default search action
Cho-Jui Hsieh
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j34]Xiawei Wang, Yao Li, Cho-Jui Hsieh, Thomas C. M. Lee:
Uncovering Distortion Differences: A Study of Adversarial Attacks and Machine Discriminability. IEEE Access 12: 117872-117883 (2024) - [j33]Jaehui Hwang, Huan Zhang, Jun-Ho Choi, Cho-Jui Hsieh, Jong-Seok Lee:
Temporal shuffling for defending deep action recognition models against adversarial attacks. Neural Networks 169: 388-397 (2024) - [j32]Zhouxing Shi, Yihan Wang, Fan Yin, Xiangning Chen, Kai-Wei Chang, Cho-Jui Hsieh:
Red Teaming Language Model Detectors with Language Models. Trans. Assoc. Comput. Linguistics 12: 174-189 (2024) - [j31]Yao Li, Tongyi Tang, Cho-Jui Hsieh, Thomas C. M. Lee:
Adversarial Examples Detection With Bayesian Neural Network. IEEE Trans. Emerg. Top. Comput. Intell. 8(5): 3654-3664 (2024) - [j30]Yue Kang, Cho-Jui Hsieh, Thomas C. M. Lee:
Online Continuous Hyperparameter Optimization for Generalized Linear Contextual Bandits. Trans. Mach. Learn. Res. 2024 (2024) - [j29]Tong Xie, Haoyu Li, Andrew Bai, Cho-Jui Hsieh:
Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation. Trans. Mach. Learn. Res. 2024 (2024) - [c210]Xiusi Chen, Jyun-Yu Jiang, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Wei Wang:
MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering. ACL (1) 2024: 254-266 - [c209]Cho-Jui Hsieh, Si Si, Felix Yu, Inderjit S. Dhillon:
Automatic Engineering of Long Prompts. ACL (Findings) 2024: 10672-10685 - [c208]Yihan Wang, Zhouxing Shi, Andrew Bai, Cho-Jui Hsieh:
Defending LLMs against Jailbreaking Attacks via Backtranslation. ACL (Findings) 2024: 16031-16046 - [c207]Yuanhao Ban, Ruochen Wang, Tianyi Zhou, Minhao Cheng, Boqing Gong, Cho-Jui Hsieh:
Understanding the Impact of Negative Prompts: When and How Do They Take Effect? ECCV (89) 2024: 190-206 - [c206]Yuanhao Xiong, Yixin Nie, Haotian Liu, Boxin Wang, Jun Chen, Rong Jin, Cho-Jui Hsieh, Lorenzo Torresani, Jie Lei:
UNICORN: A Unified Causal Video-Oriented Language-Modeling Framework for Temporal Video-Language Tasks. EMNLP 2024: 12983-12997 - [c205]Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, Cho-Jui Hsieh:
DrAttack: Prompt Decomposition and Reconstruction Makes Powerful LLMs Jailbreakers. EMNLP (Findings) 2024: 13891-13913 - [c204]Kuei-Chun Kao, Ruochen Wang, Cho-Jui Hsieh:
Solving for X and Beyond: Can Large Language Models Solve Complex Math Problems with More-Than-Two Unknowns? EMNLP (Findings) 2024: 16821-16843 - [c203]Sai Surya Duvvuri, Devvrit, Rohan Anil, Cho-Jui Hsieh, Inderjit S. Dhillon:
Combining Axes Preconditioners through Kronecker Approximation for Deep Learning. ICLR 2024 - [c202]Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix Yu, Cho-Jui Hsieh, Inderjit S. Dhillon, Sanjiv Kumar:
Two-stage LLM Fine-tuning with Less Specialization and More Generalization. ICLR 2024 - [c201]Yuanhao Xiong, Long Zhao, Boqing Gong, Ming-Hsuan Yang, Florian Schroff, Ting Liu, Cho-Jui Hsieh, Liangzhe Yuan:
Structured Video-Language Modeling with Temporal Grouping and Spatial Grounding. ICLR 2024 - [c200]Chia-Cheng Chiang, Li-Cheng Lan, Wei-Fang Sun, Chien Feng, Cho-Jui Hsieh, Chun-Yi Lee:
Expert Proximity as Surrogate Rewards for Single Demonstration Imitation Learning. ICML 2024 - [c199]Justin Cui, Ruochen Wang, Yuanhao Xiong, Cho-Jui Hsieh:
Ameliorate Spurious Correlations in Dataset Condensation. ICML 2024 - [c198]Ruochen Wang, Ting Liu, Cho-Jui Hsieh, Boqing Gong:
On Discrete Prompt Optimization for Diffusion Models. ICML 2024 - [c197]Ruochen Wang, Sohyun An, Minhao Cheng, Tianyi Zhou, Sung Ju Hwang, Cho-Jui Hsieh:
One Prompt is not Enough: Automated Construction of a Mixture-of-Expert Prompts. ICML 2024 - [c196]Lujie Yang, Hongkai Dai, Zhouxing Shi, Cho-Jui Hsieh, Russ Tedrake, Huan Zhang:
Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation. ICML 2024 - [c195]Siddhant Kharbanda, Devaansh Gupta, Erik Schultheis, Atmadeep Banerjee, Cho-Jui Hsieh, Rohit Babbar:
Gandalf: Learning Label-label Correlations in Extreme Multi-label Classification via Label Features. KDD 2024: 1360-1371 - [c194]Wei-Cheng Chang, Jyun-Yu Jiang, Jiong Zhang, Mutasem Al-Darabsah, Choon Hui Teo, Cho-Jui Hsieh, Hsiang-Fu Yu, S. V. N. Vishwanathan:
PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models. WSDM 2024: 77-86 - [c193]Jyun-Yu Jiang, Wei-Cheng Chang, Jiong Zhang, Cho-Jui Hsieh, Hsiang-Fu Yu:
Entity Disambiguation with Extreme Multi-label Ranking. WWW 2024: 4172-4180 - [i194]Yue Kang, Cho-Jui Hsieh, Thomas C. M. Lee:
Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems. CoRR abs/2401.07298 (2024) - [i193]Tong Xie, Haoyu Li, Andrew Bai, Cho-Jui Hsieh:
Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation. CoRR abs/2401.09031 (2024) - [i192]Chia-Cheng Chiang, Li-Cheng Lan, Wei-Fang Sun, Chien Feng, Cho-Jui Hsieh, Chun-Yi Lee:
Expert Proximity as Surrogate Rewards for Single Demonstration Imitation Learning. CoRR abs/2402.01057 (2024) - [i191]Andrew Bai, Chih-Kuan Yeh, Cho-Jui Hsieh, Ankur Taly:
Which Pretrain Samples to Rehearse when Finetuning Pretrained Models? CoRR abs/2402.08096 (2024) - [i190]Sen Li, Ruochen Wang, Cho-Jui Hsieh, Minhao Cheng, Tianyi Zhou:
MuLan: Multimodal-LLM Agent for Progressive Multi-Object Diffusion. CoRR abs/2402.12741 (2024) - [i189]Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, Yang You:
Sparse MeZO: Less Parameters for Better Performance in Zeroth-Order LLM Fine-Tuning. CoRR abs/2402.15751 (2024) - [i188]Yihan Wang, Zhouxing Shi, Andrew Bai, Cho-Jui Hsieh:
Defending LLMs against Jailbreaking Attacks via Backtranslation. CoRR abs/2402.16459 (2024) - [i187]Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, Cho-Jui Hsieh:
DrAttack: Prompt Decomposition and Reconstruction Makes Powerful LLM Jailbreakers. CoRR abs/2402.16914 (2024) - [i186]Lujie Yang, Hongkai Dai, Zhouxing Shi, Cho-Jui Hsieh, Russ Tedrake, Huan Zhang:
Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation for Efficient Synthesis and Verification. CoRR abs/2404.07956 (2024) - [i185]Yue Kang, Cho-Jui Hsieh, Thomas C. M. Lee:
Low-rank Matrix Bandits with Heavy-tailed Rewards. CoRR abs/2404.17709 (2024) - [i184]Siddhant Kharbanda, Devaansh Gupta, Gururaj K, Pankaj Malhotra, Cho-Jui Hsieh, Rohit Babbar:
UniDEC : Unified Dual Encoder and Classifier Training for Extreme Multi-Label Classification. CoRR abs/2405.03714 (2024) - [i183]Siddhant Kharbanda, Devaansh Gupta, Erik Schultheis, Atmadeep Banerjee, Cho-Jui Hsieh, Rohit Babbar:
Learning label-label correlations in Extreme Multi-label Classification via Label Features. CoRR abs/2405.04545 (2024) - [i182]Justin Cui, Wei-Lin Chiang, Ion Stoica, Cho-Jui Hsieh:
OR-Bench: An Over-Refusal Benchmark for Large Language Models. CoRR abs/2405.20947 (2024) - [i181]Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, Huan Zhang:
Neural Network Verification with Branch-and-Bound for General Nonlinearities. CoRR abs/2405.21063 (2024) - [i180]Yuanhao Ban, Ruochen Wang, Tianyi Zhou, Boqing Gong, Cho-Jui Hsieh, Minhao Cheng:
The Crystal Ball Hypothesis in diffusion models: Anticipating object positions from initial noise. CoRR abs/2406.01970 (2024) - [i179]Yuanhao Ban, Ruochen Wang, Tianyi Zhou, Minhao Cheng, Boqing Gong, Cho-Jui Hsieh:
Understanding the Impact of Negative Prompts: When and How Do They Take Effect? CoRR abs/2406.02965 (2024) - [i178]Minzhou Pan, Yi Zeng, Xue Lin, Ning Yu, Cho-Jui Hsieh, Peter Henderson, Ruoxi Jia:
JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits. CoRR abs/2406.03720 (2024) - [i177]Justin Cui, Ruochen Wang, Yuanhao Xiong, Cho-Jui Hsieh:
Ameliorate Spurious Correlations in Dataset Condensation. CoRR abs/2406.06609 (2024) - [i176]Ruochen Wang, Si Si, Felix Yu, Dorothea Wiesmann, Cho-Jui Hsieh, Inderjit S. Dhillon:
Large Language Models are Interpretable Learners. CoRR abs/2406.17224 (2024) - [i175]Xirui Li, Hengguang Zhou, Ruochen Wang, Tianyi Zhou, Minhao Cheng, Cho-Jui Hsieh:
MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries? CoRR abs/2406.17806 (2024) - [i174]Ruochen Wang, Sohyun An, Minhao Cheng, Tianyi Zhou, Sung Ju Hwang, Cho-Jui Hsieh:
One Prompt is not Enough: Automated Construction of a Mixture-of-Expert Prompts. CoRR abs/2407.00256 (2024) - [i173]Ruochen Wang, Ting Liu, Cho-Jui Hsieh, Boqing Gong:
On Discrete Prompt Optimization for Diffusion Models. CoRR abs/2407.01606 (2024) - [i172]Kuei-Chun Kao, Ruochen Wang, Cho-Jui Hsieh:
Solving for X and Beyond: Can Large Language Models Solve Complex Math Problems with More-Than-Two Unknowns? CoRR abs/2407.05134 (2024) - [i171]Jack He, Jianxing Zhao, Andrew Bai, Cho-Jui Hsieh:
Embedding Space Selection for Detecting Memorization and Fingerprinting in Generative Models. CoRR abs/2407.21159 (2024) - [i170]Yu-Hsiang Wang, Andrew Bai, Che-Ping Tsai, Cho-Jui Hsieh:
CLUE: Concept-Level Uncertainty Estimation for Large Language Models. CoRR abs/2409.03021 (2024) - [i169]Neha Prakriya, Jui-Nan Yen, Cho-Jui Hsieh, Jason Cong:
Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review. CoRR abs/2409.06131 (2024) - [i168]Jui-Nan Yen, Si Si, Zhao Meng, Felix X. Yu, Sai Surya Duvvuri, Inderjit S. Dhillon, Cho-Jui Hsieh, Sanjiv Kumar:
LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization. CoRR abs/2410.20625 (2024) - 2023
- [j28]Yuefeng Liang, Cho-Jui Hsieh, Thomas C. M. Lee:
Fast block-wise partitioning for extreme multi-label classification. Data Min. Knowl. Discov. 37(6): 2192-2215 (2023) - [j27]Achuta Kadambi, Celso de Melo, Cho-Jui Hsieh, Mani B. Srivastava, Stefano Soatto:
Incorporating physics into data-driven computer vision. Nat. Mac. Intell. 5(6): 572-580 (2023) - [j26]Liu Liu, Ji Liu, Cho-Jui Hsieh, Dacheng Tao:
Stochastically Controlled Compositional Gradient for Composition Problems. IEEE Trans. Neural Networks Learn. Syst. 34(2): 611-622 (2023) - [c192]Yunxiao Qin, Yuanhao Xiong, Jinfeng Yi, Cho-Jui Hsieh:
Training Meta-Surrogate Model for Transferable Adversarial Attack. AAAI 2023: 9516-9524 - [c191]Anaelia Ovalle, Evan Czyzycki, Cho-Jui Hsieh:
Improving Adversarial Robustness to Sensitivity and Invariance Attacks with Deep Metric Learning (Student Abstract). AAAI 2023: 16292-16293 - [c190]Zixuan Ling, Xiaoqing Zheng, Jianhan Xu, Jinshu Lin, Kai-Wei Chang, Cho-Jui Hsieh, Xuanjing Huang:
Enhancing Unsupervised Semantic Parsing with Distributed Contextual Representations. ACL (Findings) 2023: 11454-11465 - [c189]Jiong Zhang, Yau-Shian Wang, Wei-Cheng Chang, Wei Li, Jyun-Yu Jiang, Cho-Jui Hsieh, Hsiang-Fu Yu:
Build Faster with Less: A Journey to Accelerate Sparse Model Building for Semantic Matching in Product Search. CIKM 2023: 4960-4966 - [c188]Yuanhao Xiong, Ruochen Wang, Minhao Cheng, Felix Yu, Cho-Jui Hsieh:
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning. CVPR 2023: 16323-16332 - [c187]Neha Prakriya, Yu Yang, Baharan Mirzasoleiman, Cho-Jui Hsieh, Jason Cong:
NeSSA: Near-Storage Data Selection for Accelerated Machine Learning Training. HotStorage 2023: 8-15 - [c186]Andrew Bai, Chih-Kuan Yeh, Neil Y. C. Lin, Pradeep Kumar Ravikumar, Cho-Jui Hsieh:
Concept Gradient: Concept-based Interpretation Without Linear Assumption. ICLR 2023 - [c185]Li-Cheng Lan, Huan Zhang, Cho-Jui Hsieh:
Can Agents Run Relay Race with Strangers? Generalization of RL to Out-of-Distribution Trajectories. ICLR 2023 - [c184]Si Si, Felix X. Yu, Ankit Singh Rawat, Cho-Jui Hsieh, Sanjiv Kumar:
Serving Graph Compression for Graph Neural Networks. ICLR 2023 - [c183]Yi Zeng, Zhouxing Shi, Ming Jin, Feiyang Kang, Lingjuan Lyu, Cho-Jui Hsieh, Ruoxi Jia:
Towards Robustness Certification Against Universal Perturbations. ICLR 2023 - [c182]Eli Chien, Jiong Zhang, Cho-Jui Hsieh, Jyun-Yu Jiang, Wei-Cheng Chang, Olgica Milenkovic, Hsiang-Fu Yu:
PINA: Leveraging Side Information in eXtreme Multi-label Classification via Predicted Instance Neighborhood Aggregation. ICML 2023: 5616-5630 - [c181]Justin Cui, Ruochen Wang, Si Si, Cho-Jui Hsieh:
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory. ICML 2023: 6565-6590 - [c180]Che-Ping Tsai, Jiong Zhang, Hsiang-Fu Yu, Eli Chien, Cho-Jui Hsieh, Pradeep Kumar Ravikumar:
Representer Point Selection for Explaining Regularized High-dimensional Models. ICML 2023: 34469-34490 - [c179]Yue Kang, Cho-Jui Hsieh, Thomas Chun Man Lee:
Robust Lipschitz Bandits to Adversarial Corruptions. NeurIPS 2023 - [c178]Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, Quoc V. Le:
Symbolic Discovery of Optimization Algorithms. NeurIPS 2023 - [c177]Zixiang Chen, Junkai Zhang, Yiwen Kou, Xiangning Chen, Cho-Jui Hsieh, Quanquan Gu:
Why Does Sharpness-Aware Minimization Generalize Better Than SGD? NeurIPS 2023 - [c176]Devvrit, Sai Surya Duvvuri, Rohan Anil, Vineet Gupta, Cho-Jui Hsieh, Inderjit S. Dhillon:
A Computationally Efficient Sparsified Online Newton Method. NeurIPS 2023 - [c175]Zhouxing Shi, Nicholas Carlini, Ananth Balashankar, Ludwig Schmidt, Cho-Jui Hsieh, Alex Beutel, Yao Qin:
Effective Robustness against Natural Distribution Shifts for Models with Different Training Data. NeurIPS 2023 - [c174]Yihan Wang, Jatin Chauhan, Wei Wang, Cho-Jui Hsieh:
Universality and Limitations of Prompt Tuning. NeurIPS 2023 - [c173]Jui-Nan Yen, Sai Surya Duvvuri, Inderjit S. Dhillon, Cho-Jui Hsieh:
Block Low-Rank Preconditioner with Shared Basis for Stochastic Optimization. NeurIPS 2023 - [c172]Jyun-Yu Jiang, Wei-Cheng Chang, Jiong Zhang, Cho-Jui Hsieh, Hsiang-Fu Yu:
Uncertainty Quantification for Extreme Classification. SIGIR 2023: 1649-1659 - [c171]Patrick H. Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit S. Dhillon, Cho-Jui Hsieh:
FINGER: Fast Inference for Graph-based Approximate Nearest Neighbor Search. WWW 2023: 3225-3235 - [i167]Zhouxing Shi, Nicholas Carlini, Ananth Balashankar, Ludwig Schmidt, Cho-Jui Hsieh, Alex Beutel, Yao Qin:
Effective Robustness against Natural Distribution Shifts for Models with Different Training Data. CoRR abs/2302.01381 (2023) - [i166]Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, Quoc V. Le:
Symbolic Discovery of Optimization Algorithms. CoRR abs/2302.06675 (2023) - [i165]Yue Kang, Cho-Jui Hsieh, Thomas C. M. Lee:
Online Continuous Hyperparameter Optimization for Contextual Bandits. CoRR abs/2302.09440 (2023) - [i164]Yuanhao Xiong, Long Zhao, Boqing Gong, Ming-Hsuan Yang, Florian Schroff, Ting Liu, Cho-Jui Hsieh, Liangzhe Yuan:
Spatiotemporally Discriminative Video-Language Pre-Training with Text Grounding. CoRR abs/2303.16341 (2023) - [i163]Li-Cheng Lan, Huan Zhang, Cho-Jui Hsieh:
Can Agents Run Relay Race with Strangers? Generalization of RL to Out-of-Distribution Trajectories. CoRR abs/2304.13424 (2023) - [i162]Eli Chien, Jiong Zhang, Cho-Jui Hsieh, Jyun-Yu Jiang, Wei-Cheng Chang, Olgica Milenkovic, Hsiang-Fu Yu:
PINA: Leveraging Side Information in eXtreme Multi-label Classification via Predicted Instance Neighborhood Aggregation. CoRR abs/2305.12349 (2023) - [i161]Yue Kang, Cho-Jui Hsieh, Thomas C. M. Lee:
Robust Lipschitz Bandits to Adversarial Corruptions. CoRR abs/2305.18543 (2023) - [i160]Yihan Wang, Jatin Chauhan, Wei Wang, Cho-Jui Hsieh:
Universality and Limitations of Prompt Tuning. CoRR abs/2305.18787 (2023) - [i159]Zhouxing Shi, Yihan Wang, Fan Yin, Xiangning Chen, Kai-Wei Chang, Cho-Jui Hsieh:
Red Teaming Language Model Detectors with Language Models. CoRR abs/2305.19713 (2023) - [i158]Che-Ping Tsai, Jiong Zhang, Eli Chien, Hsiang-Fu Yu, Cho-Jui Hsieh, Pradeep Ravikumar:
Representer Point Selection for Explaining Regularized High-dimensional Models. CoRR abs/2305.20002 (2023) - [i157]Xiusi Chen, Jyun-Yu Jiang, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Wei Wang:
MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering. CoRR abs/2310.05007 (2023) - [i156]Zixiang Chen, Junkai Zhang, Yiwen Kou, Xiangning Chen, Cho-Jui Hsieh, Quanquan Gu:
Why Does Sharpness-Aware Minimization Generalize Better Than SGD? CoRR abs/2310.07269 (2023) - [i155]Lucas Tecot, Cho-Jui Hsieh:
Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational Quantum Systems. CoRR abs/2310.09468 (2023) - [i154]Liu Liu, Xuanqing Liu, Cho-Jui Hsieh, Dacheng Tao:
Stochastic Optimization for Non-convex Problem with Inexact Hessian Matrix, Gradient, and Function. CoRR abs/2310.11866 (2023) - [i153]Yuhang Li, Yihan Wang, Zhouxing Shi, Cho-Jui Hsieh:
Improving the Generation Quality of Watermarked Large Language Models via Word Importance Scoring. CoRR abs/2311.09668 (2023) - [i152]Devvrit, Sai Surya Duvvuri, Rohan Anil, Vineet Gupta, Cho-Jui Hsieh, Inderjit S. Dhillon:
A Computationally Efficient Sparsified Online Newton Method. CoRR abs/2311.10085 (2023) - [i151]Cho-Jui Hsieh, Si Si, Felix X. Yu, Inderjit S. Dhillon:
Automatic Engineering of Long Prompts. CoRR abs/2311.10117 (2023) - [i150]Wei-Cheng Chang, Jyun-Yu Jiang, Jiong Zhang, Mutasem Al-Darabsah, Choon Hui Teo, Cho-Jui Hsieh, Hsiang-Fu Yu, S. V. N. Vishwanathan:
PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models. CoRR abs/2312.02429 (2023) - [i149]Tiejin Chen, Yuanpu Cao, Yujia Wang, Cho-Jui Hsieh, Jinghui Chen:
Federated Learning with Projected Trajectory Regularization. CoRR abs/2312.14380 (2023) - 2022
- [j25]Yu-Chuan Su, Soravit Changpinyo, Xiangning Chen, Sathish Thoppay, Cho-Jui Hsieh, Lior Shapira, Radu Soricut, Hartwig Adam, Matthew Brown, Ming-Hsuan Yang, Boqing Gong:
2.5D visual relationship detection. Comput. Vis. Image Underst. 224: 103557 (2022) - [j24]Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, Cho-Jui Hsieh:
On the Adversarial Robustness of Vision Transformers. Trans. Mach. Learn. Res. 2022 (2022) - [j23]Hojung Lee, Cho-Jui Hsieh, Jong-Seok Lee:
Local Critic Training for Model-Parallel Learning of Deep Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 33(9): 4424-4436 (2022) - [c170]Jianhan Xu, Cenyuan Zhang, Xiaoqing Zheng, Linyang Li, Cho-Jui Hsieh, Kai-Wei Chang, Xuanjing Huang:
Towards Adversarially Robust Text Classifiers by Learning to Reweight Clean Examples. ACL (Findings) 2022: 1694-1707 - [c169]Fan Yin, Zhouxing Shi, Cho-Jui Hsieh, Kai-Wei Chang:
On the Sensitivity and Stability of Model Interpretations in NLP. ACL (1) 2022: 2631-2647 - [c168]Cenyuan Zhang, Xiang Zhou, Yixin Wan, Xiaoqing Zheng, Kai-Wei Chang, Cho-Jui Hsieh:
Improving the Adversarial Robustness of NLP Models by Information Bottleneck. ACL (Findings) 2022: 3588-3598 - [c167]Qin Ding, Cho-Jui Hsieh, James Sharpnack:
Robust Stochastic Linear Contextual Bandits Under Adversarial Attacks. AISTATS 2022: 7111-7123 - [c166]Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, Cho-Jui Hsieh:
Robust Text CAPTCHAs Using Adversarial Examples. IEEE Big Data 2022: 1495-1504 - [c165]Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, Yang You:
Towards Efficient and Scalable Sharpness-Aware Minimization. CVPR 2022: 12350-12360 - [c164]Yuanhao Xiong, Cho-Jui Hsieh:
Learning to Learn with Smooth Regularization. ECCV (23) 2022: 550-565 - [c163]Fan Yin, Yao Li, Cho-Jui Hsieh, Kai-Wei Chang:
ADDMU: Detection of Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation. EMNLP 2022: 6567-6584 - [c162]Jianhan Xu, Linyang Li, Jiping Zhang, Xiaoqing Zheng, Kai-Wei Chang, Cho-Jui Hsieh, Xuanjing Huang:
Weight Perturbation as Defense against Adversarial Word Substitutions. EMNLP (Findings) 2022: 7054-7063 - [c161]Xiangning Chen, Cho-Jui Hsieh, Boqing Gong:
When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations. ICLR 2022 - [c160]Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, Inderjit S. Dhillon:
Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction. ICLR 2022 - [c159]Shoukang Hu, Ruochen Wang, Lanqing Hong, Zhenguo Li, Cho-Jui Hsieh, Jiashi Feng:
Generalizing Few-Shot NAS with Gradient Matching. ICLR 2022 - [c158]Yong Liu, Xiangning Chen, Minhao Cheng, Cho-Jui Hsieh, Yang You:
Concurrent Adversarial Learning for Large-Batch Training. ICLR 2022 - [c157]Yihan Wang, Zhouxing Shi, Quanquan Gu, Cho-Jui Hsieh:
On the Convergence of Certified Robust Training with Interval Bound Propagation. ICLR 2022 - [c156]Yuanhao Xiong, Li-Cheng Lan, Xiangning Chen, Ruochen Wang, Cho-Jui Hsieh:
Learning to Schedule Learning rate with Graph Neural Networks. ICLR 2022 - [c155]Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter:
A Branch and Bound Framework for Stronger Adversarial Attacks of ReLU Networks. ICML 2022: 26591-26604 - [c154]Jun-Ho Choi, Huan Zhang, Jun-Hyuk Kim, Cho-Jui Hsieh, Jong-Seok Lee:
Deep Image Destruction: Vulnerability of Deep Image-to-Image Models against Adversarial Attacks. ICPR 2022: 1287-1293 - [c153]Minhao Cheng, Qi Lei, Pin-Yu Chen, Inderjit S. Dhillon, Cho-Jui Hsieh:
CAT: Customized Adversarial Training for Improved Robustness. IJCAI 2022: 673-679 - [c152]Hsiang-Fu Yu, Jiong Zhang, Wei-Cheng Chang, Jyun-Yu Jiang, Wei Li, Cho-Jui Hsieh:
PECOS: Prediction for Enormous and Correlated Output Spaces. KDD 2022: 4848-4849 - [c151]Pin-Yu Chen, Cho-Jui Hsieh, Bo Li, Sijia Liu:
The Fourth Workshop on Adversarial Learning Methods for Machine Learning and Data Mining (AdvML 2022). KDD 2022: 4858-4859 - [c150]Yuanhao Xiong, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Inderjit S. Dhillon:
Extreme Zero-Shot Learning for Extreme Text Classification. NAACL-HLT 2022: 5455-5468 - [c149]Qin Ding, Yue Kang, Yi-Wei Liu, Thomas Chun Man Lee, Cho-Jui Hsieh, James Sharpnack:
Syndicated Bandits: A Framework for Auto Tuning Hyper-parameters in Contextual Bandit Algorithms. NeurIPS 2022 - [c148]Justin Cui, Ruochen Wang, Si Si, Cho-Jui Hsieh:
DC-BENCH: Dataset Condensation Benchmark. NeurIPS 2022 - [c147]Nilesh Gupta, Patrick H. Chen, Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit S. Dhillon:
ELIAS: End-to-End Learning to Index and Search in Large Output Spaces. NeurIPS 2022 - [c146]Yue Kang, Cho-Jui Hsieh, Thomas Chun Man Lee:
Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems. NeurIPS 2022 - [c145]Li-Cheng Lan, Huan Zhang, Ti-Rong Wu, Meng-Yu Tsai, I-Chen Wu, Cho-Jui Hsieh:
Are AlphaZero-like Agents Robust to Adversarial Perturbations? NeurIPS 2022 - [c144]Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, Yang You:
Random Sharpness-Aware Minimization. NeurIPS 2022 - [c143]Zhouxing Shi, Yihan Wang, Huan Zhang, J. Zico Kolter, Cho-Jui Hsieh:
Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation. NeurIPS 2022 - [c142]Ruochen Wang, Yuanhao Xiong, Minhao Cheng, Cho-Jui Hsieh:
Efficient Non-Parametric Optimizer Search for Diverse Tasks. NeurIPS 2022 - [c141]Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter:
General Cutting Planes for Bound-Propagation-Based Neural Network Verification. NeurIPS 2022 - [c140]Jyun-Yu Jiang, Wei-Cheng Chang, Jiong Zhang, Cho-Jui Hsieh, Hsiang-Fu Yu:
Relevance under the Iceberg: Reasonable Prediction for Extreme Multi-label Classification. SIGIR 2022: 1870-1874 - [i148]Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, Yang You:
Towards Efficient and Scalable Sharpness-Aware Minimization. CoRR abs/2203.02714 (2022) - [i147]Yihan Wang, Zhouxing Shi, Quanquan Gu, Cho-Jui Hsieh:
On the Convergence of Certified Robust Training with Interval Bound Propagation. CoRR abs/2203.08961 (2022) - [i146]Shoukang Hu, Ruochen Wang, Lanqing Hong, Zhenguo Li, Cho-Jui Hsieh, Jiashi Feng:
Generalizing Few-Shot NAS with Gradient Matching. CoRR abs/2203.15207 (2022) - [i145]Cenyuan Zhang, Xiang Zhou, Yixin Wan, Xiaoqing Zheng, Kai-Wei Chang, Cho-Jui Hsieh:
Improving the Adversarial Robustness of NLP Models by Information Bottleneck. CoRR abs/2206.05511 (2022) - [i144]Patrick H. Chen, Wei-Cheng Chang, Hsiang-Fu Yu, Inderjit S. Dhillon, Cho-Jui Hsieh:
FINGER: Fast Inference for Graph-based Approximate Nearest Neighbor Search. CoRR abs/2206.11408 (2022) - [i143]Justin Cui, Ruochen Wang, Si Si, Cho-Jui Hsieh:
DC-BENCH: Dataset Condensation Benchmark. CoRR abs/2207.09639 (2022) - [i142]Yuanhao Xiong, Ruochen Wang, Minhao Cheng, Felix Yu, Cho-Jui Hsieh:
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning. CoRR abs/2207.09653 (2022) - [i141]Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter:
General Cutting Planes for Bound-Propagation-Based Neural Network Verification. CoRR abs/2208.05740 (2022) - [i140]Andrew Bai, Chih-Kuan Yeh, Pradeep Ravikumar, Neil Y. C. Lin, Cho-Jui Hsieh:
Concept Gradient: Concept-based Interpretation Without Linear Assumption. CoRR abs/2208.14966 (2022) - [i139]Ruochen Wang, Yuanhao Xiong, Minhao Cheng, Cho-Jui Hsieh:
Efficient Non-Parametric Optimizer Search for Diverse Tasks. CoRR abs/2209.13575 (2022) - [i138]Zhouxing Shi, Yihan Wang, Huan Zhang, J. Zico Kolter, Cho-Jui Hsieh:
Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation. CoRR abs/2210.07394 (2022) - [i137]Chenxi Gu, Chengsong Huang, Xiaoqing Zheng, Kai-Wei Chang, Cho-Jui Hsieh:
Watermarking Pre-trained Language Models with Backdooring. CoRR abs/2210.07543 (2022) - [i136]Nilesh Gupta, Patrick H. Chen, Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit S. Dhillon:
End-to-End Learning to Index and Search in Large Output Spaces. CoRR abs/2210.08410 (2022) - [i135]Jyun-Yu Jiang, Wei-Cheng Chang, Jiong Zhang, Cho-Jui Hsieh, Hsiang-Fu Yu:
Uncertainty in Extreme Multi-label Classification. CoRR abs/2210.10160 (2022) - [i134]Andrew Bai, Cho-Jui Hsieh, Wendy Chi-wen Kan, Hsuan-Tien Lin:
Reducing Training Sample Memorization in GANs by Training with Memorization Rejection. CoRR abs/2210.12231 (2022) - [i133]Fan Yin, Yao Li, Cho-Jui Hsieh, Kai-Wei Chang:
ADDMU: Detection of Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation. CoRR abs/2210.12396 (2022) - [i132]Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix X. Yu, Cho-Jui Hsieh, Inderjit S. Dhillon, Sanjiv Kumar:
Preserving In-Context Learning ability in Large Language Model Fine-tuning. CoRR abs/2211.00635 (2022) - [i131]Anaelia Ovalle, Evan Czyzycki, Cho-Jui Hsieh:
Improving Adversarial Robustness to Sensitivity and Invariance Attacks with Deep Metric Learning. CoRR abs/2211.02468 (2022) - [i130]Li-Cheng Lan, Huan Zhang, Ti-Rong Wu, Meng-Yu Tsai, I-Chen Wu, Cho-Jui Hsieh:
Are AlphaZero-like Agents Robust to Adversarial Perturbations? CoRR abs/2211.03769 (2022) - [i129]Justin Cui, Ruochen Wang, Si Si, Cho-Jui Hsieh:
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory. CoRR abs/2211.10586 (2022) - 2021
- [j22]Yang You, Jingyue Huang, Cho-Jui Hsieh, Richard W. Vuduc, James Demmel:
Communication-avoiding kernel ridge regression on parallel and distributed systems. CCF Trans. High Perform. Comput. 3(3): 252-270 (2021) - [c139]Li-Cheng Lan, Ti-Rong Wu, I-Chen Wu, Cho-Jui Hsieh:
Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search. AAAI 2021: 259-267 - [c138]Minhao Cheng, Pin-Yu Chen, Sijia Liu, Shiyu Chang, Cho-Jui Hsieh, Payel Das:
Self-Progressing Robust Training. AAAI 2021: 7107-7115 - [c137]Benlin Liu, Yongming Rao, Jiwen Lu, Jie Zhou, Cho-Jui Hsieh:
Multi-Proxy Wasserstein Classifier for Image Classification. AAAI 2021: 8618-8626 - [c136]Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei Chang, Xuanjing Huang:
Defense against Synonym Substitution-based Adversarial Attacks via Dirichlet Neighborhood Ensemble. ACL/IJCNLP (1) 2021: 5482-5492 - [c135]Qin Ding, Cho-Jui Hsieh, James Sharpnack:
An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson Sampling. AISTATS 2021: 1585-1593 - [c134]Xiangning Chen, Cihang Xie, Mingxing Tan, Li Zhang, Cho-Jui Hsieh, Boqing Gong:
Robust and Accurate Object Detection via Adversarial Learning. CVPR 2021: 16622-16631 - [c133]Liping Yuan, Xiaoqing Zheng, Yi Zhou, Cho-Jui Hsieh, Kai-Wei Chang:
On the Transferability of Adversarial Attacks against Neural Text Classifier. EMNLP (1) 2021: 1612-1625 - [c132]Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiaoqing Zheng, Qi Zhang, Kai-Wei Chang, Cho-Jui Hsieh:
Searching for an Effective Defender: Benchmarking Defense against Adversarial Word Substitution. EMNLP (1) 2021: 3137-3147 - [c131]Yongming Rao, Benlin Liu, Yi Wei, Jiwen Lu, Cho-Jui Hsieh, Jie Zhou:
RandomRooms: Unsupervised Pre-training from Synthetic Shapes and Randomized Layouts for 3D Object Detection. ICCV 2021: 3263-3272 - [c130]Yao Li, Martin Renqiang Min, Thomas C. M. Lee, Wenchao Yu, Erik Kruus, Wei Wang, Cho-Jui Hsieh:
Towards Robustness of Deep Neural Networks via Regularization. ICCV 2021: 7476-7485 - [c129]Ruochen Wang, Xiangning Chen, Minhao Cheng, Xiaocheng Tang, Cho-Jui Hsieh:
RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform Successive Halving. ICCV 2021: 10357-10366 - [c128]Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, Cho-Jui Hsieh:
DrNAS: Dirichlet Neural Architecture Search. ICLR 2021 - [c127]Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Kumar Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh:
Evaluations and Methods for Explanation through Robustness Analysis. ICLR 2021 - [c126]Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh:
Rethinking Architecture Selection in Differentiable NAS. ICLR 2021 - [c125]Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, Cho-Jui Hsieh:
Fast and Complete: Enabling Complete Neural Network Verification with Rapid and Massively Parallel Incomplete Verifiers. ICLR 2021 - [c124]Huan Zhang, Hongge Chen, Duane S. Boning, Cho-Jui Hsieh:
Robust Reinforcement Learning on State Observations with Learned Optimal Adversary. ICLR 2021 - [c123]Pei-Hung Chen, Wei Wei, Cho-Jui Hsieh, Bo Dai:
Overcoming Catastrophic Forgetting by Bayesian Generative Regularization. ICML 2021: 1760-1770 - [c122]Pin-Yu Chen, Cho-Jui Hsieh, Bo Li, Sijia Liu:
Third Workshop on Adversarial Learning Methods for Machine Learning and Data Mining (AdvML 2021). KDD 2021: 4112-4113 - [c121]Sunipa Dev, Mehrnoosh Sameki, Jwala Dhamala, Cho-Jui Hsieh:
Measures and Best Practices for Responsible AI. KDD 2021: 4118 - [c120]Chong Zhang, Jieyu Zhao, Huan Zhang, Kai-Wei Chang, Cho-Jui Hsieh:
Double Perturbation: On the Robustness of Robustness and Counterfactual Bias Evaluation. NAACL-HLT 2021: 3899-3916 - [c119]Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Cho-Jui Hsieh:
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification. NeurIPS 2021: 13937-13949 - [c118]Xuanqing Liu, Wei-Cheng Chang, Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit S. Dhillon:
Label Disentanglement in Partition-based Extreme Multilabel Classification. NeurIPS 2021: 15359-15369 - [c117]Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, Samy Bengio:
Learnable Fourier Features for Multi-dimensional Spatial Positional Encoding. NeurIPS 2021: 15816-15829 - [c116]Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh:
Fast Certified Robust Training with Short Warmup. NeurIPS 2021: 18335-18349 - [c115]Patrick H. Chen, Hsiang-Fu Yu, Inderjit S. Dhillon, Cho-Jui Hsieh:
DRONE: Data-aware Low-rank Compression for Large NLP Models. NeurIPS 2021: 29321-29334 - [c114]Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter:
Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification. NeurIPS 2021: 29909-29921 - [i128]Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, Cho-Jui Hsieh:
Robust Text CAPTCHAs Using Adversarial Examples. CoRR abs/2101.02483 (2021) - [i127]Seong-Eun Moon, Chun-Jui Chen, Cho-Jui Hsieh, Jane-Ling Wang, Jong-Seok Lee:
Emotional EEG Classification using Connectivity Features and Convolutional Neural Networks. CoRR abs/2101.07069 (2021) - [i126]Huan Zhang, Hongge Chen, Duane S. Boning, Cho-Jui Hsieh:
Robust Reinforcement Learning on State Observations with Learned Optimal Adversary. CoRR abs/2101.08452 (2021) - [i125]Hojung Lee, Cho-Jui Hsieh, Jong-Seok Lee:
Local Critic Training for Model-Parallel Learning of Deep Neural Networks. CoRR abs/2102.01963 (2021) - [i124]Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter:
Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Complete and Incomplete Neural Network Verification. CoRR abs/2103.06624 (2021) - [i123]Xiangning Chen, Cihang Xie, Mingxing Tan, Li Zhang, Cho-Jui Hsieh, Boqing Gong:
Robust and Accurate Object Detection via Adversarial Learning. CoRR abs/2103.13886 (2021) - [i122]Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, Cho-Jui Hsieh:
On the Adversarial Robustness of Visual Transformers. CoRR abs/2103.15670 (2021) - [i121]Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh:
Fast Certified Robust Training via Better Initialization and Shorter Warmup. CoRR abs/2103.17268 (2021) - [i120]Chong Zhang, Jieyu Zhao, Huan Zhang, Kai-Wei Chang, Cho-Jui Hsieh:
Double Perturbation: On the Robustness of Robustness and Counterfactual Bias Evaluation. CoRR abs/2104.05232 (2021) - [i119]Fan Yin, Zhouxing Shi, Cho-Jui Hsieh, Kai-Wei Chang:
On the Faithfulness Measurements for Model Interpretations. CoRR abs/2104.08782 (2021) - [i118]Yu-Chuan Su, Soravit Changpinyo, Xiangning Chen, Sathish Thoppay, Cho-Jui Hsieh, Lior Shapira, Radu Soricut, Hartwig Adam, Matthew Brown, Ming-Hsuan Yang, Boqing Gong:
2.5D Visual Relationship Detection. CoRR abs/2104.12727 (2021) - [i117]Jun-Ho Choi, Huan Zhang, Jun-Hyuk Kim, Cho-Jui Hsieh, Jong-Seok Lee:
Deep Image Destruction: A Comprehensive Study on Vulnerability of Deep Image-to-Image Models against Adversarial Attacks. CoRR abs/2104.15022 (2021) - [i116]Yao Li, Tongyi Tang, Cho-Jui Hsieh, Thomas C. M. Lee:
Detecting Adversarial Examples with Bayesian Neural Network. CoRR abs/2105.08620 (2021) - [i115]Seungyeon Kim, Daniel Glasner, Srikumar Ramalingam, Cho-Jui Hsieh, Kishore Papineni, Sanjiv Kumar:
Balancing Robustness and Sensitivity using Feature Contrastive Learning. CoRR abs/2105.09394 (2021) - [i114]Yong Liu, Xiangning Chen, Minhao Cheng, Cho-Jui Hsieh, Yang You:
Concurrent Adversarial Learning for Large-Batch Training. CoRR abs/2106.00221 (2021) - [i113]Xiangning Chen, Cho-Jui Hsieh, Boqing Gong:
When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations. CoRR abs/2106.01548 (2021) - [i112]Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Cho-Jui Hsieh:
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification. CoRR abs/2106.02034 (2021) - [i111]Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, Samy Bengio:
Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding. CoRR abs/2106.02795 (2021) - [i110]Qin Ding, Cho-Jui Hsieh, James Sharpnack:
Robust Stochastic Linear Contextual Bandits Under Adversarial Attacks. CoRR abs/2106.02978 (2021) - [i109]Qin Ding, Yi-Wei Liu, Cho-Jui Hsieh, James Sharpnack:
Syndicated Bandits: A Framework for Auto Tuning Hyper-parameters in Contextual Bandit Algorithms. CoRR abs/2106.02979 (2021) - [i108]Xuanqing Liu, Wei-Cheng Chang, Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit S. Dhillon:
Label Disentanglement in Partition-based Extreme Multilabel Classification. CoRR abs/2106.12751 (2021) - [i107]Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh:
Rethinking Architecture Selection in Differentiable NAS. CoRR abs/2108.04392 (2021) - [i106]Yongming Rao, Benlin Liu, Yi Wei, Jiwen Lu, Cho-Jui Hsieh, Jie Zhou:
RandomRooms: Unsupervised Pre-training from Synthetic Shapes and Randomized Layouts for 3D Object Detection. CoRR abs/2108.07794 (2021) - [i105]Ruochen Wang, Xiangning Chen, Minhao Cheng, Xiaocheng Tang, Cho-Jui Hsieh:
RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform Successive Halving. CoRR abs/2108.08019 (2021) - [i104]Zongyi Li, Jianhan Xu, Jiehang Zeng, Linyang Li, Xiaoqing Zheng, Qi Zhang, Kai-Wei Chang, Cho-Jui Hsieh:
Searching for an Effective Defender: Benchmarking Defense against Adversarial Word Substitution. CoRR abs/2108.12777 (2021) - [i103]Yunxiao Qin, Yuanhao Xiong, Jinfeng Yi, Cho-Jui Hsieh:
Training Meta-Surrogate Model for Transferable Adversarial Attack. CoRR abs/2109.01983 (2021) - [i102]Yunxiao Qin, Yuanhao Xiong, Jinfeng Yi, Cho-Jui Hsieh:
Adversarial Attack across Datasets. CoRR abs/2110.07718 (2021) - [i101]Rulin Shao, Jinfeng Yi, Pin-Yu Chen, Cho-Jui Hsieh:
How and When Adversarial Robustness Transfers in Knowledge Distillation? CoRR abs/2110.12072 (2021) - [i100]Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, Inderjit S. Dhillon:
Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction. CoRR abs/2111.00064 (2021) - [i99]Shanda Li, Xiangning Chen, Di He, Cho-Jui Hsieh:
Can Vision Transformers Perform Convolution? CoRR abs/2111.01353 (2021) - [i98]Yao Li, Minhao Cheng, Cho-Jui Hsieh, Thomas C. M. Lee:
A Review of Adversarial Attack and Defense for Classification Methods. CoRR abs/2111.09961 (2021) - [i97]Jaehui Hwang, Huan Zhang, Jun-Ho Choi, Cho-Jui Hsieh, Jong-Seok Lee:
Temporal Shuffling for Defending Deep Action Recognition Models against Adversarial Attacks. CoRR abs/2112.07921 (2021) - [i96]Yuanhao Xiong, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Inderjit S. Dhillon:
Extreme Zero-Shot Learning for Extreme Text Classification. CoRR abs/2112.08652 (2021) - 2020
- [j21]Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, Michael I. Jordan:
Greedy Attack and Gumbel Attack: Generating Adversarial Examples for Discrete Data. J. Mach. Learn. Res. 21: 43:1-43:36 (2020) - [j20]Yang You, Yuxiong He, Samyam Rajbhandari, Wenhan Wang, Cho-Jui Hsieh, Kurt Keutzer, James Demmel:
Fast LSTM by dynamic decomposition on cloud and distributed systems. Knowl. Inf. Syst. 62(11): 4169-4197 (2020) - [j19]Lu Wang, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, Yuan Jiang:
Spanning attack: reinforce black-box attacks with unlabeled data. Mach. Learn. 109(12): 2349-2368 (2020) - [j18]Seong-Eun Moon, Chun-Jui Chen, Cho-Jui Hsieh, Jane-Ling Wang, Jong-Seok Lee:
Emotional EEG classification using connectivity features and convolutional neural networks. Neural Networks 132: 96-107 (2020) - [c113]Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, Cho-Jui Hsieh:
Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples. AAAI 2020: 3601-3608 - [c112]Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, Michael I. Jordan:
ML-LOO: Detecting Adversarial Examples with Feature Attribution. AAAI 2020: 6639-6647 - [c111]Jun-Ho Choi, Huan Zhang, Jun-Hyuk Kim, Cho-Jui Hsieh, Jong-Seok Lee:
Adversarially Robust Deep Image Super-Resolution Using Entropy Regularization. ACCV (4) 2020: 301-317 - [c110]Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang:
What Does BERT with Vision Look At? ACL 2020: 5265-5275 - [c109]Xiaoqing Zheng, Jiehang Zeng, Yi Zhou, Cho-Jui Hsieh, Minhao Cheng, Xuanjing Huang:
Evaluating and Enhancing the Robustness of Neural Network-based Dependency Parsing Models with Adversarial Examples. ACL 2020: 6600-6610 - [c108]Liwei Wu, Hsiang-Fu Yu, Nikhil Rao, James Sharpnack, Cho-Jui Hsieh:
Graph DNA: Deep Neighborhood Aware Graph Encoding for Collaborative Filtering. AISTATS 2020: 776-787 - [c107]Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, Cho-Jui Hsieh:
How Does Noise Help Robustness? Explanation and Exploration under the Neural SDE Framework. CVPR 2020: 279-287 - [c106]Yuanhao Xiong, Cho-Jui Hsieh:
Improved Adversarial Training via Learned Optimizer. ECCV (8) 2020: 85-100 - [c105]Benlin Liu, Yongming Rao, Jiwen Lu, Jie Zhou, Cho-Jui Hsieh:
MetaDistiller: Network Self-Boosting via Meta-Learned Top-Down Distillation. ECCV (14) 2020: 694-709 - [c104]Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, Cho-Jui Hsieh:
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack. ICLR 2020 - [c103]Yangjun Ruan, Yuanhao Xiong, Sashank J. Reddi, Sanjiv Kumar, Cho-Jui Hsieh:
Learning to Learn by Zeroth-Order Oracle. ICLR 2020 - [c102]Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, Cho-Jui Hsieh:
Robustness Verification for Transformers. ICLR 2020 - [c101]Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, Cho-Jui Hsieh:
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. ICLR 2020 - [c100]Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui Hsieh, Liwei Wang:
MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius. ICLR 2020 - [c99]Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane S. Boning, Cho-Jui Hsieh:
Towards Stable and Efficient Training of Verifiably Robust Neural Networks. ICLR 2020 - [c98]Xiangning Chen, Cho-Jui Hsieh:
Stabilizing Differentiable Architecture Search via Perturbation-based Regularization. ICML 2020: 1554-1565 - [c97]Xuanqing Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, Cho-Jui Hsieh:
Learning to Encode Position for Transformer with Continuous Dynamical Model. ICML 2020: 6327-6335 - [c96]Yihan Wang, Huan Zhang, Hongge Chen, Duane S. Boning, Cho-Jui Hsieh:
On Lp-norm Robustness of Ensemble Decision Stumps and Trees. ICML 2020: 10104-10114 - [c95]Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane S. Boning, Cho-Jui Hsieh:
Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations. NeurIPS 2020 - [c94]Hongge Chen, Si Si, Yang Li, Ciprian Chelba, Sanjiv Kumar, Duane S. Boning, Cho-Jui Hsieh:
Multi-Stage Influence Function. NeurIPS 2020 - [c93]Utkarsh Ojha, Krishna Kumar Singh, Cho-Jui Hsieh, Yong Jae Lee:
Elastic-InfoGAN: Unsupervised Disentangled Representation Learning in Class-Imbalanced Data. NeurIPS 2020 - [c92]Lu Wang, Xuanqing Liu, Jinfeng Yi, Yuan Jiang, Cho-Jui Hsieh:
Provably Robust Metric Learning. NeurIPS 2020 - [c91]Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin, Cho-Jui Hsieh:
Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond. NeurIPS 2020 - [c90]Chong Zhang, Huan Zhang, Cho-Jui Hsieh:
An Efficient Adversarial Attack for Tree Ensembles. NeurIPS 2020 - [c89]Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack:
SSE-PT: Sequential Recommendation Via Personalized Transformer. RecSys 2020: 328-337 - [c88]Quanming Yao, Xiangning Chen, James T. Kwok, Yong Li, Cho-Jui Hsieh:
Efficient Neural Interaction Function Search for Collaborative Filtering. WWW 2020: 1660-1670 - [c87]Jyun-Yu Jiang, Patrick H. Chen, Cho-Jui Hsieh, Wei Wang:
Clustering and Constructing User Coresets to Accelerate Large-scale Top-K Recommender Systems. WWW 2020: 2177-2187 - [i95]Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui Hsieh, Liwei Wang:
MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius. CoRR abs/2001.02378 (2020) - [i94]Xiangning Chen, Cho-Jui Hsieh:
Stabilizing Differentiable Architecture Search via Perturbation-based Regularization. CoRR abs/2002.05283 (2020) - [i93]Qin Ding, Cho-Jui Hsieh, James Sharpnack:
Multiscale Non-stationary Stochastic Bandits. CoRR abs/2002.05289 (2020) - [i92]Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, Cho-Jui Hsieh:
Robustness Verification for Transformers. CoRR abs/2002.06622 (2020) - [i91]Minhao Cheng, Qi Lei, Pin-Yu Chen, Inderjit S. Dhillon, Cho-Jui Hsieh:
CAT: Customized Adversarial Training for Improved Robustness. CoRR abs/2002.06789 (2020) - [i90]Kaidi Xu, Zhouxing Shi, Huan Zhang, Minlie Huang, Kai-Wei Chang, Bhavya Kailkhura, Xue Lin, Cho-Jui Hsieh:
Automatic Perturbation Analysis on General Computational Graphs. CoRR abs/2002.12920 (2020) - [i89]Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane S. Boning, Cho-Jui Hsieh:
Robust Deep Reinforcement Learning against Adversarial Perturbations on Observations. CoRR abs/2003.08938 (2020) - [i88]Xuanqing Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, Cho-Jui Hsieh:
Learning to Encode Position for Transformer with Continuous Dynamical Model. CoRR abs/2003.09229 (2020) - [i87]Yuanhao Xiong, Cho-Jui Hsieh:
Improved Adversarial Training via Learned Optimizer. CoRR abs/2004.12227 (2020) - [i86]Lu Wang, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, Yuan Jiang:
Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data. CoRR abs/2005.04871 (2020) - [i85]Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv Kumar, Cho-Jui Hsieh:
Evaluations and Methods for Explanation through Robustness Analysis. CoRR abs/2006.00442 (2020) - [i84]Qin Ding, Cho-Jui Hsieh, James Sharpnack:
An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson Sampling. CoRR abs/2006.04012 (2020) - [i83]Lu Wang, Xuanqing Liu, Jinfeng Yi, Yuan Jiang, Cho-Jui Hsieh:
Provably Robust Metric Learning. CoRR abs/2006.07024 (2020) - [i82]Yang You, Yuhui Wang, Huan Zhang, Zhao Zhang, James Demmel, Cho-Jui Hsieh:
The Limit of the Batch Size. CoRR abs/2006.08517 (2020) - [i81]Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, Cho-Jui Hsieh:
DrNAS: Dirichlet Neural Architecture Search. CoRR abs/2006.10355 (2020) - [i80]Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei Chang, Xuanjing Huang:
Defense against Adversarial Attacks in NLP via Dirichlet Neighborhood Ensemble. CoRR abs/2006.11627 (2020) - [i79]Hongge Chen, Si Si, Yang Li, Ciprian Chelba, Sanjiv Kumar, Duane S. Boning, Cho-Jui Hsieh:
Multi-Stage Influence Function. CoRR abs/2007.09081 (2020) - [i78]Jiachen Zhong, Xuanqing Liu, Cho-Jui Hsieh:
Improving the Speed and Quality of GAN by Adversarial Training. CoRR abs/2008.03364 (2020) - [i77]Yihan Wang, Huan Zhang, Hongge Chen, Duane S. Boning, Cho-Jui Hsieh:
On 𝓁p-norm Robustness of Ensemble Stumps and Trees. CoRR abs/2008.08755 (2020) - [i76]Benlin Liu, Yongming Rao, Jiwen Lu, Jie Zhou, Cho-Jui Hsieh:
MetaDistiller: Network Self-Boosting via Meta-Learned Top-Down Distillation. CoRR abs/2008.12094 (2020) - [i75]Yuanhao Xiong, Xuanqing Liu, Li-Cheng Lan, Yang You, Si Si, Cho-Jui Hsieh:
How much progress have we made in neural network training? A New Evaluation Protocol for Benchmarking Optimizers. CoRR abs/2010.09889 (2020) - [i74]Chong Zhang, Huan Zhang, Cho-Jui Hsieh:
An Efficient Adversarial Attack for Tree Ensembles. CoRR abs/2010.11598 (2020) - [i73]Liping Yuan, Xiaoqing Zheng, Yi Zhou, Cho-Jui Hsieh, Kai-Wei Chang, Xuanjing Huang:
Generating universal language adversarial examples by understanding and enhancing the transferability across neural models. CoRR abs/2011.08558 (2020) - [i72]Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, Cho-Jui Hsieh:
Fast and Complete: Enabling Complete Neural Network Verification with Rapid and Massively Parallel Incomplete Verifiers. CoRR abs/2011.13824 (2020) - [i71]Devvrit, Minhao Cheng, Cho-Jui Hsieh, Inderjit S. Dhillon:
Voting based ensemble improves robustness of defensive models. CoRR abs/2011.14031 (2020) - [i70]Li-Cheng Lan, Meng-Yu Tsai, Ti-Rong Wu, I-Chen Wu, Cho-Jui Hsieh:
Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search. CoRR abs/2012.07910 (2020) - [i69]Minhao Cheng, Pin-Yu Chen, Sijia Liu, Shiyu Chang, Cho-Jui Hsieh, Payel Das:
Self-Progressing Robust Training. CoRR abs/2012.11769 (2020)
2010 – 2019
- 2019
- [j17]Jiarui Fang, Haohuan Fu, Guangwen Yang, Cho-Jui Hsieh:
RedSync: Reducing synchronization bandwidth for distributed deep learning training system. J. Parallel Distributed Comput. 133: 30-39 (2019) - [j16]Liunian Harold Li, Patrick H. Chen, Cho-Jui Hsieh, Kai-Wei Chang:
Efficient Contextual Representation Learning With Continuous Outputs. Trans. Assoc. Comput. Linguistics 7: 611-624 (2019) - [j15]Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, Kurt Keutzer:
Fast Deep Neural Network Training on Distributed Systems and Cloud TPUs. IEEE Trans. Parallel Distributed Syst. 30(11): 2449-2462 (2019) - [c86]Chun-Chen Tu, Pai-Shun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, Shin-Ming Cheng:
AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks. AAAI 2019: 742-749 - [c85]Huan Zhang, Pengchuan Zhang, Cho-Jui Hsieh:
RecurJac: An Efficient Recursive Algorithm for Bounding Jacobian Matrix of Neural Networks and Its Applications. AAAI 2019: 5757-5764 - [c84]Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, Cho-Jui Hsieh:
On the Robustness of Self-Attentive Models. ACL (1) 2019: 1520-1529 - [c83]Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit S. Dhillon:
Parallel Asynchronous Stochastic Coordinate Descent with Auxiliary Variables. AISTATS 2019: 2641-2649 - [c82]Qin Ding, Hsiang-Fu Yu, Cho-Jui Hsieh:
A Fast Sampling Algorithm for Maximum Inner Product Search. AISTATS 2019: 3004-3012 - [c81]Xuanqing Liu, Cho-Jui Hsieh:
Rob-GAN: Generator, Discriminator, and Adversarial Attacker. CVPR 2019: 11234-11243 - [c80]Yukun Ma, Patrick H. Chen, Cho-Jui Hsieh:
MulCode: A Multiplicative Multi-way Model for Compressing Neural Language Model. EMNLP/IJCNLP (1) 2019: 5256-5265 - [c79]Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui Hsieh, Mani B. Srivastava:
GenAttack: practical black-box attacks with gradient-free optimization. GECCO 2019: 1111-1119 - [c78]Jun-Ho Choi, Huan Zhang, Jun-Hyuk Kim, Cho-Jui Hsieh, Jong-Seok Lee:
Evaluating Robustness of Deep Image Super-Resolution Against Adversarial Attacks. ICCV 2019: 303-311 - [c77]Yang You, Yuxiong He, Samyam Rajbhandari, Wenhan Wang, Cho-Jui Hsieh, Kurt Keutzer, James Demmel:
Fast LSTM Inference by Dynamic Decomposition on Cloud Systems. ICDM 2019: 748-757 - [c76]Patrick H. Chen, Si Si, Sanjiv Kumar, Yang Li, Cho-Jui Hsieh:
Learning to Screen for Fast Softmax Inference on Large Vocabulary Neural Networks. ICLR (Poster) 2019 - [c75]Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh:
Query-Efficient Hard-label Black-box Attack: An Optimization-based Approach. ICLR (Poster) 2019 - [c74]Xuanqing Liu, Yao Li, Chongruo Wu, Cho-Jui Hsieh:
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network. ICLR (Poster) 2019 - [c73]Huan Zhang, Hongge Chen, Zhao Song, Duane S. Boning, Inderjit S. Dhillon, Cho-Jui Hsieh:
The Limitations of Adversarial Training and the Blind-Spot Attack. ICLR (Poster) 2019 - [c72]Hongge Chen, Huan Zhang, Duane S. Boning, Cho-Jui Hsieh:
Robust Decision Trees Against Adversarial Examples. ICML 2019: 1122-1131 - [c71]Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh:
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. KDD 2019: 257-266 - [c70]Minhao Cheng, Wei Wei, Cho-Jui Hsieh:
Evaluating and Enhancing the Robustness of Dialogue Systems: A Case Study on a Negotiation Agent. NAACL-HLT (1) 2019: 3325-3335 - [c69]Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James L. Sharpnack:
Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers. NeurIPS 2019: 24-34 - [c68]Xuanqing Liu, Si Si, Jerry Zhu, Yang Li, Cho-Jui Hsieh:
A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning. NeurIPS 2019: 9777-9787 - [c67]Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, Pengchuan Zhang:
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks. NeurIPS 2019: 9832-9842 - [c66]Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane S. Boning, Cho-Jui Hsieh:
Robustness Verification of Tree-based Models. NeurIPS 2019: 12317-12328 - [c65]Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, Jason D. Lee:
Convergence of Adversarial Training in Overparametrized Neural Networks. NeurIPS 2019: 13009-13020 - [c64]Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, Cho-Jui Hsieh:
Large-batch training for LSTM and beyond. SC 2019: 9:1-9:16 - [c63]Huang Fang, Minhao Cheng, Cho-Jui Hsieh, Michael P. Friedlander:
Fast Training for Large-Scale One-versus-All Linear Classifiers using Tree-Structured Initialization. SDM 2019: 280-288 - [i68]Huan Zhang, Hongge Chen, Zhao Song, Duane S. Boning, Inderjit S. Dhillon, Cho-Jui Hsieh:
The Limitations of Adversarial Training and the Blind-Spot Attack. CoRR abs/1901.04684 (2019) - [i67]Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, Cho-Jui Hsieh:
Large-Batch Training for LSTM and Beyond. CoRR abs/1901.08256 (2019) - [i66]Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, Pengchuan Zhang:
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks. CoRR abs/1902.08722 (2019) - [i65]Hongge Chen, Huan Zhang, Duane S. Boning, Cho-Jui Hsieh:
Robust Decision Trees Against Adversarial Examples. CoRR abs/1902.10660 (2019) - [i64]Liunian Harold Li, Patrick H. Chen, Cho-Jui Hsieh, Kai-Wei Chang:
Efficient Contextual Representation Learning Without Softmax Layer. CoRR abs/1902.11269 (2019) - [i63]Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, Cho-Jui Hsieh:
Reducing BERT Pre-Training Time from 3 Days to 76 Minutes. CoRR abs/1904.00962 (2019) - [i62]Jun-Ho Choi, Huan Zhang, Jun-Hyuk Kim, Cho-Jui Hsieh, Jong-Seok Lee:
Evaluating Robustness of Deep Image Super-Resolution against Adversarial Attacks. CoRR abs/1904.06097 (2019) - [i61]Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh:
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. CoRR abs/1905.07953 (2019) - [i60]Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack:
Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers. CoRR abs/1905.10630 (2019) - [i59]Liwei Wu, Hsiang-Fu Yu, Nikhil Rao, James Sharpnack, Cho-Jui Hsieh:
Graph DNA: Deep Neighborhood Aware Graph Encoding for Collaborative Filtering. CoRR abs/1905.12217 (2019) - [i58]Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, Cho-Jui Hsieh:
Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise. CoRR abs/1906.02355 (2019) - [i57]Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, Michael I. Jordan:
ML-LOO: Detecting Adversarial Examples with Feature Attribution. CoRR abs/1906.03499 (2019) - [i56]Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane S. Boning, Cho-Jui Hsieh:
Robustness Verification of Tree-based Models. CoRR abs/1906.03849 (2019) - [i55]Lu Wang, Xuanqing Liu, Jinfeng Yi, Zhi-Hua Zhou, Cho-Jui Hsieh:
Evaluating the Robustness of Nearest Neighbor Classifiers: A Primal-Dual Perspective. CoRR abs/1906.03972 (2019) - [i54]Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane S. Boning, Cho-Jui Hsieh:
Towards Stable and Efficient Training of Verifiably Robust Neural Networks. CoRR abs/1906.06316 (2019) - [i53]Ruiqi Gao, Tianle Cai, Haochuan Li, Liwei Wang, Cho-Jui Hsieh, Jason D. Lee:
Convergence of Adversarial Training in Overparametrized Networks. CoRR abs/1906.07916 (2019) - [i52]Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang:
VisualBERT: A Simple and Performant Baseline for Vision and Language. CoRR abs/1908.03557 (2019) - [i51]Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack:
Temporal Collaborative Ranking Via Personalized Transformer. CoRR abs/1908.05435 (2019) - [i50]Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, Cho-Jui Hsieh:
Natural Adversarial Sentence Generation with Gradient-based Perturbation. CoRR abs/1909.04495 (2019) - [i49]Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, Cho-Jui Hsieh:
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack. CoRR abs/1909.10773 (2019) - [i48]Utkarsh Ojha, Krishna Kumar Singh, Cho-Jui Hsieh, Yong Jae Lee:
Elastic-InfoGAN: Unsupervised Disentangled Representation Learning in Imbalanced Data. CoRR abs/1910.01112 (2019) - [i47]Yangjun Ruan, Yuanhao Xiong, Sashank J. Reddi, Sanjiv Kumar, Cho-Jui Hsieh:
Learning to Learn by Zeroth-Order Oracle. CoRR abs/1910.09464 (2019) - [i46]Xuanqing Liu, Si Si, Xiaojin Zhu, Yang Li, Cho-Jui Hsieh:
A Unified Framework for Data Poisoning Attack to Graph-based Semi-supervised Learning. CoRR abs/1910.14147 (2019) - [i45]Huan Zhang, Minhao Cheng, Cho-Jui Hsieh:
Enhancing Certifiable Robustness via a Deep Model Ensemble. CoRR abs/1910.14655 (2019) - [i44]Xiaoyun Wang, Xuanqing Liu, Cho-Jui Hsieh:
GraphDefense: Towards Robust Graph Convolutional Networks. CoRR abs/1911.04429 (2019) - [i43]Patrick H. Chen, Wei Wei, Cho-Jui Hsieh, Bo Dai:
Overcoming Catastrophic Forgetting by Generative Regularization. CoRR abs/1912.01238 (2019) - 2018
- [j14]Kai-Yang Chiang, Inderjit S. Dhillon, Cho-Jui Hsieh:
Using Side Information to Reliably Learn Low-Rank Matrices from Missing and Corrupted Observations. J. Mach. Learn. Res. 19: 76:1-76:35 (2018) - [c62]Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh:
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples. AAAI 2018: 10-17 - [c61]Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Cho-Jui Hsieh:
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning. ACL (1) 2018: 2587-2597 - [c60]Xuanqing Liu, Minhao Cheng, Huan Zhang, Cho-Jui Hsieh:
Towards Robust Neural Networks via Random Self-ensemble. ECCV (7) 2018: 381-397 - [c59]Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Aurélie C. Lozano, Cho-Jui Hsieh, Luca Daniel:
On Extensions of Clever: A Neural Network Robustness Evaluation Algorithm. GlobalSIP 2018: 1159-1163 - [c58]Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, Luca Daniel:
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach. ICLR (Poster) 2018 - [c57]Minhao Cheng, Ian Davidson, Cho-Jui Hsieh:
Extreme Learning to Rank via Low Rank Assumption. ICML 2018: 950-959 - [c56]Xuanqing Liu, Cho-Jui Hsieh:
Fast Variance Reduction Method with Stochastic Batch Size. ICML 2018: 3185-3194 - [c55]Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S. Boning, Inderjit S. Dhillon:
Towards Fast Computation of Certified Robustness for ReLU Networks. ICML 2018: 5273-5282 - [c54]Liwei Wu, Cho-Jui Hsieh, James Sharpnack:
SQL-Rank: A Listwise Approach to Collaborative Ranking. ICML 2018: 5311-5320 - [c53]Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, Kurt Keutzer:
ImageNet Training in Minutes. ICPP 2018: 1:1-1:10 - [c52]Yang You, James Demmel, Cho-Jui Hsieh, Richard W. Vuduc:
Accurate, Fast and Scalable Kernel Ridge Regression on Parallel and Distributed Systems. ICS 2018: 307-317 - [c51]Minhao Cheng, Cho-Jui Hsieh:
Distributed Primal-Dual Optimization for Non-uniformly Distributed Data. IJCAI 2018: 2028-2034 - [c50]Xiaoyun Wang, Chun-Ming Lai, Yu-Cheng Lin, Cho-Jui Hsieh, Shyhtsun Felix Wu, Hasan Cam:
Multiple Accounts Detection on Facebook Using Semi-Supervised Learning on Graphs. MILCOM 2018: 1-9 - [c49]Chao Jiang, Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang:
Learning Word Embeddings for Low-Resource Languages by PU Learning. NAACL-HLT 2018: 1024-1034 - [c48]Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, Luca Daniel:
Efficient Neural Network Robustness Certification with General Activation Functions. NeurIPS 2018: 4944-4953 - [c47]Yao Li, Minhao Cheng, Kevin Fujii, Fushing Hsieh, Cho-Jui Hsieh:
Learning from Group Comparisons: Exploiting Higher Order Interactions. NeurIPS 2018: 4986-4995 - [c46]Patrick H. Chen, Si Si, Yang Li, Ciprian Chelba, Cho-Jui Hsieh:
GroupReduce: Block-Wise Low-Rank Approximation for Neural Language Model Shrinking. NeurIPS 2018: 11011-11021 - [c45]Jun Wang, Cho-Jui Hsieh, Daming Shi:
NLRR++: Scalable Subspace Clustering via Non-Convex Block Coordinate Descent. SDM 2018: 28-36 - [i42]Xiaoyun Wang, Chun-Ming Lai, Yunfeng Hong, Cho-Jui Hsieh, Shyhtsun Felix Wu:
Multiple Accounts Detection on Facebook Using Semi-Supervised Learning on Graphs. CoRR abs/1801.09838 (2018) - [i41]Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, Luca Daniel:
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach. CoRR abs/1801.10578 (2018) - [i40]Liwei Wu, Cho-Jui Hsieh, James Sharpnack:
SQL-Rank: A Listwise Approach to Collaborative Ranking. CoRR abs/1803.00114 (2018) - [i39]Minhao Cheng, Jinfeng Yi, Huan Zhang, Pin-Yu Chen, Cho-Jui Hsieh:
Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples. CoRR abs/1803.01128 (2018) - [i38]Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane S. Boning, Inderjit S. Dhillon, Luca Daniel:
Towards Fast Computation of Certified Robustness for ReLU Networks. CoRR abs/1804.09699 (2018) - [i37]Yang You, James Demmel, Cho-Jui Hsieh, Richard W. Vuduc:
Accurate, Fast and Scalable Kernel Ridge Regression on Parallel and Distributed Systems. CoRR abs/1805.00569 (2018) - [i36]Chao Jiang, Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang:
LearningWord Embeddings for Low-resource Languages by PU Learning. CoRR abs/1805.03366 (2018) - [i35]Chun-Chen Tu, Pai-Shun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, Shin-Ming Cheng:
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks. CoRR abs/1805.11770 (2018) - [i34]Liu Liu, Minhao Cheng, Cho-Jui Hsieh, Dacheng Tao:
Stochastic Zeroth-order Optimization via Variance Reduction method. CoRR abs/1805.11811 (2018) - [i33]Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, Michael I. Jordan:
Greedy Attack and Gumbel Attack: Generating Adversarial Examples for Discrete Data. CoRR abs/1805.12316 (2018) - [i32]Patrick H. Chen, Si Si, Yang Li, Ciprian Chelba, Cho-Jui Hsieh:
GroupReduce: Block-Wise Low-Rank Approximation for Neural Language Model Shrinking. CoRR abs/1806.06950 (2018) - [i31]Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, Cho-Jui Hsieh:
Query-Efficient Hard-label Black-box Attack: An Optimization-based Approach. CoRR abs/1807.04457 (2018) - [i30]Xuanqing Liu, Cho-Jui Hsieh:
From Adversarial Training to Generative Adversarial Networks. CoRR abs/1807.10454 (2018) - [i29]Xuanqing Liu, Cho-Jui Hsieh:
Fast Variance Reduction Method with Stochastic Batch Size. CoRR abs/1808.02169 (2018) - [i28]Liu Liu, Ji Liu, Cho-Jui Hsieh, Dacheng Tao:
Stochastically Controlled Stochastic Gradient for the Convex and Non-convex Composition problem. CoRR abs/1809.02505 (2018) - [i27]Liu Liu, Xuanqing Liu, Cho-Jui Hsieh, Dacheng Tao:
Stochastic Second-order Methods for Non-convex Optimization with Inexact Hessian and Gradient. CoRR abs/1809.09853 (2018) - [i26]Xuanqing Liu, Yao Li, Chongruo Wu, Cho-Jui Hsieh:
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network. CoRR abs/1810.01279 (2018) - [i25]Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Aurélie C. Lozano, Cho-Jui Hsieh, Luca Daniel:
On Extensions of CLEVER: A Neural Network Robustness Evaluation Algorithm. CoRR abs/1810.08640 (2018) - [i24]Xiaoyun Wang, Joe Eaton, Cho-Jui Hsieh, Shyhtsun Felix Wu:
Attack Graph Convolutional Networks by Adding Fake Nodes. CoRR abs/1810.10751 (2018) - [i23]Huan Zhang, Pengchuan Zhang, Cho-Jui Hsieh:
RecurJac: An Efficient Recursive Algorithm for Bounding Jacobian Matrix of Neural Networks and Its Applications. CoRR abs/1810.11783 (2018) - [i22]Patrick H. Chen, Si Si, Sanjiv Kumar, Yang Li, Cho-Jui Hsieh:
Learning to Screen for Fast Softmax Inference on Large Vocabulary Neural Networks. CoRR abs/1810.12406 (2018) - [i21]Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, Luca Daniel:
Efficient Neural Network Robustness Certification with General Activation Functions. CoRR abs/1811.00866 (2018) - [i20]Yuefeng Liang, Cho-Jui Hsieh, Thomas C. M. Lee:
Block-wise Partitioning for Extreme Multi-label Classification. CoRR abs/1811.01305 (2018) - [i19]Yao Li, Martin Renqiang Min, Wenchao Yu, Cho-Jui Hsieh, Thomas C. M. Lee, Erik Kruus:
Optimal Transport Classifier: Defending Against Adversarial Attacks by Regularized Deep Embedding. CoRR abs/1811.07950 (2018) - 2017
- [j13]Si Si, Cho-Jui Hsieh, Inderjit S. Dhillon:
Memory Efficient Kernel Approximation. J. Mach. Learn. Res. 18: 20:1-20:32 (2017) - [c44]Kai-Yang Chiang, Cho-Jui Hsieh, Inderjit S. Dhillon:
Rank Aggregation and Prediction with Item Features. AISTATS 2017: 748-756 - [c43]Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, Cho-Jui Hsieh:
ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models. AISec@CCS 2017: 15-26 - [c42]Huang Fang, Minhao Cheng, Cho-Jui Hsieh:
A Hyperplane-Based Algorithm for Semi-Supervised Dimension Reduction. ICDM 2017: 101-110 - [c41]Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, Cho-Jui Hsieh:
Gradient Boosted Decision Trees for High Dimensional Sparse Output. ICML 2017: 3182-3190 - [c40]Kevin Fujii, Fushing Hsieh, Cho-Jui Hsieh:
Computable Expert Knowledge in Computer Games. ICMLA 2017: 749-754 - [c39]Huang Fang, Zhen Zhang, Yiqun Shao, Cho-Jui Hsieh:
Improved Bounded Matrix Completion for Large-Scale Recommender Systems. IJCAI 2017: 1654-1660 - [c38]Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon:
Communication-Efficient Distributed Block Minimization for Nonlinear Kernel Machines. KDD 2017: 245-254 - [c37]Liwei Wu, Cho-Jui Hsieh, James Sharpnack:
Large-scale Collaborative Ranking in Near-Linear Time. KDD 2017: 515-524 - [c36]Jinfeng Yi, Cho-Jui Hsieh, Kush R. Varshney, Lijun Zhang, Yao Li:
Scalable Demand-Aware Recommendation. NIPS 2017: 2412-2421 - [c35]Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, Ji Liu:
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent. NIPS 2017: 5330-5340 - [c34]Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, Inderjit S. Dhillon:
A Greedy Approach for Budgeted Maximum Inner Product Search. NIPS 2017: 5453-5462 - [i18]Jinfeng Yi, Cho-Jui Hsieh, Kush R. Varshney, Lijun Zhang, Yao Li:
Positive-Unlabeled Demand-Aware Recommendation. CoRR abs/1702.06347 (2017) - [i17]Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, Ji Liu:
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent. CoRR abs/1705.09056 (2017) - [i16]Huan Zhang, Si Si, Cho-Jui Hsieh:
GPU-acceleration for Large-scale Tree Boosting. CoRR abs/1706.08359 (2017) - [i15]Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, Cho-Jui Hsieh:
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models. CoRR abs/1708.03999 (2017) - [i14]Xuanqing Liu, Cho-Jui Hsieh, Jason D. Lee, Yuekai Sun:
An inexact subsampled proximal Newton-type method for large-scale machine learning. CoRR abs/1708.08552 (2017) - [i13]Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh:
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples. CoRR abs/1709.04114 (2017) - [i12]Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel:
100-epoch ImageNet Training with AlexNet in 24 Minutes. CoRR abs/1709.05011 (2017) - [i11]Xuanqing Liu, Minhao Cheng, Huan Zhang, Cho-Jui Hsieh:
Towards Robust Neural Networks via Random Self-ensemble. CoRR abs/1712.00673 (2017) - [i10]Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Cho-Jui Hsieh:
Show-and-Fool: Crafting Adversarial Examples for Neural Image Captioning. CoRR abs/1712.02051 (2017) - 2016
- [j12]Hsiang-Fu Yu, Cho-Jui Hsieh, Hyokun Yun, S. V. N. Vishwanathan, Inderjit S. Dhillon:
Nomadic Computing for Big Data Analytics. Computer 49(4): 52-60 (2016) - [j11]Fushing Hsieh, Kevin Fujii, Cho-Jui Hsieh:
Machine Learning Meliorates Computing and Robustness in Discrete Combinatorial Optimization Problems. Frontiers Appl. Math. Stat. 2: 20 (2016) - [c33]Huan Zhang, Cho-Jui Hsieh:
Fixing the Convergence Problems in Parallel Asynchronous Dual Coordinate Descent. ICDM 2016: 619-628 - [c32]Huan Zhang, Cho-Jui Hsieh, Venkatesh Akella:
HogWild++: A New Mechanism for Decentralized Asynchronous Stochastic Gradient Descent. ICDM 2016: 629-638 - [c31]Kai-Yang Chiang, Cho-Jui Hsieh, Inderjit S. Dhillon:
Robust Principal Component Analysis with Side Information. ICML 2016: 2291-2299 - [c30]Si Si, Cho-Jui Hsieh, Inderjit S. Dhillon:
Computationally Efficient Nyström Approximation using Fast Transforms. ICML 2016: 2655-2663 - [c29]Si Si, Kai-Yang Chiang, Cho-Jui Hsieh, Nikhil Rao, Inderjit S. Dhillon:
Goal-Directed Inductive Matrix Completion. KDD 2016: 1165-1174 - [c28]Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, Ji Liu:
A Comprehensive Linear Speedup Analysis for Asynchronous Stochastic Parallel Optimization from Zeroth-Order to First-Order. NIPS 2016: 3054-3062 - [c27]Yang You, Xiangru Lian, Ji Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, James Demmel, Cho-Jui Hsieh:
Asynchronous Parallel Greedy Coordinate Descent. NIPS 2016: 4682-4690 - [i9]Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon:
Communication-Efficient Parallel Block Minimization for Kernel Machines. CoRR abs/1608.02010 (2016) - [i8]Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, Inderjit S. Dhillon:
A Greedy Approach for Budgeted Maximum Inner Product Search. CoRR abs/1610.03317 (2016) - 2015
- [c26]Cho-Jui Hsieh, Hsiang-Fu Yu, Inderjit S. Dhillon:
PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent. ICML 2015: 2370-2379 - [c25]Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon:
PU Learning for Matrix Completion. ICML 2015: 2445-2453 - [c24]Ian En-Hsu Yen, Kai Zhong, Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon:
Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent. NIPS 2015: 2368-2376 - [c23]Kai-Yang Chiang, Cho-Jui Hsieh, Inderjit S. Dhillon:
Matrix Completion with Noisy Side Information. NIPS 2015: 3447-3455 - [c22]Hsiang-Fu Yu, Cho-Jui Hsieh, Hyokun Yun, S. V. N. Vishwanathan, Inderjit S. Dhillon:
A Scalable Asynchronous Distributed Algorithm for Topic Modeling. WWW 2015: 1340-1350 - [i7]Cho-Jui Hsieh, Hsiang-Fu Yu, Inderjit S. Dhillon:
PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent. CoRR abs/1504.01365 (2015) - 2014
- [j10]Kai-Yang Chiang, Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon, Ambuj Tewari:
Prediction and clustering in signed networks: a local to global perspective. J. Mach. Learn. Res. 15(1): 1177-1213 (2014) - [j9]Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar:
QUIC: quadratic approximation for sparse inverse covariance estimation. J. Mach. Learn. Res. 15(1): 2911-2947 (2014) - [j8]Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon:
Parallel matrix factorization for recommender systems. Knowl. Inf. Syst. 41(3): 793-819 (2014) - [j7]Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, S. V. N. Vishwanathan, Inderjit S. Dhillon:
NOMAD: Nonlocking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion. Proc. VLDB Endow. 7(11): 975-986 (2014) - [c21]Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon:
A Divide-and-Conquer Solver for Kernel Support Vector Machines. ICML 2014: 566-574 - [c20]Cho-Jui Hsieh, Peder A. Olsen:
Nuclear Norm Minimization via Active Subspace Selection. ICML 2014: 575-583 - [c19]Si Si, Cho-Jui Hsieh, Inderjit S. Dhillon:
Memory Efficient Kernel Approximation. ICML 2014: 701-709 - [c18]Ian En-Hsu Yen, Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon:
Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings. NIPS 2014: 1008-1016 - [c17]Cho-Jui Hsieh, Inderjit S. Dhillon, Pradeep Ravikumar, Stephen Becker, Peder A. Olsen:
QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models. NIPS 2014: 2006-2014 - [c16]Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon:
Fast Prediction for Large-Scale Kernel Machines. NIPS 2014: 3689-3697 - [i6]Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon:
PU Learning for Matrix Completion. CoRR abs/1411.6081 (2014) - [i5]Hsiang-Fu Yu, Cho-Jui Hsieh, Hyokun Yun, S. V. N. Vishwanathan, Inderjit S. Dhillon:
A Scalable Asynchronous Distributed Algorithm for Topic Modeling. CoRR abs/1412.4986 (2014) - 2013
- [c15]Huahua Wang, Arindam Banerjee, Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit S. Dhillon:
Large Scale Distributed Sparse Precision Estimation. NIPS 2013: 584-592 - [c14]Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar, Russell A. Poldrack:
BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables. NIPS 2013: 3165-3173 - [c13]Cho-Jui Hsieh, Mitul Tiwari, Deepak Agarwal, Xinyi (Lisa) Huang, Sam Shah:
Organizational overlap on social networks and its applications. WWW 2013: 571-582 - [i4]Kai-Yang Chiang, Cho-Jui Hsieh, Nagarajan Natarajan, Ambuj Tewari, Inderjit S. Dhillon:
Prediction and Clustering in Signed Networks: A Local to Global Perspective. CoRR abs/1302.5145 (2013) - [i3]Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar:
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation. CoRR abs/1306.3212 (2013) - [i2]Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon:
A Divide-and-Conquer Solver for Kernel Support Vector Machines. CoRR abs/1311.0914 (2013) - [i1]Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, S. V. N. Vishwanathan, Inderjit S. Dhillon:
NOMAD: Non-locking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion. CoRR abs/1312.0193 (2013) - 2012
- [j6]Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:
Large Linear Classification When Data Cannot Fit in Memory. ACM Trans. Knowl. Discov. Data 5(4): 23:1-23:23 (2012) - [c12]Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon:
Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems. ICDM 2012: 765-774 - [c11]Cho-Jui Hsieh, Kai-Yang Chiang, Inderjit S. Dhillon:
Low rank modeling of signed networks. KDD 2012: 507-515 - [c10]Inderjit S. Dhillon, Cho-Jui Hsieh, Mátyás A. Sustik, Pradeep Ravikumar:
Sparse inverse covariance matrix estimation using quadratic approximation. MLSLP 2012 - [c9]Cho-Jui Hsieh, Inderjit S. Dhillon, Pradeep Ravikumar, Arindam Banerjee:
A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation. NIPS 2012: 2339-2347 - 2011
- [c8]Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:
Large Linear Classification When Data Cannot Fit in Memory. IJCAI 2011: 2777-2782 - [c7]Cho-Jui Hsieh, Inderjit S. Dhillon:
Fast coordinate descent methods with variable selection for non-negative matrix factorization. KDD 2011: 1064-1072 - [c6]Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar:
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation. NIPS 2011: 2330-2338 - 2010
- [j5]Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:
Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models. J. Mach. Learn. Res. 11: 815-848 (2010) - [j4]Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, Chih-Jen Lin:
Training and Testing Low-degree Polynomial Data Mappings via Linear SVM. J. Mach. Learn. Res. 11: 1471-1490 (2010) - [j3]Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin:
A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification. J. Mach. Learn. Res. 11: 3183-3234 (2010) - [c5]Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:
Large linear classification when data cannot fit in memory. KDD 2010: 833-842
2000 – 2009
- 2009
- [c4]Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:
Iterative Scaling and Coordinate Descent Methods for Maximum Entropy. ACL/IJCNLP (2) 2009: 285-288 - [c3]Hung-Yi Lo, Kai-Wei Chang, Shang-Tse Chen, Tsung-Hsien Chiang, Chun-Sung Ferng, Cho-Jui Hsieh, Yi-Kuang Ko, Tsung-Ting Kuo, Hung-Che Lai, Ken-Yi Lin, Chia-Hsuan Wang, Hsiang-Fu Yu, Chih-Jen Lin, Hsuan-Tien Lin, Shou-De Lin:
An Ensemble of Three Classifiers for KDD Cup 2009: Expanded Linear Model, Heterogeneous Boosting, and Selective Naive Bayes. KDD Cup 2009: 57-64 - 2008
- [j2]Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin:
Coordinate Descent Method for Large-scale L2-loss Linear Support Vector Machines. J. Mach. Learn. Res. 9: 1369-1398 (2008) - [j1]Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Lin:
LIBLINEAR: A Library for Large Linear Classification. J. Mach. Learn. Res. 9: 1871-1874 (2008) - [c2]Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, S. Sundararajan:
A dual coordinate descent method for large-scale linear SVM. ICML 2008: 408-415 - [c1]S. Sathiya Keerthi, S. Sundararajan, Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin:
A sequential dual method for large scale multi-class linear svms. KDD 2008: 408-416
Coauthor Index
aka: Thomas Chun Man Lee
aka: Pradeep Kumar Ravikumar
aka: James L. Sharpnack
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-12 22:00 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint