default search action
Tsui-Wei Weng
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c31]Wang Zhang, Ziwen Martin Ma, Subhro Das, Tsui-Wei Lily Weng, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
One Step Closer to Unbiased Aleatoric Uncertainty Estimation. AAAI 2024: 16857-16864 - [c30]Tsui-Wei Lily Weng:
Towards Trustworthy Deep Learning. AAAI 2024: 22682 - [c29]Akshay R. Kulkarni, Tsui-Wei Weng:
Interpretability-Guided Test-Time Adversarial Defense. ECCV (37) 2024: 466-483 - [c28]Avni Kothari, Bogdan Kulynych, Tsui-Wei Weng, Berk Ustun:
Prediction without Preclusion: Recourse Verification with Reachable Sets. ICLR 2024 - [c27]Ge Yan, Yaniv Romano, Tsui-Wei Weng:
Provably Robust Conformal Prediction with Improved Efficiency. ICLR 2024 - [c26]Tuomas P. Oikarinen, Tsui-Wei Weng:
Linear Explanations for Individual Neurons. ICML 2024 - [c25]Chung-En Sun, Sicun Gao, Tsui-Wei Weng:
Breaking the Barrier: Enhanced Utility and Robustness in Smoothed DRL Agents. ICML 2024 - [c24]Tung-Yu Wu, Yu-Xiang Lin, Tsui-Wei Weng:
AND: Audio Network Dissection for Interpreting Deep Acoustic Models. ICML 2024 - [i43]Nicholas Bai, Rahul A. Iyer, Tuomas P. Oikarinen, Tsui-Wei Weng:
Describe-and-Dissect: Interpreting Neurons in Vision Networks with Language Models. CoRR abs/2403.13771 (2024) - [i42]Ge Yan, Yaniv Romano, Tsui-Wei Weng:
Provably Robust Conformal Prediction with Improved Efficiency. CoRR abs/2404.19651 (2024) - [i41]Tuomas P. Oikarinen, Tsui-Wei Weng:
Linear Explanations for Individual Neurons. CoRR abs/2405.06855 (2024) - [i40]Tung-Yu Wu, Yu-Xiang Lin, Tsui-Wei Weng:
AND: Audio Network Dissection for Interpreting Deep Acoustic Models. CoRR abs/2406.16990 (2024) - [i39]Chung-En Sun, Sicun Gao, Tsui-Wei Weng:
Breaking the Barrier: Enhanced Utility and Robustness in Smoothed DRL Agents. CoRR abs/2406.18062 (2024) - [i38]Chung-En Sun, Tuomas P. Oikarinen, Tsui-Wei Weng:
Crafting Large Language Models for Enhanced Interpretability. CoRR abs/2407.04307 (2024) - [i37]Divyansh Srivastava, Ge Yan, Tsui-Wei Weng:
VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance. CoRR abs/2408.01432 (2024) - [i36]Akshay Kulkarni, Tsui-Wei Weng:
Interpretability-Guided Test-Time Adversarial Defense. CoRR abs/2409.15190 (2024) - [i35]Chung-En Sun, Xiaodong Liu, Weiwei Yang, Tsui-Wei Weng, Hao Cheng, Aidan San, Michel Galley, Jianfeng Gao:
Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities. CoRR abs/2410.18469 (2024) - [i34]Yunshi Wen, Tengfei Ma, Tsui-Wei Weng, Lam M. Nguyen, Anak Agung Julius:
Abstracted Shapes as Tokens - A Generalizable and Interpretable Model for Time-series Classification. CoRR abs/2411.01006 (2024) - 2023
- [j2]Wei Huang, Chunrui Liu, Yilan Chen, Richard Yi Da Xu, Miao Zhang, Tsui-Wei Weng:
Analyzing Deep PAC-Bayesian Learning with Neural Tangent Kernel: Convergence, Analytic Generalization Bound, and Efficient Hyperparameter Selection. Trans. Mach. Learn. Res. 2023 (2023) - [c23]Divyansh Srivastava, Tuomas P. Oikarinen, Tsui-Wei Weng:
Corrupting Neuron Explanations of Deep Visual Features. ICCV 2023: 1877-1886 - [c22]Linbo Liu, Trong Nghia Hoang, Lam M. Nguyen, Tsui-Wei Weng:
Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches. ICDM 2023: 1145-1150 - [c21]Nhan H. Pham, Lam M. Nguyen, Jie Chen, Hoang Thanh Lam, Subhro Das, Tsui-Wei Weng:
Attacking c-MARL More Effectively: A Data Driven Approach. ICDM 2023: 1271-1276 - [c20]Alex Gu, Songtao Lu, Parikshit Ram, Tsui-Wei Weng:
Min-Max Multi-objective Bilevel Optimization with Applications in Robust Machine Learning. ICLR 2023 - [c19]Tuomas P. Oikarinen, Subhro Das, Lam M. Nguyen, Tsui-Wei Weng:
Label-free Concept Bottleneck Models. ICLR 2023 - [c18]Tuomas P. Oikarinen, Tsui-Wei Weng:
CLIP-Dissect: Automatic Description of Neuron Representations in Deep Vision Networks. ICLR 2023 - [c17]Wang Zhang, Tsui-Wei Weng, Subhro Das, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction. ICML 2023: 41694-41714 - [i33]Alex Gu, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Certified Interpretability Robustness for Class Activation Mapping. CoRR abs/2301.11324 (2023) - [i32]Wang Zhang, Tsui-Wei Weng, Subhro Das, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction. CoRR abs/2302.05783 (2023) - [i31]Ligong Han, Seungwook Han, Shivchander Sudalairaj, Charlotte Loh, Rumen Dangovski, Fei Deng, Pulkit Agrawal, Dimitris N. Metaxas, Leonid Karlinsky, Tsui-Wei Weng, Akash Srivastava:
Constructive Assimilation: Boosting Contrastive Learning Performance through View Generation Strategies. CoRR abs/2304.00601 (2023) - [i30]Tuomas P. Oikarinen, Subhro Das, Lam M. Nguyen, Tsui-Wei Weng:
Label-Free Concept Bottleneck Models. CoRR abs/2304.06129 (2023) - [i29]Mohammad Ali Khan, Tuomas P. Oikarinen, Tsui-Wei Weng:
Concept-Monitor: Understanding DNN training through individual neurons. CoRR abs/2304.13346 (2023) - [i28]Avni Kothari, Bogdan Kulynych, Tsui-Wei Weng, Berk Ustun:
Prediction without Preclusion: Recourse Verification with Reachable Sets. CoRR abs/2308.12820 (2023) - [i27]Justin Lee, Tuomas P. Oikarinen, Arjun Chatha, Keng-Chi Chang, Yilan Chen, Tsui-Wei Weng:
The Importance of Prompt Tuning for Automated Neuron Explanations. CoRR abs/2310.06200 (2023) - [i26]Linbo Liu, Trong Nghia Hoang, Lam M. Nguyen, Tsui-Wei Weng:
Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches. CoRR abs/2310.07780 (2023) - [i25]Divyansh Srivastava, Tuomas P. Oikarinen, Tsui-Wei Weng:
Corrupting Neuron Explanations of Deep Visual Features. CoRR abs/2310.16332 (2023) - [i24]Wang Zhang, Ziwen Martin Ma, Subhro Das, Tsui-Wei Weng, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
One step closer to unbiased aleatoric uncertainty estimation. CoRR abs/2312.10469 (2023) - 2022
- [j1]Lam M. Nguyen, Marten van Dijk, Dzung T. Phan, Phuong Ha Nguyen, Tsui-Wei Weng, Jayant R. Kalagnanam:
Finite-sum smooth optimization with SARAH. Comput. Optim. Appl. 82(3): 561-593 (2022) - [c16]Asaf Gendler, Tsui-Wei Weng, Luca Daniel, Yaniv Romano:
Adversarially Robust Conformal Prediction. ICLR 2022 - [c15]Zhizhen Qin, Tsui-Wei Weng, Sicun Gao:
Quantifying Safety of Learning-based Self-Driving Control Using Almost-Barrier Functions. IROS 2022: 12903-12910 - [c14]Wei Liao, Ching-Yun Ko, Tsui-Wei Weng, Luca Daniel, Joel Voldman:
Facile Prediction of Neutrophil Activation State from Microscopy Images: A New Dataset and Comparative Deep Learning Approaches. ISBI 2022: 1-5 - [i23]Nhan H. Pham, Lam M. Nguyen, Jie Chen, Hoang Thanh Lam, Subhro Das, Tsui-Wei Weng:
Evaluating Robustness of Cooperative MARL: A Model-based Approach. CoRR abs/2202.03558 (2022) - [i22]Tuomas P. Oikarinen, Tsui-Wei Weng:
CLIP-Dissect: Automatic Description of Neuron Representations in Deep Vision Networks. CoRR abs/2204.10965 (2022) - [i21]Zhizhen Qin, Tsui-Wei Weng, Sicun Gao:
Quantifying Safety of Learning-based Self-Driving Control Using Almost-Barrier Functions. CoRR abs/2207.13891 (2022) - [i20]Chester Holtz, Tsui-Wei Weng, Gal Mishne:
Learning Sample Reweighting for Accuracy and Adversarial Robustness. CoRR abs/2210.11513 (2022) - 2021
- [c13]Ren Wang, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Chuang Gan, Meng Wang:
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning. ICLR 2021 - [c12]Yilan Chen, Wei Huang, Lam M. Nguyen, Tsui-Wei Weng:
On the Equivalence between Neural Network and Support Vector Machine. NeurIPS 2021: 23478-23490 - [c11]Tuomas P. Oikarinen, Wang Zhang, Alexandre Megretski, Luca Daniel, Tsui-Wei Weng:
Robust Deep Reinforcement Learning through Adversarial Loss. NeurIPS 2021: 26156-26167 - [i19]Akhilan Boopathy, Tsui-Wei Weng, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, Luca Daniel:
Fast Training of Provably Robust Neural Networks by SingleProp. CoRR abs/2102.01208 (2021) - [i18]Ren Wang, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Chuang Gan, Meng Wang:
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning. CoRR abs/2102.10454 (2021) - [i17]Yilan Chen, Wei Huang, Lam M. Nguyen, Tsui-Wei Weng:
On the Equivalence between Neural Network and Support Vector Machine. CoRR abs/2111.06063 (2021) - 2020
- [c10]Tsui-Wei Weng, Pu Zhao, Sijia Liu, Pin-Yu Chen, Xue Lin, Luca Daniel:
Towards Certificated Model Robustness Against Weight Perturbations. AAAI 2020: 6356-6363 - [c9]Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Towards Verifying Robustness of Neural Networks Against A Family of Semantic Perturbations. CVPR 2020: 241-249 - [c8]Tsui-Wei Weng, Krishnamurthy (Dj) Dvijotham, Jonathan Uesato, Kai Xiao, Sven Gowal, Robert Stanforth, Pushmeet Kohli:
Toward Evaluating Robustness of Deep Reinforcement Learning with Continuous Control. ICLR 2020 - [c7]Jeet Mohapatra, Ching-Yun Ko, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Higher-Order Certification For Randomized Smoothing. NeurIPS 2020 - [i16]Jeet Mohapatra, Ching-Yun Ko, Tsui-Wei Weng, Sijia Liu, Pin-Yu Chen, Luca Daniel:
Rethinking Randomized Smoothing for Adversarial Robustness. CoRR abs/2003.01249 (2020) - [i15]Tuomas P. Oikarinen, Tsui-Wei Weng, Luca Daniel:
Robust Deep Reinforcement Learning through Adversarial Loss. CoRR abs/2008.01976 (2020) - [i14]Jeet Mohapatra, Ching-Yun Ko, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Higher-Order Certification for Randomized Smoothing. CoRR abs/2010.06651 (2020)
2010 – 2019
- 2019
- [c6]Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks. AAAI 2019: 3240-3247 - [c5]Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, Xue Lin:
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective. IJCAI 2019: 3961-3967 - [i13]Lam M. Nguyen, Marten van Dijk, Dzung T. Phan, Phuong Ha Nguyen, Tsui-Wei Weng, Jayant R. Kalagnanam:
Optimal Finite-Sum Smooth Non-Convex Optimization with SARAH. CoRR abs/1901.07648 (2019) - [i12]Ching-Yun Ko, Zhaoyang Lyu, Tsui-Wei Weng, Luca Daniel, Ngai Wong, Dahua Lin:
POPQORN: Quantifying Robustness of Recurrent Neural Networks. CoRR abs/1905.07387 (2019) - [i11]Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, Xue Lin:
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective. CoRR abs/1906.04214 (2019) - [i10]Yuh-Shyang Wang, Tsui-Wei Weng, Luca Daniel:
Verification of Neural Network Control Policy Under Persistent Adversarial Perturbation. CoRR abs/1908.06353 (2019) - [i9]Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Towards Verifying Robustness of Neural Networks Against Semantic Perturbations. CoRR abs/1912.09533 (2019) - 2018
- [c4]Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Aurélie C. Lozano, Cho-Jui Hsieh, Luca Daniel:
On Extensions of Clever: A Neural Network Robustness Evaluation Algorithm. GlobalSIP 2018: 1159-1163 - [c3]Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, Luca Daniel:
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach. ICLR (Poster) 2018 - [c2]Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S. Boning, Inderjit S. Dhillon:
Towards Fast Computation of Certified Robustness for ReLU Networks. ICML 2018: 5273-5282 - [c1]Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, Luca Daniel:
Efficient Neural Network Robustness Certification with General Activation Functions. NeurIPS 2018: 4944-4953 - [i8]Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, Luca Daniel:
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach. CoRR abs/1801.10578 (2018) - [i7]Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane S. Boning, Inderjit S. Dhillon, Luca Daniel:
Towards Fast Computation of Certified Robustness for ReLU Networks. CoRR abs/1804.09699 (2018) - [i6]Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Aurélie C. Lozano, Cho-Jui Hsieh, Luca Daniel:
On Extensions of CLEVER: A Neural Network Robustness Evaluation Algorithm. CoRR abs/1810.08640 (2018) - [i5]Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, Luca Daniel:
Efficient Neural Network Robustness Certification with General Activation Functions. CoRR abs/1811.00866 (2018) - [i4]Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks. CoRR abs/1811.12395 (2018) - [i3]Tsui-Wei Weng, Pin-Yu Chen, Lam M. Nguyen, Mark S. Squillante, Ivan V. Oseledets, Luca Daniel:
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach. CoRR abs/1812.08329 (2018) - 2016
- [i2]Zheng Zhang, Tsui-Wei Weng, Luca Daniel:
A Big-Data Approach to Handle Process Variations: Uncertainty Quantification by Tensor Recovery. CoRR abs/1603.06119 (2016) - [i1]Zheng Zhang, Tsui-Wei Weng, Luca Daniel:
A Big-Data Approach to Handle Many Process Variations: Tensor Recovery and Applications. CoRR abs/1611.02256 (2016)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-23 20:34 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint