2014: 98-102 - [c9]Han Liu, Lie Wang, Tuo Zhao:
Multivariate Regression with Calibration. NIPS 2014: 127-135 - [c8]Tuo Zhao, Mo Yu, Yiming Wang, Raman Arora, Han Liu:
Accelerated Mini-batch Randomized Block Coordinate Descent Method. NIPS 2014: 3329-3337 - [i2]Tuo Zhao, Han Liu, Tong Zhang:
Pathwise Coordinate Optimization for Sparse Learning: Algorithm and Theory. CoRR abs/1412.7477 (2014) - 2013
- [j5]Fang Han, Tuo Zhao, Han Liu:
CODA: high dimensional copula discriminant analysis. J. Mach. Learn. Res. 14(1): 629-671 (2013) - [c7]Tuo Zhao, Han Liu:
Sparse Inverse Covariance Estimation with Calibration. NIPS 2013: 2274-2282 - [i1]Han Liu, Lie Wang, Tuo Zhao:
Calibrated Multivariate Regression with Application to Neural Semantic Basis Discovery. CoRR abs/1305.2238 (2013) - 2012
- [j4]Tuo Zhao, Han Liu, Kathryn Roeder, John D. Lafferty, Larry A. Wasserman:
The huge Package for High-dimensional Undirected Graph Estimation in R. J. Mach. Learn. Res. 13: 1059-1062 (2012) - [c6]Tuo Zhao, Kathryn Roeder, Han Liu:
Smooth-projected Neighborhood Pursuit for High-dimensional Nonparanormal Graph Estimation. NIPS 2012: 162-170 - [c5]Tuo Zhao, Han Liu:
Sparse Additive Machine. AISTATS 2012: 1435-1443 - 2010
- [j3]Zhizheng Liang, Youfu Li, Tuo Zhao:
Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications. Signal Process. 90(7): 2150-2163 (2010)
2000 – 2009
- 2009
- [j2]Quan Zou, Tuo Zhao, Yang Liu, Maozu Guo:
Predicting RNA secondary structure based on the class information and Hopfield network. Comput. Biol. Medicine 39(3): 206-214 (2009) - 2008
- [j1]Tuo Zhao, Zhizheng Liang, David Zhang, Quan Zou:
Interest filter vs. interest operator: Face recognition using Fisher linear discriminant based on interest filter representation. Pattern Recognit. Lett. 29(13): 1849-1857 (2008) - 2007
- [c4]Tuo Zhao, Zhizheng Liang, David Zhang, Yahui Liu:
A Novel Null Space-Based Kernel Discriminant Analysis for Face Recognition. ICB 2007: 547-556 - 2006
- [c3]Xiaoyue Jiang, Tuo Zhao, Rongchun Zhao:
Curve Mapping Based Illumination Adjustment for Face Detection. ACIVS 2006: 687-698 - [c2]Zhizheng Liang, Tuo Zhao:
Feature selection for linear support vector machines. ICPR (2) 2006: 606-609 - 2005
- [c1]Xiaoyue Jiang, Tuo Zhao, Rong Xiao, Rongchun Zhao:
Re-lighting and Compensation for Face Images. CAIP 2005: 288-295
Coauthor Index
aka: Lin F. Yang
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-25 23:45 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint