default search action
Jose H. Blanchet
Person information
- affiliation: Stanford University, Department of Management Science & Engineering, CA, USA
- affiliation: Columbia University, Department of Statistics, New York City, NY, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j43]José H. Blanchet, Renyuan Xu, Zhengyuan Zhou:
Delay-Adaptive Learning in Generalized Linear Contextual Bandits. Math. Oper. Res. 49(1): 326-345 (2024) - [j42]Jose H. Blanchet, Arun Jambulapati, Carson Kent, Aaron Sidford:
Towards optimal running timesfor optimal transport. Oper. Res. Lett. 52: 107054 (2024) - [c74]Ying Jin, Ramki Gummadi, Zhengyuan Zhou, Jose H. Blanchet:
Feasible Q-Learning for Average Reward Reinforcement Learning. AISTATS 2024: 1630-1638 - [c73]Shengbo Wang, José H. Blanchet, Peter W. Glynn:
Optimal Sample Complexity for Average Reward Markov Decision Processes. ICLR 2024 - [c72]José H. Blanchet, Peng Cui, Jiajin Li, Jiashuo Liu:
Stability Evaluation through Distributional Perturbation Analysis. ICML 2024 - [c71]Zhipeng Liang, Xiaoteng Ma, José H. Blanchet, Jun Yang, Jiheng Zhang, Zhengyuan Zhou:
Single-Trajectory Distributionally Robust Reinforcement Learning. ICML 2024 - [c70]Kaizhao Liu, José H. Blanchet, Lexing Ying, Yiping Lu:
Orthogonal Bootstrap: Efficient Simulation of Input Uncertainty. ICML 2024 - [i63]Xinru Hua, Rasool Ahmad, Jose H. Blanchet, Wei Cai:
Accelerated Sampling of Rare Events using a Neural Network Bias Potential. CoRR abs/2401.06936 (2024) - [i62]Jose H. Blanchet, Jiajin Li, Markus Pelger, Greg Zanotti:
Automatic Outlier Rectification via Optimal Transport. CoRR abs/2403.14067 (2024) - [i61]Guanyang Wang, Jose H. Blanchet, Peter W. Glynn:
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones? CoRR abs/2404.01431 (2024) - [i60]Miao Lu, Han Zhong, Tong Zhang, Jose H. Blanchet:
Distributionally Robust Reinforcement Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithm. CoRR abs/2404.03578 (2024) - [i59]Kaizhao Liu, Jose H. Blanchet, Lexing Ying, Yiping Lu:
Orthogonal Bootstrap: Efficient Simulation of Input Uncertainty. CoRR abs/2404.19145 (2024) - [i58]Jose H. Blanchet, Peng Cui, Jiajin Li, Jiashuo Liu:
Stability Evaluation via Distributional Perturbation Analysis. CoRR abs/2405.03198 (2024) - [i57]Jiyuan Tan, Jose H. Blanchet, Vasilis Syrgkanis:
Consistency of Neural Causal Partial Identification. CoRR abs/2405.15673 (2024) - [i56]Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose H. Blanchet, Zhaoran Wang:
Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer. CoRR abs/2405.16436 (2024) - [i55]Yanlin Qu, Jose H. Blanchet, Peter W. Glynn:
Deep Learning for Computing Convergence Rates of Markov Chains. CoRR abs/2405.20435 (2024) - [i54]Shengbo Wang, Nian Si, Jose H. Blanchet, Zhengyuan Zhou:
Statistical Learning of Distributionally Robust Stochastic Control in Continuous State Spaces. CoRR abs/2406.11281 (2024) - [i53]Hao Liu, Junze Ye, Jose H. Blanchet, Nian Si:
ScoreFusion: fusing score-based generative models via Kullback-Leibler barycenters. CoRR abs/2406.19619 (2024) - [i52]Patrick K. Kuiper, Sirui Lin, Jose H. Blanchet, Vahid Tarokh:
Generative Learning for Simulation of Vehicle Faults. CoRR abs/2407.17654 (2024) - [i51]Patrick K. Kuiper, Ali Hasan, Wenhao Yang, Yuting Ng, Hoda Bidkhori, Jose H. Blanchet, Vahid Tarokh:
Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions. CoRR abs/2408.00131 (2024) - [i50]Yan Chen, Jose H. Blanchet, Krzysztof Dembczynski, Laura Fee Nern, Aaron Flores:
Optimal Downsampling for Imbalanced Classification with Generalized Linear Models. CoRR abs/2410.08994 (2024) - [i49]Yanlin Qu, Ravi Kant, Yan Chen, Brendan Kitts, San Gultekin, Aaron Flores, Jose H. Blanchet:
Double Distributionally Robust Bid Shading for First Price Auctions. CoRR abs/2410.14864 (2024) - [i48]Jose H. Blanchet, Aleksandar Mijatovic, Wenhao Yang:
Limit Theorems for Stochastic Gradient Descent with Infinite Variance. CoRR abs/2410.16340 (2024) - 2023
- [j41]Jose H. Blanchet, Yang Kang, José Luis Montiel Olea, Viet Anh Nguyen, Xuhui Zhang:
Dropout Training is Distributionally Robust Optimal. J. Mach. Learn. Res. 24: 180:1-180:60 (2023) - [j40]Nian Si, Fan Zhang, Zhengyuan Zhou, Jose H. Blanchet:
Distributionally Robust Batch Contextual Bandits. Manag. Sci. 69(10): 5772-5793 (2023) - [c69]Shengbo Wang, Nian Si, José H. Blanchet, Zhengyuan Zhou:
A Finite Sample Complexity Bound for Distributionally Robust Q-learning. AISTATS 2023: 3370-3398 - [c68]Kyriakos Lotidis, Nicholas Bambos, Jose H. Blanchet, Jiajin Li:
Wasserstein Distributionally Robust Linear-Quadratic Estimation under Martingale Constraints. AISTATS 2023: 8629-8644 - [c67]Jikai Jin, Yiping Lu, José H. Blanchet, Lexing Ying:
Minimax Optimal Kernel Operator Learning via Multilevel Training. ICLR 2023 - [c66]Jiajin Li, Jianheng Tang, Lemin Kong, Huikang Liu, Jia Li, Anthony Man-Cho So, Jose H. Blanchet:
A Convergent Single-Loop Algorithm for Relaxation of Gromov-Wasserstein in Graph Data. ICLR 2023 - [c65]Xinru Hua, Truyen Nguyen, Tam Le, Jose H. Blanchet, Viet Anh Nguyen:
Dynamic Flows on Curved Space Generated by Labeled Data. IJCAI 2023: 3803-3811 - [c64]Jose H. Blanchet, Haoxuan Chen, Yiping Lu, Lexing Ying:
When can Regression-Adjusted Control Variate Help? Rare Events, Sobolev Embedding and Minimax Optimality. NeurIPS 2023 - [c63]Jose H. Blanchet, Miao Lu, Tong Zhang, Han Zhong:
Double Pessimism is Provably Efficient for Distributionally Robust Offline Reinforcement Learning: Generic Algorithm and Robust Partial Coverage. NeurIPS 2023 - [c62]Kyriakos Lotidis, Panayotis Mertikopoulos, Nicholas Bambos, Jose H. Blanchet:
Payoff-based Learning with Matrix Multiplicative Weights in Quantum Games. NeurIPS 2023 - [c61]Taoli Zheng, Linglingzhi Zhu, Anthony Man-Cho So, Jose H. Blanchet, Jiajin Li:
Universal Gradient Descent Ascent Method for Nonconvex-Nonconcave Minimax Optimization. NeurIPS 2023 - [c60]Jose H. Blanchet, Alexander Shapiro:
Statistical Limit Theorems in Distributionally Robust Optimization. WSC 2023: 31-45 - [i47]Zhipeng Liang, Xiaoteng Ma, Jose H. Blanchet, Jiheng Zhang, Zhengyuan Zhou:
Single-Trajectory Distributionally Robust Reinforcement Learning. CoRR abs/2301.11721 (2023) - [i46]Xinru Hua, Truyen Nguyen, Tam Le, Jose H. Blanchet, Viet Anh Nguyen:
Dynamic Flows on Curved Space Generated by Labeled Data. CoRR abs/2302.00061 (2023) - [i45]Shengbo Wang, Jose H. Blanchet, Peter W. Glynn:
Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes. CoRR abs/2302.07477 (2023) - [i44]Shengbo Wang, Nian Si, Jose H. Blanchet, Zhengyuan Zhou:
A Finite Sample Complexity Bound for Distributionally Robust Q-learning. CoRR abs/2302.13203 (2023) - [i43]Jiajin Li, Jianheng Tang, Lemin Kong, Huikang Liu, Jia Li, Anthony Man-Cho So, Jose H. Blanchet:
A Convergent Single-Loop Algorithm for Relaxation of Gromov-Wasserstein in Graph Data. CoRR abs/2303.06595 (2023) - [i42]Junrong Lin, Mahmudul Hasan, Pinar Acar, José H. Blanchet, Vahid Tarokh:
Neural Network Accelerated Process Design of Polycrystalline Microstructures. CoRR abs/2305.00003 (2023) - [i41]Jose H. Blanchet, Miao Lu, Tong Zhang, Han Zhong:
Double Pessimism is Provably Efficient for Distributionally Robust Offline Reinforcement Learning: Generic Algorithm and Robust Partial Coverage. CoRR abs/2305.09659 (2023) - [i40]Jose H. Blanchet, Haoxuan Chen, Yiping Lu, Lexing Ying:
When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax Optimality. CoRR abs/2305.16527 (2023) - [i39]Shengbo Wang, Nian Si, Jose H. Blanchet, Zhengyuan Zhou:
Sample Complexity of Variance-reduced Distributionally Robust Q-learning. CoRR abs/2305.18420 (2023) - [i38]Shengbo Wang, Jose H. Blanchet, Peter W. Glynn:
Optimal Sample Complexity for Average Reward Markov Decision Processes. CoRR abs/2310.08833 (2023) - [i37]Kyriakos Lotidis, Panayotis Mertikopoulos, Nicholas Bambos, Jose H. Blanchet:
Payoff-based learning with matrix multiplicative weights in quantum games. CoRR abs/2311.02423 (2023) - [i36]Shengbo Wang, Nian Si, Jose H. Blanchet, Zhengyuan Zhou:
On the Foundation of Distributionally Robust Reinforcement Learning. CoRR abs/2311.09018 (2023) - 2022
- [j39]Jose H. Blanchet, Martin I. Reiman, Virag Shah, Lawrence M. Wein, Linjia Wu:
Asymptotically Optimal Control of a Centralized Dynamic Matching Market with General Utilities. Oper. Res. 70(6): 3355-3370 (2022) - [j38]Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, José H. Blanchet:
No Weighted-Regret Learning in Adversarial Bandits with Delays. J. Mach. Learn. Res. 23: 139:1-139:43 (2022) - [j37]Jose H. Blanchet, Lin Chen, Xun Yu Zhou:
Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances. Manag. Sci. 68(9): 6382-6410 (2022) - [j36]Jose H. Blanchet, Karthyek R. A. Murthy, Fan Zhang:
Optimal Transport-Based Distributionally Robust Optimization: Structural Properties and Iterative Schemes. Math. Oper. Res. 47(2): 1500-1529 (2022) - [j35]Jose H. Blanchet:
Some open problems in exact simulation of stochastic differential equations. Queueing Syst. Theory Appl. 100(3-4): 509-511 (2022) - [c59]Xuhui Zhang, José H. Blanchet, Soumyadip Ghosh, Mark S. Squillante:
A Class of Geometric Structures in Transfer Learning: Minimax Bounds and Optimality. AISTATS 2022: 3794-3820 - [c58]Yiping Lu, Haoxuan Chen, Jianfeng Lu, Lexing Ying, Jose H. Blanchet:
Machine Learning For Elliptic PDEs: Fast Rate Generalization Bound, Neural Scaling Law and Minimax Optimality. ICLR 2022 - [c57]Zijian Liu, Qinxun Bai, Jose H. Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, Zhengyuan Zhou:
Distributionally Robust Q-Learning. ICML 2022: 13623-13643 - [c56]Yiping Lu, José H. Blanchet, Lexing Ying:
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent. NeurIPS 2022 - [c55]Jiajin Li, Sirui Lin, Jose H. Blanchet, Viet Anh Nguyen:
Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints. NeurIPS 2022 - [c54]Ali Hasan, Khalil Elkhalil, Yuting Ng, João M. Pereira, Sina Farsiu, Jose H. Blanchet, Vahid Tarokh:
Modeling extremes with d-max-decreasing neural networks. UAI 2022: 759-768 - [c53]Xinru Hua, Huanzhong Xu, Jose H. Blanchet, Viet Anh Nguyen:
Human Imperceptible Attacks and Applications to Improve Fairness. WSC 2022: 2641-2652 - [i35]Yuan Shi, Saied Mahdian, Jose H. Blanchet, Peter W. Glynn, Andrew Young Shin, David Scheinker:
Surgical Scheduling via Optimization and Machine Learning with Long-Tailed Data. CoRR abs/2202.06383 (2022) - [i34]Xuhui Zhang, Jose H. Blanchet, Soumyadip Ghosh, Mark S. Squillante:
A Class of Geometric Structures in Transfer Learning: Minimax Bounds and Optimality. CoRR abs/2202.11685 (2022) - [i33]Jin Xie, Teng Zhang, Jose H. Blanchet, Peter W. Glynn, Matthew Randolph, David Scheinker:
The Design and Implementation of a Broadly Applicable Algorithm for Optimizing Intra-Day Surgical Scheduling. CoRR abs/2203.08146 (2022) - [i32]Yiping Lu, Jose H. Blanchet, Lexing Ying:
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent. CoRR abs/2205.07331 (2022) - [i31]Jiajin Li, Jianheng Tang, Lemin Kong, Huikang Liu, Jia Li, Anthony Man-Cho So, Jose H. Blanchet:
Fast and Provably Convergent Algorithms for Gromov-Wasserstein in Graph Learning. CoRR abs/2205.08115 (2022) - [i30]Xiaoteng Ma, Zhipeng Liang, Jose H. Blanchet, Mingwen Liu, Li Xia, Jiheng Zhang, Qianchuan Zhao, Zhengyuan Zhou:
Distributionally Robust Offline Reinforcement Learning with Linear Function Approximation. CoRR abs/2209.06620 (2022) - [i29]Jikai Jin, Yiping Lu, Jose H. Blanchet, Lexing Ying:
Minimax Optimal Kernel Operator Learning via Multilevel Training. CoRR abs/2209.14430 (2022) - [i28]Jiajin Li, Sirui Lin, Jose H. Blanchet, Viet Anh Nguyen:
Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints. CoRR abs/2210.01413 (2022) - [i27]Yiping Lu, Jiajin Li, Lexing Ying, Jose H. Blanchet:
Synthetic Principal Component Design: Fast Covariate Balancing with Synthetic Controls. CoRR abs/2211.15241 (2022) - 2021
- [j34]Jose H. Blanchet, Yang Kang:
Sample Out-of-Sample Inference Based on Wasserstein Distance. Oper. Res. 69(3): 985-1013 (2021) - [c52]Zhengqing Zhou, Qinxun Bai, Zhengyuan Zhou, Linhai Qiu, Jose H. Blanchet, Peter W. Glynn:
Finite-Sample Regret Bound for Distributionally Robust Offline Tabular Reinforcement Learning. AISTATS 2021: 3331-3339 - [c51]Bahar Taskesen, Jose H. Blanchet, Daniel Kuhn, Viet Anh Nguyen:
A Statistical Test for Probabilistic Fairness. FAccT 2021: 648-665 - [c50]Nian Si, Karthyek Murthy, Jose H. Blanchet, Viet Anh Nguyen:
Testing Group Fairness via Optimal Transport Projections. ICML 2021: 9649-9659 - [c49]Bahar Taskesen, Man-Chung Yue, Jose H. Blanchet, Daniel Kuhn, Viet Anh Nguyen:
Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts. ICML 2021: 10162-10172 - [c48]Carson Kent, Jiajin Li, José H. Blanchet, Peter W. Glynn:
Modified Frank Wolfe in Probability Space. NeurIPS 2021: 14448-14462 - [c47]Tam Le, Truyen Nguyen, Makoto Yamada, Jose H. Blanchet, Viet Anh Nguyen:
Adversarial Regression with Doubly Non-negative Weighting Matrices. NeurIPS 2021: 16964-16976 - [c46]Huanzhong Xu, Jose H. Blanchet, Marcos Paul Gerardo-Castro, Shreyasha Paudel:
Measuring Reliability of Object Detection Algorithms for Automated Driving Perception Tasks. WSC 2021: 1-12 - [i26]Ali Hasan, Khalil Elkhalil, João M. Pereira, Sina Farsiu, Jose H. Blanchet, Vahid Tarokh:
Deep Extreme Value Copulas for Estimation and Sampling. CoRR abs/2102.09042 (2021) - [i25]Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, Jose H. Blanchet:
No Discounted-Regret Learning in Adversarial Bandits with Delays. CoRR abs/2103.04550 (2021) - [i24]Bahar Taskesen, Man-Chung Yue, Jose H. Blanchet, Daniel Kuhn, Viet Anh Nguyen:
Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts. CoRR abs/2106.00322 (2021) - [i23]Nian Si, Karthyek Murthy, Jose H. Blanchet, Viet Anh Nguyen:
Testing Group Fairness via Optimal Transport Projections. CoRR abs/2106.01070 (2021) - [i22]Jose H. Blanchet, Karthyek Murthy, Viet Anh Nguyen:
Statistical Analysis of Wasserstein Distributionally Robust Estimators. CoRR abs/2108.02120 (2021) - [i21]Tam Le, Truyen Nguyen, Makoto Yamada, Jose H. Blanchet, Viet Anh Nguyen:
Adversarial Regression with Doubly Non-negative Weighting Matrices. CoRR abs/2109.14875 (2021) - [i20]Yiping Lu, Haoxuan Chen, Jianfeng Lu, Lexing Ying, Jose H. Blanchet:
Machine Learning For Elliptic PDEs: Fast Rate Generalization Bound, Neural Scaling Law and Minimax Optimality. CoRR abs/2110.06897 (2021) - [i19]Xinru Hua, Huanzhong Xu, Jose H. Blanchet, Viet Nguyen:
Human Imperceptible Attacks and Applications to Improve Fairness. CoRR abs/2111.15603 (2021) - 2020
- [j33]Jose H. Blanchet, Xinyun Chen:
Rates of Convergence to Stationarity for Reflected Brownian Motion. Math. Oper. Res. 45(2): 660-681 (2020) - [c45]Viet Anh Nguyen, Nian Si, Jose H. Blanchet:
Robust Bayesian Classification Using An Optimistic Score Ratio. ICML 2020: 7327-7337 - [c44]Nian Si, Fan Zhang, Zhengyuan Zhou, Jose H. Blanchet:
Distributionally Robust Policy Evaluation and Learning in Offline Contextual Bandits. ICML 2020: 8884-8894 - [c43]Viet Anh Nguyen, Fan Zhang, José H. Blanchet, Erick Delage, Yinyu Ye:
Distributionally Robust Local Non-parametric Conditional Estimation. NeurIPS 2020 - [c42]Viet Anh Nguyen, Xuhui Zhang, José H. Blanchet, Angelos Georghiou:
Distributionally Robust Parametric Maximum Likelihood Estimation. NeurIPS 2020 - [c41]Nian Si, Jose H. Blanchet, Soumyadip Ghosh, Mark S. Squillante:
Quantifying the Empirical Wasserstein Distance to a Set of Measures: Beating the Curse of Dimensionality. NeurIPS 2020 - [c40]Saied Mahdian, Jose H. Blanchet, Peter W. Glynn:
A Class of Optimal Transport Regularized Formulations with Applications to Wasserstein GANs. WSC 2020: 433-444 - [i18]Jose H. Blanchet, Martin I. Reiman, Virag Shah, Lawrence M. Wein:
Asymptotically Optimal Control of a Centralized Dynamic Matching Market with General Utilities. CoRR abs/2002.03205 (2020) - [i17]Jose H. Blanchet, Renyuan Xu, Zhengyuan Zhou:
Delay-Adaptive Learning in Generalized Linear Contextual Bandits. CoRR abs/2003.05174 (2020) - [i16]Yanjun Han, Zhengqing Zhou, Zhengyuan Zhou, Jose H. Blanchet, Peter W. Glynn, Yinyu Ye:
Sequential Batch Learning in Finite-Action Linear Contextual Bandits. CoRR abs/2004.06321 (2020) - [i15]Nian Si, Fan Zhang, Zhengyuan Zhou, Jose H. Blanchet:
Distributional Robust Batch Contextual Bandits. CoRR abs/2006.05630 (2020) - [i14]Viet Anh Nguyen, Nian Si, Jose H. Blanchet:
Robust Bayesian Classification Using an Optimistic Score Ratio. CoRR abs/2007.04458 (2020) - [i13]Bahar Taskesen, Viet Anh Nguyen, Daniel Kuhn, Jose H. Blanchet:
A Distributionally Robust Approach to Fair Classification. CoRR abs/2007.09530 (2020) - [i12]Jose H. Blanchet, Yang Kang, Jose Luis Montiel Olea, Viet Anh Nguyen, Xuhui Zhang:
Machine Learning's Dropout Training is Distributionally Robust Optimal. CoRR abs/2009.06111 (2020) - [i11]Viet Anh Nguyen, Xuhui Zhang, José H. Blanchet, Angelos Georghiou:
Distributionally Robust Parametric Maximum Likelihood Estimation. CoRR abs/2010.05321 (2020) - [i10]Viet Anh Nguyen, Fan Zhang, José H. Blanchet, Erick Delage, Yinyu Ye:
Distributionally Robust Local Non-parametric Conditional Estimation. CoRR abs/2010.05373 (2020) - [i9]Bahar Taskesen, Jose H. Blanchet, Daniel Kuhn, Viet Anh Nguyen:
A Statistical Test for Probabilistic Fairness. CoRR abs/2012.04800 (2020)
2010 – 2019
- 2019
- [j32]Jose H. Blanchet, Coralia Cartis, Matt Menickelly, Katya Scheinberg:
Convergence Rate Analysis of a Stochastic Trust-Region Method via Supermartingales. INFORMS J. Optim. 1(2): 92-119 (2019) - [j31]Jose H. Blanchet, Juan Li, Marvin K. Nakayama:
Rare-Event Simulation for Distribution Networks. Oper. Res. 67(5): 1383-1396 (2019) - [j30]Jose H. Blanchet, Jing Dong, Zhipeng Liu:
Exact sampling of the infinite horizon maximum of a random walk over a nonlinear boundary. J. Appl. Probab. 56(1): 116-138 (2019) - [j29]Jose H. Blanchet, Yang Kang, Karthyek Rajhaa A. M.:
Robust Wasserstein profile inference and applications to machine learning. J. Appl. Probab. 56(3): 830-857 (2019) - [j28]Jose H. Blanchet, Karthyek R. A. Murthy:
Quantifying Distributional Model Risk via Optimal Transport. Math. Oper. Res. 44(2): 565-600 (2019) - [j27]Jose H. Blanchet, Xinyun Chen:
Perfect Sampling of Generalized Jackson Networks. Math. Oper. Res. 44(2): 693-714 (2019) - [j26]Bohan Chen, Jose H. Blanchet, Chang-han Rhee, Bert Zwart:
Efficient Rare-Event Simulation for Multiple Jump Events in Regularly Varying Random Walks and Compound Poisson Processes. Math. Oper. Res. 44(3): 919-942 (2019) - [j25]Jose H. Blanchet, Nian Si:
Optimal uncertainty size in distributionally robust inverse covariance estimation. Oper. Res. Lett. 47(6): 618-621 (2019) - [j24]Mihail Bazhba, Jose H. Blanchet, Chang-han Rhee, Bert Zwart:
Queue length asymptotics for the multiple-server queue with heavy-tailed Weibull service times. Queueing Syst. Theory Appl. 93(3-4): 195-226 (2019) - [c39]Casey Chu, Jose H. Blanchet, Peter W. Glynn:
Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning. ICML 2019: 1213-1222 - [c38]Virag Shah, Ramesh Johari, Jose H. Blanchet:
Semi-Parametric Dynamic Contextual Pricing. NeurIPS 2019: 2360-2370 - [c37]Zhengyuan Zhou, Renyuan Xu, Jose H. Blanchet:
Learning in Generalized Linear Contextual Bandits with Stochastic Delays. NeurIPS 2019: 5198-5209 - [c36]Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, Jose H. Blanchet:
Online EXP3 Learning in Adversarial Bandits with Delayed Feedback. NeurIPS 2019: 11345-11354 - [c35]Jose H. Blanchet, Peter W. Glynn, Jun Yan, Zhengqing Zhou:
Multivariate Distributionally Robust Convex Regression under Absolute Error Loss. NeurIPS 2019: 11794-11803 - [c34]Jose H. Blanchet, Fan Zhang, Yang Kang, Zhangyi Hu:
A Distributionally Robust Boosting Algorithm. WSC 2019: 3728-3739 - [c33]José H. Blanchet, Yang Kang, Karthyek R. A. Murthy, Fan Zhang:
Data-Driven Optimal Transport Cost Selection For Distributionally Robust Optimization. WSC 2019: 3740-3751 - [i8]Virag Shah, Jose H. Blanchet, Ramesh Johari:
Semi-parametric dynamic contextual pricing. CoRR abs/1901.02045 (2019) - [i7]Casey Chu, Jose H. Blanchet, Peter W. Glynn:
Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning. CoRR abs/1901.10691 (2019) - [i6]Jose H. Blanchet, Yang Kang, Fan Zhang, Zhangyi Hu:
A Distributionally Robust Boosting Algorithm. CoRR abs/1905.07845 (2019) - [i5]Saied Mahdian, Jose H. Blanchet, Peter W. Glynn:
Optimal Transport Relaxations with Application to Wasserstein GANs. CoRR abs/1906.03317 (2019) - 2018
- [j23]Jose H. Blanchet, Karthyek Rajhaa A. M.:
Exact simulation of multidimensional reflected Brownian motion. J. Appl. Probab. 55(1): 137-156 (2018) - [j22]Jose H. Blanchet, Jing Dong, Yanan Pei:
Perfect sampling of GI/GI/c queues. Queueing Syst. Theory Appl. 90(1-2): 1-33 (2018) - [c32]Virag Shah, Jose H. Blanchet, Ramesh Johari:
Bandit Learning with Positive Externalities. NeurIPS 2018: 4923-4933 - [i4]Virag Shah, Jose H. Blanchet, Ramesh Johari:
Bandit Learning with Positive Externalities. CoRR abs/1802.05693 (2018) - [i3]Jose H. Blanchet, Arun Jambulapati, Carson Kent, Aaron Sidford:
Towards Optimal Running Times for Optimal Transport. CoRR abs/1810.07717 (2018) - 2017
- [c31]Jose H. Blanchet, Yang Kang:
Distributionally Robust Groupwise Regularization Estimator. ACML 2017: 97-112 - [c30]Jose H. Blanchet, Fei He, Henry Lam:
Computing worst-case expectations given marginals via simulation. WSC 2017: 2315-2323 - 2016
- [j21]Jose H. Blanchet, Guillermo Gallego, Vineet Goyal:
A Markov Chain Approximation to Choice Modeling. Oper. Res. 64(4): 886-905 (2016) - 2015
- [j20]Xiaowei Zhang, Jose H. Blanchet, Kay Giesecke, Peter W. Glynn:
Affine Point Processes: Approximation and Efficient Simulation. Math. Oper. Res. 40(4): 797-819 (2015) - [j19]Jose H. Blanchet, Karthyek R. A. Murthy:
Tail asymptotics for delay in a half-loaded GI/GI/2 queue with heavy-tailed job sizes. Queueing Syst. Theory Appl. 81(4): 301-340 (2015) - [j18]Jose H. Blanchet, Aya Wallwater:
Exact Sampling of Stationary and Time-Reversed Queues. ACM Trans. Model. Comput. Simul. 25(4): 26:1-26:27 (2015) - [c29]Jose H. Blanchet, Nan Chen, Peter W. Glynn:
Unbiased monte carlo computation of smooth functions of expectations via Taylor expansions. WSC 2015: 360-367 - [c28]Uday V. Shanbhag, Jose H. Blanchet:
Budget-constrained stochastic approximation. WSC 2015: 368-379 - [c27]Jose H. Blanchet, Peter W. Glynn:
Unbiased Monte Carlo for optimization and functions of expectations via multi-level randomization. WSC 2015: 3656-3667 - 2014
- [j17]Jose H. Blanchet, Henry Lam:
Rare-Event Simulation for Many-Server Queues. Math. Oper. Res. 39(4): 1142-1178 (2014) - [c26]Jose H. Blanchet, Christopher Dolan, Henry Lam:
Robust rare-event performance analysis with natural non-convex constraints. WSC 2014: 595-603 - 2013
- [j16]Jose H. Blanchet:
Optimal Sampling of Overflow Paths in Jackson Networks. Math. Oper. Res. 38(4): 698-719 (2013) - [j15]Jose H. Blanchet, Yixi Shi:
Efficient rare event simulation for heavy-tailed systems via cross entropy. Oper. Res. Lett. 41(3): 271-276 (2013) - [j14]Jose H. Blanchet, Michel Mandjes:
Asymptotics of the area under the graph of a Lévy-driven workload process. Oper. Res. Lett. 41(6): 730-736 (2013) - [j13]Jose H. Blanchet, Gareth O. Roberts:
Editorial foreword to special issue on Simulation of Stochastic Networks and related topics. Queueing Syst. Theory Appl. 73(4): 341-343 (2013) - [j12]Jose H. Blanchet, Peter W. Glynn, Sean P. Meyn:
Large deviations for the empirical mean of an M/M/1 queue. Queueing Syst. Theory Appl. 73(4): 425-446 (2013) - [j11]Jose H. Blanchet, Alexandre Stauffer:
Characterizing optimal sampling of binary contingency tables via the configuration model. Random Struct. Algorithms 42(2): 159-184 (2013) - [j10]Jose H. Blanchet, Henrik Hult, Kevin Leder:
Rare-event simulation for stochastic recurrence equations with heavy-tailed innovations. ACM Trans. Model. Comput. Simul. 23(4): 22:1-22:25 (2013) - [c25]Daniel Bienstock, Jose H. Blanchet, Juan Li:
Stochastic models and control for electrical power line temperature. Allerton 2013: 1344-1348 - [c24]Jose H. Blanchet, Daniel Bienstock, Juan Li:
Power line control under uncertainty of ambient temperature. CDC 2013: 4977-4982 - [c23]Jose H. Blanchet, Guillermo Gallego, Vineet Goyal:
A markov chain approximation to choice modeling. EC 2013: 103-104 - [c22]Karthyek R. A. Murthy, Sandeep Juneja, Jose H. Blanchet:
Optimal rare event Monte Carlo for Markov modulated regularly varying random walks. WSC 2013: 564-576 - [c21]Jose H. Blanchet, Yixi Shi:
Efficient splitting-based rare event simulation algorithms for heavy-tailed sums. WSC 2013: 724-735 - 2012
- [j9]Jose H. Blanchet, Jing Dong:
Rare-event simulation for multi-server queues in the Halfin-Whitt regime. SIGMETRICS Perform. Evaluation Rev. 39(4): 35 (2012) - [j8]Jose H. Blanchet, Peter W. Glynn, Kevin Leder:
On Lyapunov Inequalities and Subsolutions for Efficient Importance Sampling. ACM Trans. Model. Comput. Simul. 22(3): 13:1-13:27 (2012) - [c20]Jose H. Blanchet, Peter W. Glynn, Shuheng Zheng:
Empirical Analysis of a Stochastic Approximation Approach for Computing Quasi-stationary Distributions. EVOLVE 2012: 19-37 - [c19]Jose H. Blanchet, Jing Dong:
Sampling point processes on stable unbounded regions and exact simulation of queues. WSC 2012: 11:1-11:12 - 2011
- [j7]Søren Asmussen, Jose H. Blanchet, Sandeep Juneja, Leonardo Rojas-Nandayapa:
Efficient simulation of tail probabilities of sums of correlated lognormals. Ann. Oper. Res. 189(1): 5-23 (2011) - [j6]Jose H. Blanchet, Chenxin Li:
Efficient rare event simulation for heavy-tailed compound sums. ACM Trans. Model. Comput. Simul. 21(2): 9:1-9:23 (2011) - [c18]Jose H. Blanchet, Henry Lam:
Rare event simulation techniques. WSC 2011: 146-160 - [c17]Jose H. Blanchet, Yixi Shi:
Efficient rare event simulation for heavy-tailed systems via cross entropy. WSC 2011: 516-527 - [c16]Jose H. Blanchet, Henry Lam:
Importance sampling for actuarial cost analysis under a heavy traffic model. WSC 2011: 3817-3828 - [c15]Jose H. Blanchet, Henrik Hult, Kevin Leder:
Importance sampling for stochastic recurrence equations with heavy tailed increments. WSC 2011: 3829-3836 - [c14]Jose H. Blanchet, Juan Li, Marvin K. Nakayama:
A conditional Monte Carlo method for estimating the failure probability of a distribution network with random demands. WSC 2011: 3837-3848 - 2010
- [j5]Jose H. Blanchet, Bert Zwart:
Asymptotic expansions of defective renewal equations with applications to perturbed risk models and processor sharing queues. Math. Methods Oper. Res. 72(2): 311-326 (2010) - [j4]Pierre L'Ecuyer, Jose H. Blanchet, Bruno Tuffin, Peter W. Glynn:
Asymptotic robustness of estimators in rare-event simulation. ACM Trans. Model. Comput. Simul. 20(1): 6:1-6:41 (2010) - [c13]Jose H. Blanchet, Jingchen Liu, Xuan Yang:
Monte Carlo for large credit portfolios with potentially high correlations. WSC 2010: 2810-2820 - [i2]Jose H. Blanchet, Alexandre Stauffer:
Characterizing Optimal Sampling of Binary Contingency Tables via the Configuration Model. CoRR abs/1007.1214 (2010) - [i1]Jose H. Blanchet, Kevin Leder, Yixi Shi:
Analysis of a Splitting Estimator for Rare Event Probabilities in Jackson Networks. CoRR abs/1007.5030 (2010)
2000 – 2009
- 2009
- [j3]Jose H. Blanchet, Peter W. Glynn, Henry Lam:
Rare event simulation for a slotted time M/G/s model. Queueing Syst. Theory Appl. 63(1-4): 33-57 (2009) - [c12]Jose H. Blanchet, Peter W. Glynn:
Efficient Rare Event Simulation of Continuous Time Markovian Perpetuities. WSC 2009: 444-451 - [c11]Xiaowei Zhang, Peter W. Glynn, Kay Giesecke, Jose H. Blanchet:
Rare Event Simulation for a Generalized Hawkes Process. WSC 2009: 1291-1298 - [p2]José H. Blanchet, Michel Mandjes:
Rare Event Simulation for Queues. Rare Event Simulation using Monte Carlo Methods 2009: 87-124 - [p1]José H. Blanchet, Daniel Rudoy:
Rare Event Simulation and Counting Problems. Rare Event Simulation using Monte Carlo Methods 2009: 171-192 - 2008
- [c10]Robert J. Adler, Jose H. Blanchet, Jingchen Liu:
Efficient simulation for tail probabilities of Gaussian random fields. WSC 2008: 328-336 - [c9]Jose H. Blanchet, Jingchen Liu, Bert Zwart:
Large deviations perspective on ordinal optimization of heavy-tailed systems. WSC 2008: 489-494 - [c8]Jose H. Blanchet, Sandeep Juneja, Leonardo Rojas-Nandayapa:
Efficient tail estimation for sums of correlated lognormals. WSC 2008: 607-614 - 2007
- [j2]Jose H. Blanchet, Michel Mandjes:
Editorial: rare-event simulation for queues. Queueing Syst. Theory Appl. 57(2-3): 57-59 (2007) - [j1]Jose H. Blanchet, Peter W. Glynn, Jingchen Liu:
Fluid heuristics, Lyapunov bounds and efficient importance sampling for a heavy-tailed G/G/1 queue. Queueing Syst. Theory Appl. 57(2-3): 99-113 (2007) - [c7]Jose H. Blanchet, Bert Zwart:
Importance sampling of compounding processes. WSC 2007: 372-379 - [c6]Jose H. Blanchet, Jingchen Liu:
Path-sampling for state-dependent importance sampling. WSC 2007: 380-388 - [c5]Xiaowei Zhang, Jose H. Blanchet, Peter W. Glynn:
Efficient suboptimal rare-event simulation. WSC 2007: 389-394 - [c4]Jose H. Blanchet, Jingchen Liu:
Rare-event simulation for a multidimensional random walk with t distributed increments. WSC 2007: 395-402 - 2006
- [c3]Jose H. Blanchet, Peter W. Glynn:
Strongly efficient estimators for light-tailed sums. VALUETOOLS 2006: 18 - [c2]Jose H. Blanchet, Jingchen Liu, Peter W. Glynn:
State-dependent importance sampling and large deviations. VALUETOOLS 2006: 20 - [c1]Jose H. Blanchet, Jingchen Liu:
Efficient simulation for large deviation probabilities of sums of heavy-tailed increments. WSC 2006: 757-764
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-03 21:22 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint