default search action
Bo Dai 0001
Person information
- affiliation: Google Brain, USA
- affiliation (PhD): Georgia Institute of Technology, Atlanta, GA, USA
- affiliation (former): Chinese Academy of Science, Institute of Automation, NLPR/LIAMA, Beijing, China
Other persons with the same name
- Bo Dai 0002 — Shanghai AI Laboratory, China (and 2 more)
- Bo Dai 0003 — University of Technology of Troyes, Charles Delaunay Institute, France
- Bo Dai 0004 — Chinese Academy of Sciences, Shenyang Institute of Automation, China
- Bo Dai 0005 — University of Shanghai for Science and Technology, MOE Engineering Research Center of Optical Instrument and System, China (and 1 more)
- Bo Dai 0006 — University of Electronic Science and Technology, School of Computer Science and Engineering, Chengdu, China
- Bo Dai 0007 — State Grid Zhejiang Electric Power Corporation Information and Telecommunication Branch, China
- Bo Dai 0008 — Hohai University, College of Water Conservancy and Hydropower Engineering, Nanjing, China
- Bo Dai 0009 — Beijing Institute of Petrochemical Technology, College of Information Engineering, China
- Bo Dai 0010 — Northeastern University, College of Information Science & Engineering, Shenyang, China (and 1 more)
- Bo Dai 0011 — Beijing University of Posts and Telecommunications, School of Economics, China
- Bo Dai 0012 — China Galaxy Securities Co. Ltd., Chengdu, China
- Bo Dai 0013 — Purdue University, Department of Computer Science, West Lafayette, IN, USA
- Bo Dai 0014 — Xidian University, State Key Laboratory of Integrated Services Networks, Xi'an, China
- Bo Dai 0015 — Beihang University, School of Instrumentation Science and Opto-electronics Engineering, Beijing, China
- Bo Dai 0016 — Southeast University, School of Instrument Science and Engineering, Nanjing, China
- Bo Dai 0017 — Tsinghua University, Beijing, China (and 2 more)
- Bo Dai 0018 — State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen, China (and 1 more)
- Bo Dai 0019 — Beijing Jiaotong University, School of Mechanical and Electronic Engineering, China
- Bo Dai 0020 — Hunan University of Technology and Business, School of Management, Changsha, China
- Bo Dai 0021 — Chengdu University of Technology, China
- Bo Dai 0022 — Tiangong University, School of Electrical and Electronic Engineering, Tianjin, China
- Bo Dai 0023 — Southwest University of Science and Technology, State Key Laboratory for Environmental-Friendly Energy Materials, Mianyang, China
- Bo Dai 0024 — Guilin University of Electronic Technology, School of Electronic Engineering and Automation, Guangxi, China
- Bo Dai 0025 — Peking University, School of Intelligence Science and Technology, Beijing, China (and 1 more)
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c96]Sherry Yang, Yilun Du, Bo Dai, Dale Schuurmans, Joshua B. Tenenbaum, Pieter Abbeel:
Probabilistic Adaptation of Black-Box Text-to-Video Models. ICLR 2024 - [c95]Fengdi Che, Chenjun Xiao, Jincheng Mei, Bo Dai, Ramki Gummadi, Oscar A. Ramirez, Christopher K. Harris, A. Rupam Mahmood, Dale Schuurmans:
Target Networks and Over-parameterization Stabilize Off-policy Bootstrapping with Function Approximation. ICML 2024 - [c94]Haotian Sun, Yuchen Zhuang, Wei Wei, Chao Zhang, Bo Dai:
BBox-Adapter: Lightweight Adapting for Black-Box Large Language Models. ICML 2024 - [c93]Hongming Zhang, Tongzheng Ren, Chenjun Xiao, Dale Schuurmans, Bo Dai:
Provable Representation with Efficient Planning for Partially Observable Reinforcement Learning. ICML 2024 - [i88]Shicong Cen, Jincheng Mei, Hanjun Dai, Dale Schuurmans, Yuejie Chi, Bo Dai:
Beyond Expectations: Learning with Stochastic Dominance Made Practical. CoRR abs/2402.02698 (2024) - [i87]Haotian Sun, Yuchen Zhuang, Wei Wei, Chao Zhang, Bo Dai:
BBox-Adapter: Lightweight Adapting for Black-Box Large Language Models. CoRR abs/2402.08219 (2024) - [i86]Jincheng Mei, Zixin Zhong, Bo Dai, Alekh Agarwal, Csaba Szepesvári, Dale Schuurmans:
Stochastic Gradient Succeeds for Bandits. CoRR abs/2402.17235 (2024) - [i85]Haitong Ma, Zhaolin Ren, Bo Dai, Na Li:
Skill Transfer and Discovery for Sim-to-Real Learning: A Representation-Based Viewpoint. CoRR abs/2404.05051 (2024) - [i84]Yang Hu, Haitong Ma, Bo Dai, Na Li:
Efficient Duple Perturbation Robustness in Low-rank MDPs. CoRR abs/2404.08089 (2024) - [i83]Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale Schuurmans, Yuejie Chi, Bo Dai:
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF. CoRR abs/2405.19320 (2024) - [i82]Fengdi Che, Chenjun Xiao, Jincheng Mei, Bo Dai, Ramki Gummadi, Oscar A. Ramirez, Christopher K. Harris, A. Rupam Mahmood, Dale Schuurmans:
Target Networks and Over-parameterization Stabilize Off-policy Bootstrapping with Function Approximation. CoRR abs/2405.21043 (2024) - [i81]Yuchen Zhuang, Haotian Sun, Yue Yu, Rushi Qiang, Qifan Wang, Chao Zhang, Bo Dai:
HYDRA: Model Factorization Framework for Black-Box LLM Personalization. CoRR abs/2406.02888 (2024) - [i80]Dmitry Shribak, Chen-Xiao Gao, Yitong Li, Chenjun Xiao, Bo Dai:
Diffusion Spectral Representation for Reinforcement Learning. CoRR abs/2406.16121 (2024) - [i79]Hanjun Dai, Bethany Wang, Xingchen Wan, Bo Dai, Sherry Yang, Azade Nova, Pengcheng Yin, Phitchaya Mangpo Phothilimthana, Charles Sutton, Dale Schuurmans:
UQE: A Query Engine for Unstructured Databases. CoRR abs/2407.09522 (2024) - [i78]Tongzheng Ren, Haotian Sun, Antoine Moulin, Arthur Gretton, Bo Dai:
Spectral Representation for Causal Estimation with Hidden Confounders. CoRR abs/2407.10448 (2024) - [i77]Haotian Sun, Tao Lei, Bowen Zhang, Yanghao Li, Haoshuo Huang, Ruoming Pang, Bo Dai, Nan Du:
EC-DIT: Scaling Diffusion Transformers with Adaptive Expert-Choice Routing. CoRR abs/2410.02098 (2024) - [i76]Achint Soni, Sreyas Venkataraman, Abhranil Chandra, Sebastian Fischmeister, Percy Liang, Bo Dai, Sherry Yang:
VideoAgent: Self-Improving Video Generation. CoRR abs/2410.10076 (2024) - [i75]Zhaolin Ren, Runyu Zhang, Bo Dai, Na Li:
Scalable spectral representations for network multiagent control. CoRR abs/2410.17221 (2024) - [i74]Yang Hu, Tianyi Chen, Na Li, Kai Wang, Bo Dai:
Primal-Dual Spectral Representation for Off-policy Evaluation. CoRR abs/2410.17538 (2024) - [i73]Tong Yang, Jincheng Mei, Hanjun Dai, Zixin Wen, Shicong Cen, Dale Schuurmans, Yuejie Chi, Bo Dai:
Faster WIND: Accelerating Iterative Best-of-N Distillation for LLM Alignment. CoRR abs/2410.20727 (2024) - [i72]Changhao Li, Yuchen Zhuang, Rushi Qiang, Haotian Sun, Hanjun Dai, Chao Zhang, Bo Dai:
Matryoshka: Learning to Drive Black-Box LLMs with LLMs. CoRR abs/2410.20749 (2024) - 2023
- [c92]Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, Dale Schuurmans:
Discrete Langevin Samplers via Wasserstein Gradient Flow. AISTATS 2023: 6290-6313 - [c91]Hanjun Dai, Yuan Xue, Niao He, Yixin Wang, Na Li, Dale Schuurmans, Bo Dai:
Learning to Optimize with Stochastic Dominance Constraints. AISTATS 2023: 8991-9009 - [c90]Tongzheng Ren, Zhaolin Ren, Na Li, Bo Dai:
Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding. CDC 2023: 795-800 - [c89]Jiayi Chen, Hanjun Dai, Bo Dai, Aidong Zhang, Wei Wei:
On Task-personalized Multimodal Few-shot Learning for Visually-rich Document Entity Retrieval. EMNLP (Findings) 2023: 9006-9025 - [c88]Tongzheng Ren, Chenjun Xiao, Tianjun Zhang, Na Li, Zhaoran Wang, Sujay Sanghavi, Dale Schuurmans, Bo Dai:
Latent Variable Representation for Reinforcement Learning. ICLR 2023 - [c87]Tongzheng Ren, Tianjun Zhang, Lisa Lee, Joseph E. Gonzalez, Dale Schuurmans, Bo Dai:
Spectral Decomposition Representation for Reinforcement Learning. ICLR 2023 - [c86]Haoran Sun, Bo Dai, Charles Sutton, Dale Schuurmans, Hanjun Dai:
Any-scale Balanced Samplers for Discrete Space. ICLR 2023 - [c85]Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, Hanjun Dai:
Score-based Continuous-time Discrete Diffusion Models. ICLR 2023 - [c84]Jincheng Mei, Zixin Zhong, Bo Dai, Alekh Agarwal, Csaba Szepesvári, Dale Schuurmans:
Stochastic Gradient Succeeds for Bandits. ICML 2023: 24325-24360 - [c83]Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, Pieter Abbeel:
Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023 - [c82]Jincheng Mei, Bo Dai, Alekh Agarwal, Mohammad Ghavamzadeh, Csaba Szepesvári, Dale Schuurmans:
Ordering-based Conditions for Global Convergence of Policy Gradient Methods. NeurIPS 2023 - [c81]Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, Chao Zhang:
AdaPlanner: Adaptive Planning from Feedback with Language Models. NeurIPS 2023 - [c80]Tianjun Zhang, Tongzheng Ren, Chenjun Xiao, Wenli Xiao, Joseph E. Gonzalez, Dale Schuurmans, Bo Dai:
Energy-based Predictive Representations for Partially Observed Reinforcement Learning. UAI 2023: 2477-2487 - [i71]Jincheng Mei, Wesley Chung, Valentin Thomas, Bo Dai, Csaba Szepesvári, Dale Schuurmans:
The Role of Baselines in Policy Gradient Optimization. CoRR abs/2301.06276 (2023) - [i70]Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B. Tenenbaum, Dale Schuurmans, Pieter Abbeel:
Learning Universal Policies via Text-Guided Video Generation. CoRR abs/2302.00111 (2023) - [i69]Tongzheng Ren, Zhaolin Ren, Na Li, Bo Dai:
Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding. CoRR abs/2304.03907 (2023) - [i68]Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, Chao Zhang:
AdaPlanner: Adaptive Planning from Feedback with Language Models. CoRR abs/2305.16653 (2023) - [i67]Mengjiao Yang, Yilun Du, Bo Dai, Dale Schuurmans, Joshua B. Tenenbaum, Pieter Abbeel:
Probabilistic Adaptation of Text-to-Video Models. CoRR abs/2306.01872 (2023) - [i66]Lingkai Kong, Wenhao Mu, Jiaming Cui, Yuchen Zhuang, B. Aditya Prakash, Bo Dai, Chao Zhang:
DF2: Distribution-Free Decision-Focused Learning. CoRR abs/2308.05889 (2023) - [i65]Jiayi Chen, Hanjun Dai, Bo Dai, Aidong Zhang, Wei Wei:
On Task-personalized Multimodal Few-shot Learning for Visually-rich Document Entity Retrieval. CoRR abs/2311.00693 (2023) - [i64]Hongming Zhang, Tongzheng Ren, Chenjun Xiao, Dale Schuurmans, Bo Dai:
Provable Representation with Efficient Planning for Partially Observable Reinforcement Learning. CoRR abs/2311.12244 (2023) - 2022
- [c79]Zhuangdi Zhu, Kaixiang Lin, Bo Dai, Jiayu Zhou:
Self-Adaptive Imitation Learning: Learning Tasks with Delayed Rewards from Sub-optimal Demonstrations. AAAI 2022: 9269-9277 - [c78]Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker, Dale Schuurmans:
Offline Policy Selection under Uncertainty. AISTATS 2022: 4376-4396 - [c77]Chenjun Xiao, Ilbin Lee, Bo Dai, Dale Schuurmans, Csaba Szepesvári:
The Curse of Passive Data Collection in Batch Reinforcement Learning. AISTATS 2022: 8413-8438 - [c76]Qifan Wang, Li Yang, Jingang Wang, Jitin Krishnan, Bo Dai, Sinong Wang, Zenglin Xu, Madian Khabsa, Hao Ma:
SMARTAVE: Structured Multimodal Transformer for Product Attribute Value Extraction. EMNLP (Findings) 2022: 263-276 - [c75]Hanjun Dai, Yuan Xue, Zia Syed, Dale Schuurmans, Bo Dai:
Neural Stochastic Dual Dynamic Programming. ICLR 2022 - [c74]Chenjun Xiao, Bo Dai, Jincheng Mei, Oscar A. Ramirez, Ramki Gummadi, Chris Harris, Dale Schuurmans:
Understanding and Leveraging Overparameterization in Recursive Value Estimation. ICLR 2022 - [c73]Hanjun Dai, Mengjiao Yang, Yuan Xue, Dale Schuurmans, Bo Dai:
Marginal Distribution Adaptation for Discrete Sets via Module-Oriented Divergence Minimization. ICML 2022: 4605-4617 - [c72]Jonathan Lee, George Tucker, Ofir Nachum, Bo Dai:
Model Selection in Batch Policy Optimization. ICML 2022: 12542-12569 - [c71]Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph Gonzalez, Dale Schuurmans, Bo Dai:
Making Linear MDPs Practical via Contrastive Representation Learning. ICML 2022: 26447-26466 - [c70]Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, Dale Schuurmans:
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs. KDD 2022: 1472-1482 - [c69]Jonathan N. Lee, George Tucker, Ofir Nachum, Bo Dai, Emma Brunskill:
Oracle Inequalities for Model Selection in Offline Reinforcement Learning. NeurIPS 2022 - [c68]Jincheng Mei, Wesley Chung, Valentin Thomas, Bo Dai, Csaba Szepesvári, Dale Schuurmans:
The Role of Baselines in Policy Gradient Optimization. NeurIPS 2022 - [c67]Runyu Zhang, Jincheng Mei, Bo Dai, Dale Schuurmans, Na Li:
On the Global Convergence Rates of Decentralized Softmax Gradient Play in Markov Potential Games. NeurIPS 2022 - [c66]Tongzheng Ren, Tianjun Zhang, Csaba Szepesvári, Bo Dai:
A free lunch from the noise: Provable and practical exploration for representation learning. UAI 2022: 1686-1696 - [c65]Yuyan Wang, Zhe Zhao, Bo Dai, Christopher Fifty, Dong Lin, Lichan Hong, Li Wei, Ed H. Chi:
Can Small Heads Help? Understanding and Improving Multi-Task Generalization. WWW 2022: 3009-3019 - [i63]Runyu Zhang, Jincheng Mei, Bo Dai, Dale Schuurmans, Na Li:
On the Effect of Log-Barrier Regularization in Decentralized Softmax Gradient Play in Multiagent Systems. CoRR abs/2202.00872 (2022) - [i62]Dylan Slack, Yinlam Chow, Bo Dai, Nevan Wichers:
SAFER: Data-Efficient and Safe Reinforcement Learning via Skill Acquisition. CoRR abs/2202.04849 (2022) - [i61]Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, Dale Schuurmans:
Discrete Langevin Sampler via Wasserstein Gradient Flow. CoRR abs/2206.14897 (2022) - [i60]Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph E. Gonzalez, Dale Schuurmans, Bo Dai:
Making Linear MDPs Practical via Contrastive Representation Learning. CoRR abs/2207.07150 (2022) - [i59]Tongzheng Ren, Tianjun Zhang, Lisa Lee, Joseph E. Gonzalez, Dale Schuurmans, Bo Dai:
Spectral Decomposition Representation for Reinforcement Learning. CoRR abs/2208.09515 (2022) - [i58]Jonathan N. Lee, George Tucker, Ofir Nachum, Bo Dai, Emma Brunskill:
Oracle Inequalities for Model Selection in Offline Reinforcement Learning. CoRR abs/2211.02016 (2022) - [i57]Hanjun Dai, Yuan Xue, Niao He, Bethany Wang, Na Li, Dale Schuurmans, Bo Dai:
Learning to Optimize with Stochastic Dominance Constraints. CoRR abs/2211.07767 (2022) - [i56]Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, Hanjun Dai:
Score-based Continuous-time Discrete Diffusion Models. CoRR abs/2211.16750 (2022) - [i55]Tongzheng Ren, Chenjun Xiao, Tianjun Zhang, Na Li, Zhaoran Wang, Sujay Sanghavi, Dale Schuurmans, Bo Dai:
Latent Variable Representation for Reinforcement Learning. CoRR abs/2212.08765 (2022) - 2021
- [c64]Haoming Jiang, Zhehui Chen, Yuyang Shi, Bo Dai, Tuo Zhao:
Learning to Defend by Learning to Attack. AISTATS 2021: 577-585 - [c63]Haoming Jiang, Bo Dai, Mengjiao Yang, Tuo Zhao, Wei Wei:
Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy Evaluation Approach. EMNLP (1) 2021: 7419-7451 - [c62]Pei-Hung Chen, Wei Wei, Cho-Jui Hsieh, Bo Dai:
Overcoming Catastrophic Forgetting by Bayesian Generative Regularization. ICML 2021: 1760-1770 - [c61]Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvári, Dale Schuurmans:
Leveraging Non-uniformity in First-order Non-convex Optimization. ICML 2021: 7555-7564 - [c60]Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michihiro Yasunaga, Haitian Sun, Dale Schuurmans, Jure Leskovec, Denny Zhou:
LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs. ICML 2021: 8959-8970 - [c59]Chenjun Xiao, Yifan Wu, Jincheng Mei, Bo Dai, Tor Lattimore, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
On the Optimality of Batch Policy Optimization Algorithms. ICML 2021: 11362-11371 - [c58]Ruoxi Sun, Hanjun Dai, Li Li, Steven Kearnes, Bo Dai:
Towards understanding retrosynthesis by energy-based models. NeurIPS 2021: 10186-10194 - [c57]Tongzheng Ren, Jialian Li, Bo Dai, Simon S. Du, Sujay Sanghavi:
Nearly Horizon-Free Offline Reinforcement Learning. NeurIPS 2021: 15621-15634 - [c56]Jincheng Mei, Bo Dai, Chenjun Xiao, Csaba Szepesvári, Dale Schuurmans:
Understanding the Effect of Stochasticity in Policy Optimization. NeurIPS 2021: 19339-19351 - [c55]Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure Leskovec, Dale Schuurmans, Bo Dai:
Combiner: Full Attention Transformer with Sparse Computation Cost. NeurIPS 2021: 22470-22482 - [i54]Haoming Jiang, Bo Dai, Mengjiao Yang, Wei Wei, Tuo Zhao:
Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy Evaluation Approach. CoRR abs/2102.10242 (2021) - [i53]Zhuangdi Zhu, Kaixiang Lin, Bo Dai, Jiayu Zhou:
Off-Policy Imitation Learning from Observations. CoRR abs/2102.13185 (2021) - [i52]Tongzheng Ren, Jialian Li, Bo Dai, Simon S. Du, Sujay Sanghavi:
Nearly Horizon-Free Offline Reinforcement Learning. CoRR abs/2103.14077 (2021) - [i51]Chenjun Xiao, Yifan Wu, Tor Lattimore, Bo Dai, Jincheng Mei, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
On the Optimality of Batch Policy Optimization Algorithms. CoRR abs/2104.02293 (2021) - [i50]Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvári, Dale Schuurmans:
Leveraging Non-uniformity in First-order Non-convex Optimization. CoRR abs/2105.06072 (2021) - [i49]Chenjun Xiao, Ilbin Lee, Bo Dai, Dale Schuurmans, Csaba Szepesvári:
On the Sample Complexity of Batch Reinforcement Learning with Policy-Induced Data. CoRR abs/2106.09973 (2021) - [i48]Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure Leskovec, Dale Schuurmans, Bo Dai:
Combiner: Full Attention Transformer with Sparse Computation Cost. CoRR abs/2107.05768 (2021) - [i47]Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, Dale Schuurmans:
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs. CoRR abs/2110.14890 (2021) - [i46]Jincheng Mei, Bo Dai, Chenjun Xiao, Csaba Szepesvári, Dale Schuurmans:
Understanding the Effect of Stochasticity in Policy Optimization. CoRR abs/2110.15572 (2021) - [i45]Tongzheng Ren, Tianjun Zhang, Csaba Szepesvári, Bo Dai:
A Free Lunch from the Noise: Provable and Practical Exploration for Representation Learning. CoRR abs/2111.11485 (2021) - [i44]Hanjun Dai, Yuan Xue, Zia Syed, Dale Schuurmans, Bo Dai:
Neural Stochastic Dual Dynamic Programming. CoRR abs/2112.00874 (2021) - [i43]Jonathan N. Lee, George Tucker, Ofir Nachum, Bo Dai:
Model Selection in Batch Policy Optimization. CoRR abs/2112.12320 (2021) - 2020
- [c54]Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, Le Song:
Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees. ICLR 2020 - [c53]Ruiyi Zhang, Bo Dai, Lihong Li, Dale Schuurmans:
GenDICE: Generalized Offline Estimation of Stationary Values. ICLR 2020 - [c52]Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, Dale Schuurmans:
Scalable Deep Generative Modeling for Sparse Graphs. ICML 2020: 2302-2312 - [c51]Junfeng Wen, Bo Dai, Lihong Li, Dale Schuurmans:
Batch Stationary Distribution Estimation. ICML 2020: 10203-10213 - [c50]Mengjiao Yang, Bo Dai, Hanjun Dai, Dale Schuurmans:
Energy-Based Processes for Exchangeable Data. ICML 2020: 10681-10692 - [c49]Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
CoinDICE: Off-Policy Confidence Interval Estimation. NeurIPS 2020 - [c48]Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, Dale Schuurmans:
Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration. NeurIPS 2020 - [c47]Luofeng Liao, You-Lin Chen, Zhuoran Yang, Bo Dai, Mladen Kolar, Zhaoran Wang:
Provably Efficient Neural Estimation of Structural Equation Models: An Adversarial Approach. NeurIPS 2020 - [c46]Jincheng Mei, Chenjun Xiao, Bo Dai, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
Escaping the Gravitational Pull of Softmax. NeurIPS 2020 - [c45]Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, Tomas Pfister:
Differentiable Top-k with Optimal Transport. NeurIPS 2020 - [c44]Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, Dale Schuurmans:
Off-Policy Evaluation via the Regularized Lagrangian. NeurIPS 2020 - [c43]Zhuangdi Zhu, Kaixiang Lin, Bo Dai, Jiayu Zhou:
Off-Policy Imitation Learning from Observations. NeurIPS 2020 - [i42]Hanjun Dai, Chengtao Li, Connor W. Coley, Bo Dai, Le Song:
Retrosynthesis Prediction with Conditional Graph Logic Network. CoRR abs/2001.01408 (2020) - [i41]Ofir Nachum, Bo Dai:
Reinforcement Learning via Fenchel-Rockafellar Duality. CoRR abs/2001.01866 (2020) - [i40]Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, Tomas Pfister:
Differentiable Top-k Operator with Optimal Transport. CoRR abs/2002.06504 (2020) - [i39]Ruiyi Zhang, Bo Dai, Lihong Li, Dale Schuurmans:
GenDICE: Generalized Offline Estimation of Stationary Values. CoRR abs/2002.09072 (2020) - [i38]Junfeng Wen, Bo Dai, Lihong Li, Dale Schuurmans:
Batch Stationary Distribution Estimation. CoRR abs/2003.00722 (2020) - [i37]Mengjiao Yang, Bo Dai, Hanjun Dai, Dale Schuurmans:
Energy-Based Processes for Exchangeable Data. CoRR abs/2003.07521 (2020) - [i36]Zhuangdi Zhu, Kaixiang Lin, Bo Dai, Jiayu Zhou:
Learning Sparse Rewarded Tasks from Sub-Optimal Demonstrations. CoRR abs/2004.00530 (2020) - [i35]Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, Dale Schuurmans:
Scalable Deep Generative Modeling for Sparse Graphs. CoRR abs/2006.15502 (2020) - [i34]Luofeng Liao, You-Lin Chen, Zhuoran Yang, Bo Dai, Zhaoran Wang, Mladen Kolar:
Provably Efficient Neural Estimation of Structural Equation Model: An Adversarial Approach. CoRR abs/2007.01290 (2020) - [i33]Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, Dale Schuurmans:
Off-Policy Evaluation via the Regularized Lagrangian. CoRR abs/2007.03438 (2020) - [i32]Ruoxi Sun, Hanjun Dai, Li Li, Steven Kearnes, Bo Dai:
Energy-based View of Retrosynthesis. CoRR abs/2007.13437 (2020) - [i31]Yuyan Wang, Zhe Zhao, Bo Dai, Christopher Fifty, Dong Lin, Lichan Hong, Ed H. Chi:
Small Towers Make Big Differences. CoRR abs/2008.05808 (2020) - [i30]Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
CoinDICE: Off-Policy Confidence Interval Estimation. CoRR abs/2010.11652 (2020) - [i29]Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, Dale Schuurmans:
Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration. CoRR abs/2011.05363 (2020) - [i28]Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker, Dale Schuurmans:
Offline Policy Selection under Uncertainty. CoRR abs/2012.06919 (2020)
2010 – 2019
- 2019
- [c42]Bo Dai, Hanjun Dai, Arthur Gretton, Le Song, Dale Schuurmans, Niao He:
Kernel Exponential Family Estimation via Doubly Dual Embedding. AISTATS 2019: 2321-2330 - [c41]Zhehui Chen, Haoming Jiang, Yuyang Shi, Bo Dai, Tuo Zhao:
Learning to Defense by Learning to Attack. DGS@ICLR 2019 - [c40]Dieterich Lawson, George Tucker, Bo Dai, Rajesh Ranganath:
Revisiting Auxiliary Latent Variables in Generative Models. DGS@ICLR 2019 - [c39]Ofir Nachum, Yinlam Chow, Bo Dai, Lihong Li:
DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections. NeurIPS 2019: 2315-2325 - [c38]Dieterich Lawson, George Tucker, Bo Dai, Rajesh Ranganath:
Energy-Inspired Models: Learning with Sampler-Induced Distributions. NeurIPS 2019: 8499-8511 - [c37]Hanjun Dai, Chengtao Li, Connor W. Coley, Bo Dai, Le Song:
Retrosynthesis Prediction with Conditional Graph Logic Network. NeurIPS 2019: 8870-8880 - [c36]Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, Dale Schuurmans:
Exponential Family Estimation via Adversarial Dynamics Embedding. NeurIPS 2019: 10977-10988 - [c35]Albert E. Shaw, Wei Wei, Weiyang Liu, Le Song, Bo Dai:
Meta Architecture Search. NeurIPS 2019: 11225-11235 - [i27]Binghong Chen, Bo Dai, Le Song:
Learning to Plan via Neural Exploration-Exploitation Trees. CoRR abs/1903.00070 (2019) - [i26]Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, Dale Schuurmans:
Exponential Family Estimation via Adversarial Dynamics Embedding. CoRR abs/1904.12083 (2019) - [i25]Harsh Shrivastava, Eugene Bart, Bob Price, Hanjun Dai, Bo Dai, Srinivas Aluru:
Cooperative neural networks (CoNN): Exploiting prior independence structure for improved classification. CoRR abs/1906.00291 (2019) - [i24]Ofir Nachum, Yinlam Chow, Bo Dai, Lihong Li:
DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections. CoRR abs/1906.04733 (2019) - [i23]Dieterich Lawson, George Tucker, Bo Dai, Rajesh Ranganath:
Energy-Inspired Models: Learning with Sampler-Induced Distributions. CoRR abs/1910.14265 (2019) - [i22]Patrick H. Chen, Wei Wei, Cho-Jui Hsieh, Bo Dai:
Overcoming Catastrophic Forgetting by Generative Regularization. CoRR abs/1912.01238 (2019) - [i21]Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, Dale Schuurmans:
AlgaeDICE: Policy Gradient from Arbitrary Experience. CoRR abs/1912.02074 (2019) - 2018
- [b1]Bo Dai:
Learning over functions, distributions and dynamics via stochastic optimization. Georgia Institute of Technology, Atlanta, GA, USA, 2018 - [c34]Woosang Lim, Rundong Du, Bo Dai, Kyomin Jung, Le Song, Haesun Park:
Multi-scale Nystrom Method. AISTATS 2018: 68-76 - [c33]Weiyang Liu, Zhen Liu, Zhiding Yu, Bo Dai, Rongmei Lin, Yisen Wang, James M. Rehg, Le Song:
Decoupled Networks. CVPR 2018: 2771-2779 - [c32]Bo Dai, Albert E. Shaw, Niao He, Lihong Li, Le Song:
Boosting the Actor with Dual Critic. ICLR (Poster) 2018 - [c31]Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, Le Song:
Syntax-Directed Variational Autoencoder for Structured Data. ICLR (Poster) 2018 - [c30]Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alexander J. Smola, Le Song:
Learning Steady-States of Iterative Algorithms over Graphs. ICML 2018: 1114-1122 - [c29]Bo Dai, Albert E. Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, Le Song:
SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation. ICML 2018: 1133-1142 - [c28]Weiyang Liu, Bo Dai, Xingguo Li, Zhen Liu, James M. Rehg, Le Song:
Towards Black-box Iterative Machine Teaching. ICML 2018: 3147-3155 - [c27]Hao Liu, Lirong He, Haoli Bai, Bo Dai, Kun Bai, Zenglin Xu:
Structured Inference for Recurrent Hidden Semi-markov Model. IJCAI 2018: 2447-2453 - [c26]Harsh Shrivastava, Eugene Bart, Bob Price, Hanjun Dai, Bo Dai, Srinivas Aluru:
Cooperative neural networks (CoNN): Exploiting prior independence structure for improved classification. NeurIPS 2018: 4130-4140 - [c25]Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, Le Song:
Learning towards Minimum Hyperspherical Energy. NeurIPS 2018: 6225-6236 - [c24]Bo Dai, Hanjun Dai, Niao He, Weiyang Liu, Zhen Liu, Jianshu Chen, Lin Xiao, Le Song:
Coupled Variational Bayes via Optimization Embedding. NeurIPS 2018: 9713-9723 - [c23]Yingxiang Yang, Bo Dai, Negar Kiyavash, Niao He:
Predictive Approximate Bayesian Computation via Saddle Points. NeurIPS 2018: 10282-10291 - [c22]Yisen Wang, Bo Dai, Lingkai Kong, Sarah Monazam Erfani, James Bailey, Hongyuan Zha:
Learning Deep Hidden Nonlinear Dynamics from Aggregate Data. UAI 2018: 83-92 - [i20]Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, Le Song:
Syntax-Directed Variational Autoencoder for Structured Data. CoRR abs/1802.08786 (2018) - [i19]Weiyang Liu, Zhen Liu, Zhiding Yu, Bo Dai, Rongmei Lin, Yisen Wang, James M. Rehg, Le Song:
Decoupled Networks. CoRR abs/1804.08071 (2018) - [i18]Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, Le Song:
Learning towards Minimum Hyperspherical Energy. CoRR abs/1805.09298 (2018) - [i17]Yisen Wang, Bo Dai, Lingkai Kong, Sarah Monazam Erfani, James Bailey, Hongyuan Zha:
Learning Deep Hidden Nonlinear Dynamics from Aggregate Data. CoRR abs/1807.08237 (2018) - [i16]Zhehui Chen, Haoming Jiang, Bo Dai, Tuo Zhao:
Learning to Defense by Learning to Attack. CoRR abs/1811.01213 (2018) - [i15]Bo Dai, Hanjun Dai, Arthur Gretton, Le Song, Dale Schuurmans, Niao He:
Kernel Exponential Family Estimation via Doubly Dual Embedding. CoRR abs/1811.02228 (2018) - [i14]Albert E. Shaw, Bo Dai, Weiyang Liu, Le Song:
Bayesian Meta-network Architecture Learning. CoRR abs/1812.09584 (2018) - 2017
- [c21]Bo Dai, Niao He, Yunpeng Pan, Byron Boots, Le Song:
Learning from Conditional Distributions via Dual Embeddings. AISTATS 2017: 1458-1467 - [c20]Hanjun Dai, Bo Dai, Yan-Ming Zhang, Shuang Li, Le Song:
Recurrent Hidden Semi-Markov Model. ICLR (Poster) 2017 - [c19]Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He, Le Song:
Stochastic Generative Hashing. ICML 2017: 913-922 - [c18]Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B. Smith, James M. Rehg, Le Song:
Iterative Machine Teaching. ICML 2017: 2149-2158 - [c17]Bin Liu, Zenglin Xu, Bo Dai, Haoli Bai, Xianghong Fang, Yazhou Ren, Shandian Zhe:
Learning from semantically dependent multi-tasks. IJCNN 2017: 3498-3505 - [c16]Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhen Liu, Bo Dai, Tuo Zhao, Le Song:
Deep Hyperspherical Learning. NIPS 2017: 3950-3960 - [i13]Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He, Le Song:
Stochastic Generative Hashing. CoRR abs/1701.02815 (2017) - [i12]Weiyang Liu, Bo Dai, James M. Rehg, Le Song:
Iterative Machine Teaching. CoRR abs/1705.10470 (2017) - [i11]Weiyang Liu, Bo Dai, Xingguo Li, James M. Rehg, Le Song:
Towards Black-box Iterative Machine Teaching. CoRR abs/1710.07742 (2017) - [i10]Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, Le Song:
Deep Hyperspherical Learning. CoRR abs/1711.03189 (2017) - [i9]Bo Dai, Albert E. Shaw, Niao He, Lihong Li, Le Song:
Boosting the Actor with Dual Critic. CoRR abs/1712.10282 (2017) - [i8]Bo Dai, Albert E. Shaw, Lihong Li, Lin Xiao, Niao He, Jianshu Chen, Le Song:
Smoothed Dual Embedding Control. CoRR abs/1712.10285 (2017) - 2016
- [j3]Xin Qi, Qing Yang, David T. Nguyen, Ge Peng, Gang Zhou, Bo Dai, Daqing Zhang, Yantao Li:
A Context-Aware Framework for Reducing Bandwidth Usage of Mobile Video Chats. IEEE Trans. Multim. 18(8): 1640-1649 (2016) - [c15]Bo Dai, Niao He, Hanjun Dai, Le Song:
Provable Bayesian Inference via Particle Mirror Descent. AISTATS 2016: 985-994 - [c14]Hanjun Dai, Bo Dai, Le Song:
Discriminative Embeddings of Latent Variable Models for Structured Data. ICML 2016: 2702-2711 - [i7]Hanjun Dai, Bo Dai, Le Song:
Discriminative Embeddings of Latent Variable Models for Structured Data. CoRR abs/1603.05629 (2016) - [i6]Bo Dai, Niao He, Yunpeng Pan, Byron Boots, Le Song:
Learning from Conditional Distributions via Dual Kernel Embeddings. CoRR abs/1607.04579 (2016) - 2015
- [i5]Bo Dai, Niao He, Hanjun Dai, Le Song:
Scalable Bayesian Inference via Particle Mirror Descent. CoRR abs/1506.03101 (2015) - 2014
- [j2]Gang Niu, Bo Dai, Makoto Yamada, Masashi Sugiyama:
Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization. Neural Comput. 26(8): 1717-1762 (2014) - [c13]Le Song, Animashree Anandkumar, Bo Dai, Bo Xie:
Nonparametric Estimation of Multi-View Latent Variable Models. ICML 2014: 640-648 - [c12]Gang Niu, Bo Dai, Marthinus Christoffel du Plessis, Masashi Sugiyama:
Transductive Learning with Multi-class Volume Approximation. ICML 2014: 1377-1385 - [c11]Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Balcan, Le Song:
Scalable Kernel Methods via Doubly Stochastic Gradients. NIPS 2014: 3041-3049 - [i4]Gang Niu, Bo Dai, Marthinus Christoffel du Plessis, Masashi Sugiyama:
Transductive Learning with Multi-class Volume Approximation. CoRR abs/1402.0288 (2014) - [i3]Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Balcan, Le Song:
Scalable Kernel Methods via Doubly Stochastic Gradients. CoRR abs/1407.5599 (2014) - 2013
- [j1]Gang Niu, Bo Dai, Lin Shang, Masashi Sugiyama:
Maximum volume clustering: a new discriminative clustering approach. J. Mach. Learn. Res. 14(1): 2641-2687 (2013) - [c10]Gang Niu, Wittawat Jitkrittum, Bo Dai, Hirotaka Hachiya, Masashi Sugiyama:
Squared-loss Mutual Information Regularization: A Novel Information-theoretic Approach to Semi-supervised Learning. ICML (3) 2013: 10-18 - [c9]Le Song, Bo Dai:
Robust Low Rank Kernel Embeddings of Multivariate Distributions. NIPS 2013: 3228-3236 - [i2]Le Song, Animashree Anandkumar, Bo Dai, Bo Xie:
Nonparametric Estimation of Multi-View Latent Variable Models. CoRR abs/1311.3287 (2013) - 2012
- [c8]Gang Niu, Bo Dai, Makoto Yamada, Masashi Sugiyama:
Information-theoretic Semi-supervised Metric Learning via Entropy Regularization. ICML 2012 - [i1]Gang Niu, Bo Dai, Makoto Yamada, Masashi Sugiyama:
Information-theoretic Semi-supervised Metric Learning via Entropy Regularization. CoRR abs/1206.4614 (2012) - 2011
- [c7]Gang Niu, Bo Dai, Lin Shang, Masashi Sugiyama:
Maximum Volume Clustering. AISTATS 2011: 561-569 - 2010
- [c6]Bo Dai, Bao-Gang Hu, Gang Niu:
Bayesian Maximum Margin Clustering. ICDM 2010: 108-117 - [c5]Yajun Qu, Bo Dai, Bao-Gang Hu:
Neural-network based regression model with prior from ranking information. IJCNN 2010: 1-8 - [c4]Jun Jiao, Chen Shen, Bo Dai, Xuan Mo:
A Multiple Instance Approach for Keyword-Based Retrieval in Un-annotated Image Database. MMM 2010: 749-754 - [c3]Gang Niu, Bo Dai, Lin Shang, Yangsheng Ji:
Rough Margin Based Core Vector Machine. PAKDD (1) 2010: 134-141 - [c2]Bo Dai, Gang Niu:
Compact Margin Machine. PAKDD (2) 2010: 507-514 - [c1]Bo Dai, Bao-Gang Hu:
Minimum Conditional Entropy Clustering: A Discriminative Framework for Clustering. ACML 2010: 47-62
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-29 02:26 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint