default search action
Lam M. Nguyen
Person information
- affiliation: IBM Research, Thomas J. Watson Research Center, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c33]Anh Duc Nguyen, Tuan Dung Nguyen, Quang Minh Nguyen, Hoang H. Nguyen, Lam M. Nguyen, Kim-Chuan Toh:
On Partial Optimal Transport: Revising the Infeasibility of Sinkhorn and Efficient Gradient Methods. AAAI 2024: 8090-8098 - [c32]Wang Zhang, Ziwen Martin Ma, Subhro Das, Tsui-Wei Lily Weng, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
One Step Closer to Unbiased Aleatoric Uncertainty Estimation. AAAI 2024: 16857-16864 - [c31]Marten van Dijk, Nhuong V. Nguyen, Toan N. Nguyen, Lam M. Nguyen, Phuong Ha Nguyen:
Proactive DP: A Multiple Target Optimization Framework for DP-SGD. ICML 2024 - [c30]Dzung T. Phan, Lam M. Nguyen, Jayant Kalagnanam, Chandra Reddy:
Multi-polytope Machine for Classification. SDM 2024: 109-117 - [i44]Trang H. Tran, Quoc Tran-Dinh, Lam M. Nguyen:
Shuffling Momentum Gradient Algorithm for Convex Optimization. CoRR abs/2403.03180 (2024) - [i43]Quan M. Tran, Suong N. Hoang, Lam M. Nguyen, Dzung T. Phan, Hoang Thanh Lam:
TabularFM: An Open Framework For Tabular Foundational Models. CoRR abs/2406.09837 (2024) - 2023
- [j10]Quang Minh Nguyen, Hoang H. Nguyen, Yi Zhou, Lam M. Nguyen:
On Unbalanced Optimal Transport: Gradient Methods, Sparsity and Approximation Error. J. Mach. Learn. Res. 24: 384:1-384:41 (2023) - [c29]Vinícius Lima, Dzung T. Phan, Lam M. Nguyen, Jayant Kalagnanam:
Optimal Control via Linearizable Deep Learning. ACC 2023: 100-105 - [c28]Quang Minh Nguyen, Nhan Khanh Le, Lam M. Nguyen:
Scalable and Secure Federated XGBoost. ICASSP 2023: 1-5 - [c27]Linbo Liu, Trong Nghia Hoang, Lam M. Nguyen, Tsui-Wei Weng:
Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches. ICDM 2023: 1145-1150 - [c26]Nhan H. Pham, Lam M. Nguyen, Jie Chen, Hoang Thanh Lam, Subhro Das, Tsui-Wei Weng:
Attacking c-MARL More Effectively: A Data Driven Approach. ICDM 2023: 1271-1276 - [c25]Tuomas P. Oikarinen, Subhro Das, Lam M. Nguyen, Tsui-Wei Weng:
Label-free Concept Bottleneck Models. ICLR 2023 - [c24]Wang Zhang, Tsui-Wei Weng, Subhro Das, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction. ICML 2023: 41694-41714 - [c23]Yilan Chen, Wei Huang, Hao Wang, Charlotte Loh, Akash Srivastava, Lam M. Nguyen, Lily Weng:
Analyzing Generalization of Neural Networks through Loss Path Kernels. NeurIPS 2023 - [c22]Lam M. Nguyen, Trang H. Tran:
On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms. NeurIPS 2023 - [i42]Wang Zhang, Tsui-Wei Weng, Subhro Das, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction. CoRR abs/2302.05783 (2023) - [i41]Tuomas P. Oikarinen, Subhro Das, Lam M. Nguyen, Tsui-Wei Weng:
Label-Free Concept Bottleneck Models. CoRR abs/2304.06129 (2023) - [i40]Trang H. Tran, Lam M. Nguyen, Kyongmin Yeo, Nam Nguyen, Dzung T. Phan, Roman Vaculín, Jayant Kalagnanam:
An End-to-End Time Series Model for Simultaneous Imputation and Forecast. CoRR abs/2306.00778 (2023) - [i39]Anh Duy Nguyen, Trang H. Tran, Hieu H. Pham, Phi Le Nguyen, Lam M. Nguyen:
Learning Robust and Consistent Time Series Representations: A Dilated Inception-Based Approach. CoRR abs/2306.06579 (2023) - [i38]Toan N. Nguyen, Phuong Ha Nguyen, Lam M. Nguyen, Marten van Dijk:
Batch Clipping and Adaptive Layerwise Clipping for Differential Private Stochastic Gradient Descent. CoRR abs/2307.11939 (2023) - [i37]Linbo Liu, Trong Nghia Hoang, Lam M. Nguyen, Tsui-Wei Weng:
Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches. CoRR abs/2310.07780 (2023) - [i36]Quang Minh Nguyen, Lam M. Nguyen, Subhro Das:
Correlated Attention in Transformers for Multivariate Time Series. CoRR abs/2311.11959 (2023) - [i35]Trang H. Tran, Lam M. Nguyen, Kyongmin Yeo, Nam Nguyen, Roman Vaculín:
A Supervised Contrastive Learning Pretrain-Finetune Approach for Time Series. CoRR abs/2311.12290 (2023) - [i34]Wang Zhang, Ziwen Martin Ma, Subhro Das, Tsui-Wei Weng, Alexandre Megretski, Luca Daniel, Lam M. Nguyen:
One step closer to unbiased aleatoric uncertainty estimation. CoRR abs/2312.10469 (2023) - [i33]Anh Duc Nguyen, Tuan Dung Nguyen, Quang Minh Nguyen, Hoang H. Nguyen, Lam M. Nguyen, Kim-Chuan Toh:
On Partial Optimal Transport: Revising the Infeasibility of Sinkhorn and Efficient Gradient Methods. CoRR abs/2312.13970 (2023) - 2022
- [j9]Kaleel Mahmood, Phuong Ha Nguyen, Lam M. Nguyen, Thanh Nguyen, Marten van Dijk:
Besting the Black-Box: Barrier Zones for Adversarial Example Defense. IEEE Access 10: 1451-1474 (2022) - [j8]Lam M. Nguyen, Marten van Dijk, Dzung T. Phan, Phuong Ha Nguyen, Tsui-Wei Weng, Jayant R. Kalagnanam:
Finite-sum smooth optimization with SARAH. Comput. Optim. Appl. 82(3): 561-593 (2022) - [j7]Jayant Kalagnanam, Dzung T. Phan, Pavankumar Murali, Lam M. Nguyen, Nianjun Zhou, Dharmashankar Subramanian, Raju Pavuluri, Xiang Ma, Crystal Lui, Giovane Cesar Da Silva:
AI-Based Real-Time Site-Wide Optimization for Process Manufacturing. INFORMS J. Appl. Anal. 52(4): 363-378 (2022) - [j6]Quoc Tran-Dinh, Nhan H. Pham, Dzung T. Phan, Lam M. Nguyen:
A hybrid stochastic optimization framework for composite nonconvex optimization. Math. Program. 191(2): 1005-1071 (2022) - [c21]Connor Lawless, Jayant Kalagnanam, Lam M. Nguyen, Dzung T. Phan, Chandra Reddy:
Interpretable Clustering via Multi-Polytope Machines. AAAI 2022: 7309-7316 - [c20]Trang H. Tran, Katya Scheinberg, Lam M. Nguyen:
Nesterov Accelerated Shuffling Gradient Method for Convex Optimization. ICML 2022: 21703-21732 - [c19]Dzung T. Phan, Hongsheng Liu, Lam M. Nguyen:
StepDIRECT - A Derivative-Free Optimization Method for Stepwise Functions. SDM 2022: 477-485 - [i32]Lam M. Nguyen, Trang H. Tran, Marten van Dijk:
Finite-Sum Optimization: A New Perspective for Convergence to a Global Solution. CoRR abs/2202.03524 (2022) - [i31]Trang H. Tran, Lam M. Nguyen, Katya Scheinberg:
Nesterov Accelerated Shuffling Gradient Method for Convex Optimization. CoRR abs/2202.03525 (2022) - [i30]Nhan H. Pham, Lam M. Nguyen, Jie Chen, Hoang Thanh Lam, Subhro Das, Tsui-Wei Weng:
Evaluating Robustness of Cooperative MARL: A Model-based Approach. CoRR abs/2202.03558 (2022) - [i29]Quang Minh Nguyen, Hoang H. Nguyen, Yi Zhou, Lam M. Nguyen:
On the Convergence of Gradient Extrapolation Methods for Unbalanced Optimal Transport. CoRR abs/2202.03618 (2022) - [i28]Lam M. Nguyen, Trang H. Tran:
On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms. CoRR abs/2206.05869 (2022) - [i27]Trang H. Tran, Lam M. Nguyen, Katya Scheinberg:
Finding Optimal Policy for Queueing Models: New Parameterization. CoRR abs/2206.10073 (2022) - [i26]Marten van Dijk, Phuong Ha Nguyen, Toan N. Nguyen, Lam M. Nguyen:
Generalizing DP-SGD with Shuffling and Batching Clipping. CoRR abs/2212.05796 (2022) - 2021
- [j5]Lam M. Nguyen, Quoc Tran-Dinh, Dzung T. Phan, Phuong Ha Nguyen, Marten van Dijk:
A Unified Convergence Analysis for Shuffling-Type Gradient Methods. J. Mach. Learn. Res. 22: 207:1-207:44 (2021) - [j4]Lam M. Nguyen, Katya Scheinberg, Martin Takác:
Inexact SARAH algorithm for stochastic optimization. Optim. Methods Softw. 36(1): 237-258 (2021) - [c18]Nhuong V. Nguyen, Toan N. Nguyen, Phuong Ha Nguyen, Quoc Tran-Dinh, Lam M. Nguyen, Marten van Dijk:
Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes. AISTATS 2021: 1207-1215 - [c17]Dzung T. Phan, Lam M. Nguyen, Pavankumar Murali, Nhan H. Pham, Hongsheng Liu, Jayant R. Kalagnanam:
Regression Optimization for System-level Production Control. ACC 2021: 5023-5028 - [c16]Trang H. Tran, Lam M. Nguyen, Quoc Tran-Dinh:
SMG: A Shuffling Gradient-Based Method with Momentum. ICML 2021: 10379-10389 - [c15]Thanh Lam Hoang, Gabriele Picco, Yufang Hou, Young-Suk Lee, Lam M. Nguyen, Dzung T. Phan, Vanessa López, Ramón Fernandez Astudillo:
Ensembling Graph Predictions for AMR Parsing. NeurIPS 2021: 8495-8505 - [c14]Yilan Chen, Wei Huang, Lam M. Nguyen, Tsui-Wei Weng:
On the Equivalence between Neural Network and Support Vector Machine. NeurIPS 2021: 23478-23490 - [c13]Quoc Tran-Dinh, Nhan H. Pham, Dzung T. Phan, Lam M. Nguyen:
FedDR - Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization. NeurIPS 2021: 30326-30338 - [i25]Marten van Dijk, Nhuong V. Nguyen, Toan N. Nguyen, Lam M. Nguyen, Phuong Ha Nguyen:
Differential Private Hogwild! over Distributed Local Data Sets. CoRR abs/2102.09030 (2021) - [i24]Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, Quoc Tran-Dinh:
Federated Learning with Randomized Douglas-Rachford Splitting Methods. CoRR abs/2103.03452 (2021) - [i23]Hoang Thanh Lam, Gabriele Picco, Yufang Hou, Young-Suk Lee, Lam M. Nguyen, Dzung T. Phan, Vanessa López, Ramón Fernandez Astudillo:
Ensembling Graph Predictions for AMR Parsing. CoRR abs/2110.09131 (2021) - [i22]Yilan Chen, Wei Huang, Lam M. Nguyen, Tsui-Wei Weng:
On the Equivalence between Neural Network and Support Vector Machine. CoRR abs/2111.06063 (2021) - [i21]Connor Lawless, Jayant Kalagnanam, Lam M. Nguyen, Dzung T. Phan, Chandra Reddy:
Interpretable Clustering via Multi-Polytope Machines. CoRR abs/2112.05653 (2021) - 2020
- [j3]Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, Quoc Tran-Dinh:
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization. J. Mach. Learn. Res. 21: 110:1-110:48 (2020) - [c12]Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, Phuong Ha Nguyen, Marten van Dijk, Quoc Tran-Dinh:
A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning. AISTATS 2020: 374-385 - [c11]Dzung T. Phan, Lam M. Nguyen, Nam H. Nguyen, Jayant R. Kalagnanam:
Pruning Deep Neural Networks with $\ell_{0}$-constrained Optimization. ICDM 2020: 1214-1219 - [c10]Quoc Tran-Dinh, Nhan H. Pham, Lam M. Nguyen:
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization. ICML 2020: 9572-9582 - [c9]Quoc Tran-Dinh, Deyi Liu, Lam M. Nguyen:
Hybrid Variance-Reduced SGD Algorithms For Minimax Problems with Nonconvex-Linear Function. NeurIPS 2020 - [c8]Haoran Zhu, Pavankumar Murali, Dzung T. Phan, Lam M. Nguyen, Jayant Kalagnanam:
A Scalable MIP-based Method for Learning Optimal Multivariate Decision Trees. NeurIPS 2020 - [i20]Lam M. Nguyen, Quoc Tran-Dinh, Dzung T. Phan, Phuong Ha Nguyen, Marten van Dijk:
A Unified Convergence Analysis for Shuffling-Type Gradient Methods. CoRR abs/2002.08246 (2020) - [i19]Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, Phuong Ha Nguyen, Marten van Dijk, Quoc Tran-Dinh:
A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning. CoRR abs/2003.00430 (2020) - [i18]Thinh T. Doan, Lam M. Nguyen, Nhan H. Pham, Justin Romberg:
Finite-Time Analysis of Stochastic Gradient Descent under Markov Randomness. CoRR abs/2003.10973 (2020) - [i17]Marten van Dijk, Nhuong V. Nguyen, Toan N. Nguyen, Lam M. Nguyen, Quoc Tran-Dinh, Phuong Ha Nguyen:
Asynchronous Federated Learning with Reduced Number of Rounds and with Differential Privacy from Less Aggregated Gaussian Noise. CoRR abs/2007.09208 (2020) - [i16]Marten van Dijk, Nhuong V. Nguyen, Toan N. Nguyen, Lam M. Nguyen, Quoc Tran-Dinh, Phuong Ha Nguyen:
Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes. CoRR abs/2010.14763 (2020) - [i15]Haoran Zhu, Pavankumar Murali, Dzung T. Phan, Lam M. Nguyen, Jayant R. Kalagnanam:
A Scalable MIP-based Method for Learning Optimal Multivariate Decision Trees. CoRR abs/2011.03375 (2020) - [i14]Trang H. Tran, Lam M. Nguyen, Quoc Tran-Dinh:
Shuffling Gradient-Based Methods with Momentum. CoRR abs/2011.11884 (2020)
2010 – 2019
- 2019
- [j2]Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg, Martin Takác, Marten van Dijk:
New Convergence Aspects of Stochastic Gradient Algorithms. J. Mach. Learn. Res. 20: 176:1-176:49 (2019) - [c7]Marten van Dijk, Lam M. Nguyen, Phuong Ha Nguyen, Dzung T. Phan:
Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD. ICML 2019: 6392-6400 - [c6]Lily Weng, Pin-Yu Chen, Lam M. Nguyen, Mark S. Squillante, Akhilan Boopathy, Ivan V. Oseledets, Luca Daniel:
PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach. ICML 2019: 6727-6736 - [c5]Phuong Ha Nguyen, Lam M. Nguyen, Marten van Dijk:
Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD. NeurIPS 2019: 3660-3669 - [i13]Lam M. Nguyen, Marten van Dijk, Dzung T. Phan, Phuong Ha Nguyen, Tsui-Wei Weng, Jayant R. Kalagnanam:
Optimal Finite-Sum Smooth Non-Convex Optimization with SARAH. CoRR abs/1901.07648 (2019) - [i12]Nhan H. Pham, Lam M. Nguyen, Dzung T. Phan, Quoc Tran-Dinh:
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization. CoRR abs/1902.05679 (2019) - [i11]Quoc Tran-Dinh, Nhan H. Pham, Dzung T. Phan, Lam M. Nguyen:
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization. CoRR abs/1907.03793 (2019) - [i10]Phuong Ha Nguyen, Kaleel Mahmood, Lam M. Nguyen, Thanh Nguyen, Marten van Dijk:
BUZz: BUffer Zones for defending adversarial examples in image classification. CoRR abs/1910.02785 (2019) - 2018
- [j1]Lam M. Nguyen, Alexander L. Stolyar:
A queueing system with on-demand servers: local stability of fluid limits. Queueing Syst. Theory Appl. 89(3-4): 243-268 (2018) - [c4]Dhaval Patel, Lam M. Nguyen, Akshay Rangamani, Shrey Shrivastava, Jayant Kalagnanam:
ChieF: A Change Pattern based Interpretable Failure Analyzer. IEEE BigData 2018: 1978-1985 - [c3]Lam M. Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya Scheinberg, Martin Takác:
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption. ICML 2018: 3747-3755 - [i9]Lam M. Nguyen, Nam H. Nguyen, Dzung T. Phan, Jayant R. Kalagnanam, Katya Scheinberg:
When Does Stochastic Gradient Algorithm Work Well? CoRR abs/1801.06159 (2018) - [i8]Lam M. Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya Scheinberg, Martin Takác:
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption. CoRR abs/1802.03801 (2018) - [i7]Marten van Dijk, Lam M. Nguyen, Phuong Ha Nguyen, Dzung T. Phan:
Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD. CoRR abs/1810.04100 (2018) - [i6]Phuong Ha Nguyen, Lam M. Nguyen, Marten van Dijk:
Tight Dimension Independent Lower Bound on Optimal Expected Convergence Rate for Diminishing Step Sizes in SGD. CoRR abs/1810.04723 (2018) - [i5]Lam M. Nguyen, Katya Scheinberg, Martin Takác:
Inexact SARAH Algorithm for Stochastic Optimization. CoRR abs/1811.10105 (2018) - [i4]Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg, Martin Takác, Marten van Dijk:
New Convergence Aspects of Stochastic Gradient Algorithms. CoRR abs/1811.12403 (2018) - [i3]Tsui-Wei Weng, Pin-Yu Chen, Lam M. Nguyen, Mark S. Squillante, Ivan V. Oseledets, Luca Daniel:
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach. CoRR abs/1812.08329 (2018) - 2017
- [c2]Lam M. Nguyen, Jie Liu, Katya Scheinberg, Martin Takác:
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. ICML 2017: 2613-2621 - [i2]Lam M. Nguyen, Jie Liu, Katya Scheinberg, Martin Takác:
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. CoRR abs/1703.00102 (2017) - [i1]Lam M. Nguyen, Jie Liu, Katya Scheinberg, Martin Takác:
Stochastic Recursive Gradient Algorithm for Nonconvex Optimization. CoRR abs/1705.07261 (2017) - 2016
- [c1]Lam M. Nguyen, Alexander L. Stolyar:
A Service System with Randomly Behaving On-demand Agents. SIGMETRICS 2016: 365-366
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:08 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint