default search action
Leonid Karlinsky
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j6]Eli Schwartz, Assaf Arbelle, Leonid Karlinsky, Sivan Harary, Florian Scheidegger, Sivan Doveh, Raja Giryes:
MAEDAY: MAE for few- and zero-shot AnomalY-Detection. Comput. Vis. Image Underst. 241: 103958 (2024) - [c54]Junmo Kang, Hongyin Luo, Yada Zhu, Jacob A. Hansen, James R. Glass, David D. Cox, Alan Ritter, Rogério Feris, Leonid Karlinsky:
Self-Specialization: Uncovering Latent Expertise within Large Language Models. ACL (Findings) 2024: 2681-2706 - [c53]James Seale Smith, Lazar Valkov, Shaunak Halbe, Vyshnavi Gutta, Rogério Feris, Zsolt Kira, Leonid Karlinsky:
Adaptive Memory Replay for Continual Learning. CVPR Workshops 2024: 3605-3615 - [c52]Muhammad Jehanzeb Mirza, Leonid Karlinsky, Wei Lin, Sivan Doveh, Jakub Micorek, Mateusz Kozinski, Hilde Kuehne, Horst Possegger:
Meta-prompting for Automating Zero-Shot Visual Recognition with LLMs. ECCV (2) 2024: 370-387 - [c51]Eli Schwartz, Leshem Choshen, Joseph Shtok, Sivan Doveh, Leonid Karlinsky, Assaf Arbelle:
NumeroLogic: Number Encoding for Enhanced LLMs' Numerical Reasoning. EMNLP 2024: 206-212 - [c50]Yuan Gong, Hongyin Luo, Alexander H. Liu, Leonid Karlinsky, James R. Glass:
Listen, Think, and Understand. ICLR 2024 - [c49]Aaron K. Baughman, Eduardo Morales, Rahul Agarwal, Gozde Akay, Rogério Feris, Tony Johnson, Stephen Hammer, Leonid Karlinsky:
Large Scale Generative AI Text Applied to Sports and Music. KDD 2024: 4784-4792 - [c48]Roei Herzig, Ofir Abramovich, Elad Ben-Avraham, Assaf Arbelle, Leonid Karlinsky, Ariel Shamir, Trevor Darrell, Amir Globerson:
PromptonomyViT: Multi-Task Prompt Learning Improves Video Transformers using Synthetic Scene Data. WACV 2024: 6789-6801 - [i71]Zexue He, Leonid Karlinsky, Donghyun Kim, Julian J. McAuley, Dmitry Krotov, Rogério Feris:
CAMELoT: Towards Large Language Models with Training-Free Consolidated Associative Memory. CoRR abs/2402.13449 (2024) - [i70]Aaron K. Baughman, Stephen Hammer, Rahul Agarwal, Gozde Akay, Eduardo Morales, Tony Johnson, Leonid Karlinsky, Rogério Feris:
Large Scale Generative AI Text Applied to Sports and Music. CoRR abs/2402.15514 (2024) - [i69]Muhammad Jehanzeb Mirza, Leonid Karlinsky, Wei Lin, Sivan Doveh, Jakub Micorek, Mateusz Kozinski, Hilde Kuehne, Horst Possegger:
Meta-Prompting for Automating Zero-shot Visual Recognition with LLMs. CoRR abs/2403.11755 (2024) - [i68]Sivan Doveh, Shaked Perek, Muhammad Jehanzeb Mirza, Amit Alfassy, Assaf Arbelle, Shimon Ullman, Leonid Karlinsky:
Towards Multimodal In-Context Learning for Vision & Language Models. CoRR abs/2403.12736 (2024) - [i67]Eli Schwartz, Leshem Choshen, Joseph Shtok, Sivan Doveh, Leonid Karlinsky, Assaf Arbelle:
NumeroLogic: Number Encoding for Enhanced LLMs' Numerical Reasoning. CoRR abs/2404.00459 (2024) - [i66]James Seale Smith, Lazar Valkov, Shaunak Halbe, Vyshnavi Gutta, Rogério Feris, Zsolt Kira, Leonid Karlinsky:
Adaptive Memory Replay for Continual Learning. CoRR abs/2404.12526 (2024) - [i65]Runqian Wang, Soumya Ghosh, David D. Cox, Diego Antognini, Aude Oliva, Rogério Feris, Leonid Karlinsky:
Trans-LoRA: towards data-free Transferable Parameter Efficient Finetuning. CoRR abs/2405.17258 (2024) - [i64]Irene Huang, Wei Lin, Muhammad Jehanzeb Mirza, Jacob A. Hansen, Sivan Doveh, Victor Ion Butoi, Roei Herzig, Assaf Arbelle, Hilde Kuehne, Trevor Darrell, Chuang Gan, Aude Oliva, Rogério Feris, Leonid Karlinsky:
ConMe: Rethinking Evaluation of Compositional Reasoning for Modern VLMs. CoRR abs/2406.08164 (2024) - [i63]Wei Lin, Muhammad Jehanzeb Mirza, Sivan Doveh, Rogério Feris, Raja Giryes, Sepp Hochreiter, Leonid Karlinsky:
Comparison Visual Instruction Tuning. CoRR abs/2406.09240 (2024) - [i62]Andrew Rouditchenko, Yuan Gong, Samuel Thomas, Leonid Karlinsky, Hilde Kuehne, Rogério Feris, James R. Glass:
Whisper-Flamingo: Integrating Visual Features into Whisper for Audio-Visual Speech Recognition and Translation. CoRR abs/2406.10082 (2024) - [i61]Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob A. Hansen, Jim Glass, David D. Cox, Rameswar Panda, Rogério Feris, Alan Ritter:
Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts. CoRR abs/2406.12034 (2024) - [i60]Nasim Borazjanizadeh, Roei Herzig, Trevor Darrell, Rogério Feris, Leonid Karlinsky:
Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems. CoRR abs/2406.12172 (2024) - [i59]Brandon Huang, Chancharik Mitra, Assaf Arbelle, Leonid Karlinsky, Trevor Darrell, Roei Herzig:
Multimodal Task Vectors Enable Many-Shot Multimodal In-Context Learning. CoRR abs/2406.15334 (2024) - [i58]Matt Stallone, Vaibhav Saxena, Leonid Karlinsky, Bridget McGinn, Tim Bula, Mayank Mishra, Adriana Meza Soria, Gaoyuan Zhang, Aditya Prasad, Yikang Shen, Saptha Surendran, Shanmukha C. Guttula, Hima Patel, Parameswaran Selvam, Xuan-Hong Dang, Yan Koyfman, Atin Sood, Rogério Feris, Nirmit Desai, David D. Cox, Ruchir Puri, Rameswar Panda:
Scaling Granite Code Models to 128K Context. CoRR abs/2407.13739 (2024) - [i57]Muhammad Jehanzeb Mirza, Mengjie Zhao, Zhuoyuan Mao, Sivan Doveh, Wei Lin, Paul Gavrikov, Michael Dorkenwald, Shiqi Yang, Saurav Jha, Hiromi Wakaki, Yuki Mitsufuji, Horst Possegger, Rogério Feris, Leonid Karlinsky, James R. Glass:
GLOV: Guided Large Language Models as Implicit Optimizers for Vision Language Models. CoRR abs/2410.06154 (2024) - [i56]Nimrod Shabtay, Felipe Maia Polo, Sivan Doveh, Wei Lin, Muhammad Jehanzeb Mirza, Leshem Choshen, Mikhail Yurochkin, Yuekai Sun, Assaf Arbelle, Leonid Karlinsky, Raja Giryes:
LiveXiv - A Multi-Modal Live Benchmark Based on Arxiv Papers Content. CoRR abs/2410.10783 (2024) - [i55]Sivan Doveh, Nimrod Shabtay, Wei Lin, Eli Schwartz, Hilde Kuehne, Raja Giryes, Rogério Feris, Leonid Karlinsky, James R. Glass, Assaf Arbelle, Shimon Ullman, Muhammad Jehanzeb Mirza:
Teaching VLMs to Localize Specific Objects from In-context Examples. CoRR abs/2411.13317 (2024) - [i54]Elad Amrani, Leonid Karlinsky, Alexander M. Bronstein:
Sample- and Parameter-Efficient Auto-Regressive Image Models. CoRR abs/2411.15648 (2024) - [i53]Saurabhchand Bhati, Yuan Gong, Leonid Karlinsky, Hilde Kuehne, Rogério Feris, James R. Glass:
State-Space Large Audio Language Models. CoRR abs/2411.15685 (2024) - [i52]Chancharik Mitra, Brandon Huang, Tianning Chai, Zhiqiu Lin, Assaf Arbelle, Rogério Feris, Leonid Karlinsky, Trevor Darrell, Deva Ramanan, Roei Herzig:
Sparse Attention Vectors: Generative Multimodal Model Features Are Discriminative Vision-Language Classifiers. CoRR abs/2412.00142 (2024) - [i51]Sarthak Kumar Maharana, Baoming Zhang, Leonid Karlinsky, Rogério Feris, Yunhui Guo:
Enhancing Robustness of CLIP to Common Corruptions through Bimodal Test-Time Adaptation. CoRR abs/2412.02837 (2024) - 2023
- [j5]Charlotte Loh, Rumen Dangovski, Shivchander Sudalairaj, Seungwook Han, Ligong Han, Leonid Karlinsky, Marin Soljacic, Akash Srivastava:
Mitigating Confirmation Bias in Semi-supervised Learning via Efficient Bayesian Model Averaging. Trans. Mach. Learn. Res. 2023 (2023) - [c47]Yuan Gong, Alexander H. Liu, Hongyin Luo, Leonid Karlinsky, James R. Glass:
Joint Audio and Speech Understanding. ASRU 2023: 1-8 - [c46]Sivan Doveh, Assaf Arbelle, Sivan Harary, Eli Schwartz, Roei Herzig, Raja Giryes, Rogério Feris, Rameswar Panda, Shimon Ullman, Leonid Karlinsky:
Teaching Structured Vision & Language Concepts to Vision & Language Models. CVPR 2023: 2657-2668 - [c45]James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf Arbelle, Rameswar Panda, Rogério Feris, Zsolt Kira:
CODA-Prompt: COntinual Decomposed Attention-Based Prompting for Rehearsal-Free Continual Learning. CVPR 2023: 11909-11919 - [c44]James Seale Smith, Paola Cascante-Bonilla, Assaf Arbelle, Donghyun Kim, Rameswar Panda, David D. Cox, Diyi Yang, Zsolt Kira, Rogério Feris, Leonid Karlinsky:
ConStruct-VL: Data-Free Continual Structured VL Concepts Learning. CVPR 2023: 14994-15004 - [c43]Roei Herzig, Alon Mendelson, Leonid Karlinsky, Assaf Arbelle, Rogério Feris, Trevor Darrell, Amir Globerson:
Incorporating Structured Representations into Pretrained Vision & Language Models Using Scene Graphs. EMNLP 2023: 14077-14098 - [c42]Andrew Rouditchenko, Yung-Sung Chuang, Nina Shvetsova, Samuel Thomas, Rogério Feris, Brian Kingsbury, Leonid Karlinsky, David Harwath, Hilde Kuehne, James R. Glass:
C2KD: Cross-Lingual Cross-Modal Knowledge Distillation for Multilingual Text-Video Retrieval. ICASSP 2023: 1-5 - [c41]Wei Lin, Leonid Karlinsky, Nina Shvetsova, Horst Possegger, Mateusz Kozinski, Rameswar Panda, Rogério Feris, Hilde Kuehne, Horst Bischof:
MAtch, eXpand and Improve: Unsupervised Finetuning for Zero-Shot Action Recognition with Language Knowledge. ICCV 2023: 2839-2850 - [c40]Paola Cascante-Bonilla, Khaled Shehada, James Seale Smith, Sivan Doveh, Donghyun Kim, Rameswar Panda, Gül Varol, Aude Oliva, Vicente Ordonez, Rogério Feris, Leonid Karlinsky:
Going Beyond Nouns With Vision & Language Models Using Synthetic Data. ICCV 2023: 20098-20108 - [c39]Yuan Gong, Andrew Rouditchenko, Alexander H. Liu, David Harwath, Leonid Karlinsky, Hilde Kuehne, James R. Glass:
Contrastive Audio-Visual Masked Autoencoder. ICLR 2023 - [c38]Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky, Rogério Feris, David Daniel Cox, Zhangyang Wang, Yoon Kim:
Learning to Grow Pretrained Models for Efficient Transformer Training. ICLR 2023 - [c37]Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogério Feris, Huan Sun, Yoon Kim:
Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning. ICLR 2023 - [c36]Andrew Rouditchenko, Sameer Khurana, Samuel Thomas, Rogério Feris, Leonid Karlinsky, Hilde Kuehne, David Harwath, Brian Kingsbury, James R. Glass:
Comparison of Multilingual Self-Supervised and Weakly-Supervised Speech Pre-Training for Adaptation to Unseen Languages. INTERSPEECH 2023: 2268-2272 - [c35]Yuan Gong, Sameer Khurana, Leonid Karlinsky, James R. Glass:
Whisper-AT: Noise-Robust Automatic Speech Recognizers are Also Strong General Audio Event Taggers. INTERSPEECH 2023: 2798-2802 - [c34]Sivan Doveh, Assaf Arbelle, Sivan Harary, Roei Herzig, Donghyun Kim, Paola Cascante-Bonilla, Amit Alfassy, Rameswar Panda, Raja Giryes, Rogério Feris, Shimon Ullman, Leonid Karlinsky:
Dense and Aligned Captions (DAC) Promote Compositional Reasoning in VL Models. NeurIPS 2023 - [c33]Muhammad Jehanzeb Mirza, Leonid Karlinsky, Wei Lin, Horst Possegger, Mateusz Kozinski, Rogério Feris, Horst Bischof:
LaFTer: Label-Free Tuning of Zero-shot Classifier using Language and Unlabeled Image Collections. NeurIPS 2023 - [c32]Howard Zhong, Samarth Mishra, Donghyun Kim, SouYoung Jin, Rameswar Panda, Hilde Kuehne, Leonid Karlinsky, Venkatesh Saligrama, Aude Oliva, Rogério Feris:
Learning Human Action Recognition Representations Without Real Humans. NeurIPS 2023 - [e8]Leonid Karlinsky, Tomer Michaeli, Ko Nishino:
Computer Vision - ECCV 2022 Workshops - Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part I. Lecture Notes in Computer Science 13801, Springer 2023, ISBN 978-3-031-25055-2 [contents] - [e7]Leonid Karlinsky, Tomer Michaeli, Ko Nishino:
Computer Vision - ECCV 2022 Workshops - Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part II. Lecture Notes in Computer Science 13802, Springer 2023, ISBN 978-3-031-25062-0 [contents] - [e6]Leonid Karlinsky, Tomer Michaeli, Ko Nishino:
Computer Vision - ECCV 2022 Workshops - Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part III. Lecture Notes in Computer Science 13803, Springer 2023, ISBN 978-3-031-25065-1 [contents] - [e5]Leonid Karlinsky, Tomer Michaeli, Ko Nishino:
Computer Vision - ECCV 2022 Workshops - Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part IV. Lecture Notes in Computer Science 13804, Springer 2023, ISBN 978-3-031-25068-2 [contents] - [e4]Leonid Karlinsky, Tomer Michaeli, Ko Nishino:
Computer Vision - ECCV 2022 Workshops - Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part V. Lecture Notes in Computer Science 13805, Springer 2023, ISBN 978-3-031-25071-2 [contents] - [e3]Leonid Karlinsky, Tomer Michaeli, Ko Nishino:
Computer Vision - ECCV 2022 Workshops - Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part VI. Lecture Notes in Computer Science 13806, Springer 2023, ISBN 978-3-031-25074-3 [contents] - [e2]Leonid Karlinsky, Tomer Michaeli, Ko Nishino:
Computer Vision - ECCV 2022 Workshops - Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part VII. Lecture Notes in Computer Science 13807, Springer 2023, ISBN 978-3-031-25081-1 [contents] - [e1]Leonid Karlinsky, Tomer Michaeli, Ko Nishino:
Computer Vision - ECCV 2022 Workshops - Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part VIII. Lecture Notes in Computer Science 13808, Springer 2023, ISBN 978-3-031-25084-2 [contents] - [i50]Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky, Rogério Feris, David Daniel Cox, Zhangyang Wang, Yoon Kim:
Learning to Grow Pretrained Models for Efficient Transformer Training. CoRR abs/2303.00980 (2023) - [i49]Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogério Feris, Huan Sun, Yoon Kim:
Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning. CoRR abs/2303.02861 (2023) - [i48]Wei Lin, Leonid Karlinsky, Nina Shvetsova, Horst Possegger, Mateusz Kozinski, Rameswar Panda, Rogério Feris, Hilde Kuehne, Horst Bischof:
MAtch, eXpand and Improve: Unsupervised Finetuning for Zero-Shot Action Recognition with Language Knowledge. CoRR abs/2303.08914 (2023) - [i47]Paola Cascante-Bonilla, Khaled Shehada, James Seale Smith, Sivan Doveh, Donghyun Kim, Rameswar Panda, Gül Varol, Aude Oliva, Vicente Ordonez, Rogério Feris, Leonid Karlinsky:
Going Beyond Nouns With Vision & Language Models Using Synthetic Data. CoRR abs/2303.17590 (2023) - [i46]Ligong Han, Seungwook Han, Shivchander Sudalairaj, Charlotte Loh, Rumen Dangovski, Fei Deng, Pulkit Agrawal, Dimitris N. Metaxas, Leonid Karlinsky, Tsui-Wei Weng, Akash Srivastava:
Constructive Assimilation: Boosting Contrastive Learning Performance through View Generation Strategies. CoRR abs/2304.00601 (2023) - [i45]Roei Herzig, Alon Mendelson, Leonid Karlinsky, Assaf Arbelle, Rogério Feris, Trevor Darrell, Amir Globerson:
Incorporating Structured Representations into Pretrained Vision & Language Models Using Scene Graphs. CoRR abs/2305.06343 (2023) - [i44]Yuan Gong, Hongyin Luo, Alexander H. Liu, Leonid Karlinsky, James R. Glass:
Listen, Think, and Understand. CoRR abs/2305.10790 (2023) - [i43]Andrew Rouditchenko, Sameer Khurana, Samuel Thomas, Rogério Feris, Leonid Karlinsky, Hilde Kuehne, David Harwath, Brian Kingsbury, James R. Glass:
Comparison of Multilingual Self-Supervised and Weakly-Supervised Speech Pre-Training for Adaptation to Unseen Languages. CoRR abs/2305.12606 (2023) - [i42]Muhammad Jehanzeb Mirza, Leonid Karlinsky, Wei Lin, Mateusz Kozinski, Horst Possegger, Rogério Feris, Horst Bischof:
LaFTer: Label-Free Tuning of Zero-shot Classifier using Language and Unlabeled Image Collections. CoRR abs/2305.18287 (2023) - [i41]Sivan Doveh, Assaf Arbelle, Sivan Harary, Roei Herzig, Donghyun Kim, Paola Cascante-Bonilla, Amit Alfassy, Rameswar Panda, Raja Giryes, Rogério Feris, Shimon Ullman, Leonid Karlinsky:
Dense and Aligned Captions (DAC) Promote Compositional Reasoning in VL Models. CoRR abs/2305.19595 (2023) - [i40]Yuan Gong, Sameer Khurana, Leonid Karlinsky, James R. Glass:
Whisper-AT: Noise-Robust Automatic Speech Recognizers are Also Strong General Audio Event Taggers. CoRR abs/2307.03183 (2023) - [i39]Muhammad Jehanzeb Mirza, Leonid Karlinsky, Wei Lin, Horst Possegger, Rogério Feris, Horst Bischof:
TAP: Targeted Prompting for Task Adaptive Generation of Textual Training Instances for Visual Classification. CoRR abs/2309.06809 (2023) - [i38]Yuan Gong, Alexander H. Liu, Hongyin Luo, Leonid Karlinsky, James R. Glass:
Joint Audio and Speech Understanding. CoRR abs/2309.14405 (2023) - [i37]Junmo Kang, Hongyin Luo, Yada Zhu, James R. Glass, David D. Cox, Alan Ritter, Rogério Feris, Leonid Karlinsky:
Self-Specialization: Uncovering Latent Expertise within Large Language Models. CoRR abs/2310.00160 (2023) - [i36]Dustin Klebe, Tal Shnitzer, Mikhail Yurochkin, Leonid Karlinsky, Justin Solomon:
GeRA: Label-Efficient Geometrically Regularized Alignment. CoRR abs/2310.00672 (2023) - [i35]Howard Zhong, Samarth Mishra, Donghyun Kim, SouYoung Jin, Rameswar Panda, Hilde Kuehne, Leonid Karlinsky, Venkatesh Saligrama, Aude Oliva, Rogério Feris:
Learning Human Action Recognition Representations Without Real Humans. CoRR abs/2311.06231 (2023) - [i34]Nir Yellinek, Leonid Karlinsky, Raja Giryes:
3VL: using Trees to teach Vision & Language models compositional concepts. CoRR abs/2312.17345 (2023) - 2022
- [j4]Joshua K. Lee, Yuheng Bu, Prasanna Sattigeri, Rameswar Panda, Gregory W. Wornell, Leonid Karlinsky, Rogério Schmidt Feris:
A Maximal Correlation Framework for Fair Machine Learning. Entropy 24(4): 461 (2022) - [j3]Eli Schwartz, Leonid Karlinsky, Rogério Feris, Raja Giryes, Alexander M. Bronstein:
Baby steps towards few-shot learning with multiple semantics. Pattern Recognit. Lett. 160: 142-147 (2022) - [c31]Sivan Harary, Eli Schwartz, Assaf Arbelle, Peter W. J. Staar, Shady Abu-Hussein, Elad Amrani, Roei Herzig, Amit Alfassy, Raja Giryes, Hilde Kuehne, Dina Katabi, Kate Saenko, Rogério Feris, Leonid Karlinsky:
Unsupervised Domain Generalization by Learning a Bridge Across Domains. CVPR 2022: 5270-5280 - [c30]Samarth Mishra, Rameswar Panda, Cheng Perng Phoo, Chun-Fu Richard Chen, Leonid Karlinsky, Kate Saenko, Venkatesh Saligrama, Rogério Schmidt Feris:
Task2Sim: Towards Effective Pre-training and Transfer from Synthetic Data. CVPR 2022: 9184-9194 - [c29]Elad Amrani, Leonid Karlinsky, Alexander M. Bronstein:
Self-Supervised Classification Network. ECCV (31) 2022: 116-132 - [c28]Joshua K. Lee, Yuheng Bu, Prasanna Sattigeri, Rameswar Panda, Gregory W. Wornell, Leonid Karlinsky, Rogério Feris:
A Maximal Correlation Approach to Imposing Fairness in Machine Learning. ICASSP 2022: 3523-3527 - [c27]Amit Alfassy, Assaf Arbelle, Oshri Halimi, Sivan Harary, Roei Herzig, Eli Schwartz, Rameswar Panda, Michele Dolfi, Christoph Auer, Peter W. J. Staar, Kate Saenko, Rogério Feris, Leonid Karlinsky:
FETA: Towards Specializing Foundational Models for Expert Task Applications. NeurIPS 2022 - [c26]Elad Ben-Avraham, Roei Herzig, Karttikeya Mangalam, Amir Bar, Anna Rohrbach, Leonid Karlinsky, Trevor Darrell, Amir Globerson:
Bringing Image Scene Structure to Video via Frame-Clip Consistency of Object Tokens. NeurIPS 2022 - [c25]Yo-whan Kim, Samarth Mishra, SouYoung Jin, Rameswar Panda, Hilde Kuehne, Leonid Karlinsky, Venkatesh Saligrama, Kate Saenko, Aude Oliva, Rogério Feris:
How Transferable are Video Representations Based on Synthetic Data? NeurIPS 2022 - [i33]Elad Ben-Avraham, Roei Herzig, Karttikeya Mangalam, Amir Bar, Anna Rohrbach, Leonid Karlinsky, Trevor Darrell, Amir Globerson:
Bringing Image Scene Structure to Video via Frame-Clip Consistency of Object Tokens. CoRR abs/2206.06346 (2022) - [i32]Elad Ben-Avraham, Roei Herzig, Karttikeya Mangalam, Amir Bar, Anna Rohrbach, Leonid Karlinsky, Trevor Darrell, Amir Globerson:
Structured Video Tokens @ Ego4D PNR Temporal Localization Challenge 2022. CoRR abs/2206.07689 (2022) - [i31]Amit Alfassy, Assaf Arbelle, Oshri Halimi, Sivan Harary, Roei Herzig, Eli Schwartz, Rameswar Panda, Michele Dolfi, Christoph Auer, Kate Saenko, Peter W. J. Staar, Rogério Feris, Leonid Karlinsky:
FETA: Towards Specializing Foundation Models for Expert Task Applications. CoRR abs/2209.03648 (2022) - [i30]Felix Vogel, Nina Shvetsova, Leonid Karlinsky, Hilde Kuehne:
VL-Taboo: An Analysis of Attribute-based Zero-shot Capabilities of Vision-Language Models. CoRR abs/2209.06103 (2022) - [i29]Andrew Rouditchenko, Yung-Sung Chuang, Nina Shvetsova, Samuel Thomas, Rogério Feris, Brian Kingsbury, Leonid Karlinsky, David Harwath, Hilde Kuehne, James R. Glass:
C2KD: Cross-Lingual Cross-Modal Knowledge Distillation for Multilingual Text-Video Retrieval. CoRR abs/2210.03625 (2022) - [i28]Charlotte Loh, Rumen Dangovski, Shivchander Sudalairaj, Seungwook Han, Ligong Han, Leonid Karlinsky, Marin Soljacic, Akash Srivastava:
On the Importance of Calibration in Semi-supervised Learning. CoRR abs/2210.04783 (2022) - [i27]Yuan Gong, Andrew Rouditchenko, Alexander H. Liu, David Harwath, Leonid Karlinsky, Hilde Kuehne, James R. Glass:
Contrastive Audio-Visual Masked Autoencoder. CoRR abs/2210.07839 (2022) - [i26]James Seale Smith, Paola Cascante-Bonilla, Assaf Arbelle, Donghyun Kim, Rameswar Panda, David D. Cox, Diyi Yang, Zsolt Kira, Rogério Feris, Leonid Karlinsky:
ConStruct-VL: Data-Free Continual Structured VL Concepts Learning. CoRR abs/2211.09790 (2022) - [i25]Sivan Doveh, Assaf Arbelle, Sivan Harary, Rameswar Panda, Roei Herzig, Eli Schwartz, Donghyun Kim, Raja Giryes, Rogério Feris, Shimon Ullman, Leonid Karlinsky:
Teaching Structured Vision&Language Concepts to Vision&Language Models. CoRR abs/2211.11733 (2022) - [i24]Paola Cascante-Bonilla, Leonid Karlinsky, James Seale Smith, Yanjun Qi, Vicente Ordonez:
On the Transferability of Visual Features in Generalized Zero-Shot Learning. CoRR abs/2211.12494 (2022) - [i23]James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf Arbelle, Rameswar Panda, Rogério Feris, Zsolt Kira:
CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning. CoRR abs/2211.13218 (2022) - [i22]Eli Schwartz, Assaf Arbelle, Leonid Karlinsky, Sivan Harary, Florian Scheidegger, Sivan Doveh, Raja Giryes:
MAEDAY: MAE for few and zero shot AnomalY-Detection. CoRR abs/2211.14307 (2022) - [i21]Roei Herzig, Ofir Abramovich, Elad Ben-Avraham, Assaf Arbelle, Leonid Karlinsky, Ariel Shamir, Trevor Darrell, Amir Globerson:
PromptonomyViT: Multi-Task Prompt Learning Improves Video Transformers using Synthetic Scene Data. CoRR abs/2212.04821 (2022) - 2021
- [j2]Sivan Doveh, Eli Schwartz, Chao Xue, Rogério Feris, Alexander M. Bronstein, Raja Giryes, Leonid Karlinsky:
MetAdapt: Meta-learned task-adaptive architecture for few-shot classification. Pattern Recognit. Lett. 149: 130-136 (2021) - [c24]Leonid Karlinsky, Joseph Shtok, Amit Alfassy, Moshe Lichtenstein, Sivan Harary, Eli Schwartz, Sivan Doveh, Prasanna Sattigeri, Rogério Feris, Alex M. Bronstein, Raja Giryes:
StarNet: towards Weakly Supervised Few-Shot Object Detection. AAAI 2021: 1743-1753 - [c23]Guy Bukchin, Eli Schwartz, Kate Saenko, Ori Shahar, Rogério Feris, Raja Giryes, Leonid Karlinsky:
Fine-Grained Angular Contrastive Learning With Coarse Labels. CVPR 2021: 8730-8740 - [c22]Assaf Arbelle, Sivan Doveh, Amit Alfassy, Joseph Shtok, Guy Lev, Eli Schwartz, Hilde Kuehne, Hila Barak Levi, Prasanna Sattigeri, Rameswar Panda, Chun-Fu Chen, Alex M. Bronstein, Kate Saenko, Shimon Ullman, Raja Giryes, Rogério Feris, Leonid Karlinsky:
Detector-Free Weakly Supervised Grounding by Separation. ICCV 2021: 1781-1792 - [c21]Ashraful Islam, Chun-Fu Chen, Rameswar Panda, Leonid Karlinsky, Richard J. Radke, Rogério Feris:
A Broad Study on the Transferability of Visual Representations with Contrastive Learning. ICCV 2021: 8825-8835 - [c20]Yue Meng, Rameswar Panda, Chung-Ching Lin, Prasanna Sattigeri, Leonid Karlinsky, Kate Saenko, Aude Oliva, Rogério Feris:
AdaFuse: Adaptive Temporal Fusion Network for Efficient Action Recognition. ICLR 2021 - [c19]Ashraful Islam, Chun-Fu (Richard) Chen, Rameswar Panda, Leonid Karlinsky, Rogério Feris, Richard J. Radke:
Dynamic Distillation Network for Cross-Domain Few-Shot Recognition with Unlabeled Data. NeurIPS 2021: 3584-3595 - [i20]Yue Meng, Rameswar Panda, Chung-Ching Lin, Prasanna Sattigeri, Leonid Karlinsky, Kate Saenko, Aude Oliva, Rogério Feris:
AdaFuse: Adaptive Temporal Fusion Network for Efficient Action Recognition. CoRR abs/2102.05775 (2021) - [i19]Ashraful Islam, Chun-Fu Chen, Rameswar Panda, Leonid Karlinsky, Richard J. Radke, Rogério Feris:
A Broad Study on the Transferability of Visual Representations with Contrastive Learning. CoRR abs/2103.13517 (2021) - [i18]Assaf Arbelle, Sivan Doveh, Amit Alfassy, Joseph Shtok, Guy Lev, Eli Schwartz, Hilde Kuehne, Hila Barak Levi, Prasanna Sattigeri, Rameswar Panda, Chun-Fu Chen, Alex M. Bronstein, Kate Saenko, Shimon Ullman, Raja Giryes, Rogério Feris, Leonid Karlinsky:
Detector-Free Weakly Supervised Grounding by Separation. CoRR abs/2104.09829 (2021) - [i17]Ashraful Islam, Chun-Fu Chen, Rameswar Panda, Leonid Karlinsky, Rogério Feris, Richard J. Radke:
Dynamic Distillation Network for Cross-Domain Few-Shot Recognition with Unlabeled Data. CoRR abs/2106.07807 (2021) - [i16]Joseph Shtok, Sivan Harary, Ophir Azulai, Adi Raz Goldfarb, Assaf Arbelle, Leonid Karlinsky:
CHARTER: heatmap-based multi-type chart data extraction. CoRR abs/2111.14103 (2021) - [i15]Samarth Mishra, Rameswar Panda, Cheng Perng Phoo, Chun-Fu Chen, Leonid Karlinsky, Kate Saenko, Venkatesh Saligrama, Rogério Schmidt Feris:
Task2Sim : Towards Effective Pre-training and Transfer from Synthetic Data. CoRR abs/2112.00054 (2021) - [i14]Sivan Harary, Eli Schwartz, Assaf Arbelle, Peter W. J. Staar, Shady Abu-Hussein, Elad Amrani, Roei Herzig, Amit Alfassy, Raja Giryes, Hilde Kuehne, Dina Katabi, Kate Saenko, Rogério Feris, Leonid Karlinsky:
Unsupervised Domain Generalization by Learning a Bridge Across Domains. CoRR abs/2112.02300 (2021) - 2020
- [c18]Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sattigeri, Leonid Karlinsky, Aude Oliva, Kate Saenko, Rogério Feris:
AR-Net: Adaptive Frame Resolution for Efficient Action Recognition. ECCV (7) 2020: 86-104 - [c17]Yunhui Guo, Noel Codella, Leonid Karlinsky, James V. Codella, John R. Smith, Kate Saenko, Tajana Rosing, Rogério Feris:
A Broader Study of Cross-Domain Few-Shot Learning. ECCV (27) 2020: 124-141 - [c16]Zhiqiang Tang, Yunhe Gao, Leonid Karlinsky, Prasanna Sattigeri, Rogério Feris, Dimitris N. Metaxas:
OnlineAugment: Online Data Augmentation with Less Domain Knowledge. ECCV (7) 2020: 313-329 - [c15]Moshe Lichtenstein, Prasanna Sattigeri, Rogério Feris, Raja Giryes, Leonid Karlinsky:
TAFSSL: Task-Adaptive Feature Sub-Space Learning for Few-Shot Classification. ECCV (7) 2020: 522-539 - [i13]Moshe Lichtenstein, Prasanna Sattigeri, Rogério Schmidt Feris, Raja Giryes, Leonid Karlinsky:
TAFSSL: Task-Adaptive Feature Sub-Space Learning for few-shot classification. CoRR abs/2003.06670 (2020) - [i12]Leonid Karlinsky, Joseph Shtok, Amit Alfassy, Moshe Lichtenstein, Sivan Harary, Eli Schwartz, Sivan Doveh, Prasanna Sattigeri, Rogério Schmidt Feris, Alexander M. Bronstein, Raja Giryes:
StarNet: towards weakly supervised few-shot detection and explainable few-shot classification. CoRR abs/2003.06798 (2020) - [i11]Zhiqiang Tang, Yunhe Gao, Leonid Karlinsky, Prasanna Sattigeri, Rogério Feris, Dimitris N. Metaxas:
OnlineAugment: Online Data Augmentation with Less Domain Knowledge. CoRR abs/2007.09271 (2020) - [i10]Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sattigeri, Leonid Karlinsky, Aude Oliva, Kate Saenko, Rogério Feris:
AR-Net: Adaptive Frame Resolution for Efficient Action Recognition. CoRR abs/2007.15796 (2020) - [i9]Guy Bukchin, Eli Schwartz, Kate Saenko, Ori Shahar, Rogério Feris, Raja Giryes, Leonid Karlinsky:
Fine-grained Angular Contrastive Learning with Coarse Labels. CoRR abs/2012.03515 (2020) - [i8]Joshua K. Lee, Yuheng Bu, Prasanna Sattigeri, Rameswar Panda, Gregory W. Wornell, Leonid Karlinsky, Rogério Feris:
A Maximal Correlation Approach to Imposing Fairness in Machine Learning. CoRR abs/2012.15259 (2020)
2010 – 2019
- 2019
- [j1]Ayelet Akselrod-Ballin, Leonid Karlinsky, Sharon Alpert, Sharbell Y. Hasoul, Rami Ben-Ari, Ella Barkan:
A CNN based method for automatic mass detection and classification in mammograms. Comput. methods Biomech. Biomed. Eng. Imaging Vis. 7(3): 242-249 (2019) - [c14]Leonid Karlinsky, Joseph Shtok, Sivan Harary, Eli Schwartz, Amit Aides, Rogério Schmidt Feris, Raja Giryes, Alexander M. Bronstein:
RepMet: Representative-Based Metric Learning for Classification and Few-Shot Object Detection. CVPR 2019: 5197-5206 - [c13]Amit Alfassy, Leonid Karlinsky, Amit Aides, Joseph Shtok, Sivan Harary, Rogério Schmidt Feris, Raja Giryes, Alexander M. Bronstein:
LaSO: Label-Set Operations Networks for Multi-Label Few-Shot Learning. CVPR 2019: 6548-6557 - [i7]Amit Alfassy, Leonid Karlinsky, Amit Aides, Joseph Shtok, Sivan Harary, Rogério Schmidt Feris, Raja Giryes, Alexander M. Bronstein:
LaSO: Label-Set Operations networks for multi-label few-shot learning. CoRR abs/1902.09811 (2019) - [i6]Eli Schwartz, Leonid Karlinsky, Rogério Schmidt Feris, Raja Giryes, Alexander M. Bronstein:
Baby steps towards few-shot learning with multiple semantics. CoRR abs/1906.01905 (2019) - [i5]Sivan Doveh, Eli Schwartz, Chao Xue, Rogério Schmidt Feris, Alexander M. Bronstein, Raja Giryes, Leonid Karlinsky:
MetAdapt: Meta-Learned Task-Adaptive Architecture for Few-Shot Classification. CoRR abs/1912.00412 (2019) - [i4]Yunhui Guo, Noel C. F. Codella, Leonid Karlinsky, John R. Smith, Tajana Rosing, Rogério Schmidt Feris:
A New Benchmark for Evaluation of Cross-Domain Few-Shot Learning. CoRR abs/1912.07200 (2019) - 2018
- [c12]Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek Kumar, Rogério Schmidt Feris, Raja Giryes, Alexander M. Bronstein:
Delta-encoder: an effective sample synthesis method for few-shot object recognition. NeurIPS 2018: 2850-2860 - [c11]Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogério Schmidt Feris, Bill Freeman, Gregory W. Wornell:
Co-regularized Alignment for Unsupervised Domain Adaptation. NeurIPS 2018: 9367-9378 - [i3]Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder, Sharathchandra Pankanti, Rogério Schmidt Feris, Abhishek Kumar, Raja Giryes, Alexander M. Bronstein:
RepMet: Representative-based metric learning for classification and one-shot object detection. CoRR abs/1806.04728 (2018) - [i2]Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder, Rogério Schmidt Feris, Abhishek Kumar, Raja Giryes, Alexander M. Bronstein:
Delta-encoder: an effective sample synthesis method for few-shot object recognition. CoRR abs/1806.04734 (2018) - [i1]Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogério Schmidt Feris, William T. Freeman, Gregory W. Wornell:
Co-regularized Alignment for Unsupervised Domain Adaptation. CoRR abs/1811.05443 (2018) - 2017
- [c10]Ethan Hadar, Joseph Shtok, Benjamin Cohen, Yochay Tzur, Leonid Karlinsky:
Hybrid Remote Expert - an Emerging Pattern of Industrial Remote Support. CAiSE-Forum-DC 2017: 33-40 - [c9]Leonid Karlinsky, Joseph Shtok, Yochay Tzur, Asaf Tzadok:
Fine-Grained Recognition of Thousands of Object Categories with Single-Example Training. CVPR 2017: 965-974 - [c8]Rami Ben-Ari, Ayelet Akselrod-Ballin, Leonid Karlinsky, Sharbell Y. Hashoul:
Domain specific convolutional neural nets for detection of architectural distortion in mammograms. ISBI 2017: 552-556 - [c7]Ayelet Akselrod-Ballin, Leonid Karlinsky, Alon Hazan, Ran Bakalo, Ami Ben Horesh, Yoel Shoshan, Ella Barkan:
Deep Learning for Automatic Detection of Abnormal Findings in Breast Mammography. DLMIA/ML-CDS@MICCAI 2017: 321-329 - 2016
- [c6]Ayelet Akselrod-Ballin, Leonid Karlinsky, Sharon Alpert, Sharbell Y. Hasoul, Rami Ben-Ari, Ella Barkan:
A Region Based Convolutional Network for Tumor Detection and Classification in Breast Mammography. LABELS/DLMIA@MICCAI 2016: 197-205 - 2012
- [c5]Leonid Karlinsky, Shimon Ullman:
Using Linking Features in Learning Non-parametric Part Models. ECCV (3) 2012: 326-339 - 2010
- [c4]Leonid Karlinsky, Michael Dinerstein, Daniel Harari, Shimon Ullman:
The chains model for detecting parts by their context. CVPR 2010: 25-32 - [c3]Leonid Karlinsky, Michael Dinerstein, Shimon Ullman:
Using body-anchored priors for identifying actions in single images. NIPS 2010: 1072-1080
2000 – 2009
- 2009
- [c2]Leonid Karlinsky, Michael Dinerstein, Shimon Ullman:
Unsupervised feature optimization (UFO): Simultaneous selection of multiple features with their detection parameters. CVPR 2009: 1263-1270 - 2008
- [c1]Leonid Karlinsky, Michael Dinerstein, Dan Levi, Shimon Ullman:
Unsupervised Classification and Part Localization by Consistency Amplification. ECCV (2) 2008: 321-335
Coauthor Index
aka: Alex M. Bronstein
aka: Rogério Schmidt Feris
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-14 22:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint