default search action
Vasilis Syrgkanis
Person information
- affiliation: Cornell University, Ithaca, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j11]Keegan Harris, Vasilis Syrgkanis:
Causal Inference under Incentives: An Annotated Reading List. SIGecom Exch. 22(1): 110-112 (2024) - [c75]Hui Lan, Vasilis Syrgkanis:
Causal Q-Aggregation for CATE Model Selection. AISTATS 2024: 4366-4374 - [c74]Yash Chandak, Shiv Shankar, Vasilis Syrgkanis, Emma Brunskill:
Adaptive Instrument Design for Indirect Experiments. ICLR 2024 - [c73]Divyat Mahajan, Ioannis Mitliagkas, Brady Neal, Vasilis Syrgkanis:
Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation. ICLR 2024 - [i94]Jikai Jin, Vasilis Syrgkanis:
Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation. CoRR abs/2402.14264 (2024) - [i93]Victor Chernozhukov, Christian Hansen, Nathan Kallus, Martin Spindler, Vasilis Syrgkanis:
Applied Causal Inference Powered by ML and AI. CoRR abs/2403.02467 (2024) - [i92]Zihao Li, Hui Lan, Vasilis Syrgkanis, Mengdi Wang, Masatoshi Uehara:
Regularized DeepIV with Model Selection. CoRR abs/2403.04236 (2024) - [i91]Vahid Balazadeh Meresht, Keertana Chidambaram, Viet Nguyen, Rahul G. Krishnan, Vasilis Syrgkanis:
Sequential Decision Making with Expert Demonstrations under Unobserved Heterogeneity. CoRR abs/2404.07266 (2024) - [i90]Ravi B. Sojitra, Vasilis Syrgkanis:
Dynamic Local Average Treatment Effects. CoRR abs/2405.01463 (2024) - [i89]Jabari Hastings, Christopher Jung, Charlotte Peale, Vasilis Syrgkanis:
Taking a Moment for Distributional Robustness. CoRR abs/2405.05461 (2024) - [i88]Keertana Chidambaram, Karthik Vinay Seetharaman, Vasilis Syrgkanis:
Direct Preference Optimization With Unobserved Preference Heterogeneity. CoRR abs/2405.15065 (2024) - [i87]Jiyuan Tan, Jose H. Blanchet, Vasilis Syrgkanis:
Consistency of Neural Causal Partial Identification. CoRR abs/2405.15673 (2024) - [i86]Justin Whitehouse, Christopher Jung, Vasilis Syrgkanis, Bryan Wilder, Zhiwei Steven Wu:
Orthogonal Causal Calibration. CoRR abs/2406.01933 (2024) - [i85]Allison Lau, Younwoo Choi, Vahid Balazadeh Meresht, Keertana Chidambaram, Vasilis Syrgkanis, Rahul G. Krishnan:
Personalized Adaptation via In-Context Preference Learning. CoRR abs/2410.14001 (2024) - [i84]Yifan Wu, Ramesh Johari, Vasilis Syrgkanis, Gabriel Y. Weintraub:
Switchback Price Experiments with Forward-Looking Demand. CoRR abs/2410.14904 (2024) - 2023
- [c72]Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara:
Inference on Strongly Identified Functionals of Weakly Identified Functions. COLT 2023: 2265 - [c71]Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara:
Minimax Instrumental Variable Regression and L2 Convergence Guarantees without Identification or Closedness. COLT 2023: 2291-2318 - [i83]Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara:
Minimax Instrumental Variable Regression and $L_2$ Convergence Guarantees without Identification or Closedness. CoRR abs/2302.05404 (2023) - [i82]Vasilis Syrgkanis, Ruohan Zhan:
Post-Episodic Reinforcement Learning Inference. CoRR abs/2302.08854 (2023) - [i81]Qizhao Chen, Morgane Austern, Vasilis Syrgkanis:
Inference on Optimal Dynamic Policies via Softmax Approximation. CoRR abs/2303.04416 (2023) - [i80]Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara:
Source Condition Double Robust Inference on Functionals of Inverse Problems. CoRR abs/2307.13793 (2023) - [i79]Hui Lan, Vasilis Syrgkanis:
Causal Q-Aggregation for CATE Model Selection. CoRR abs/2310.16945 (2023) - [i78]Jikai Jin, Vasilis Syrgkanis:
Learning Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity. CoRR abs/2311.12267 (2023) - [i77]Yash Chandak, Shiv Shankar, Vasilis Syrgkanis, Emma Brunskill:
Adaptive Instrument Design for Indirect Experiments. CoRR abs/2312.02438 (2023) - [i76]Dung Daniel T. Ngo, Keegan Harris, Anish Agarwal, Vasilis Syrgkanis, Zhiwei Steven Wu:
Incentive-Aware Synthetic Control: Accurate Counterfactual Estimation via Incentivized Exploration. CoRR abs/2312.16307 (2023) - 2022
- [j10]Constantinos Daskalakis, Vasilis Syrgkanis:
Learning in auctions: Regret is hard, envy is easy. Games Econ. Behav. 134: 308-343 (2022) - [j9]Yishay Mansour, Alex Slivkins, Vasilis Syrgkanis, Zhiwei Steven Wu:
Bayesian Exploration: Incentivizing Exploration in Bayesian Games. Oper. Res. 70(2): 1105-1127 (2022) - [j8]Constantinos Daskalakis, Maxwell Fishelson, Brendan Lucier, Vasilis Syrgkanis, Santhoshini Velusamy:
Multi-Item Nontruthful Auctions Achieve Good Revenue. SIAM J. Comput. 51(6): 1796-1838 (2022) - [c70]Kartik Ahuja, Divyat Mahajan, Vasilis Syrgkanis, Ioannis Mitliagkas:
Towards efficient representation identification in supervised learning. CLeaR 2022: 19-43 - [c69]Khashayar Khosravi, Greg Lewis, Vasilis Syrgkanis:
Non-parametric Inference Adaptive to Intrinsic Dimension. CLeaR 2022: 373-389 - [c68]Victor Chernozhukov, Whitney Newey, Victor Quintas-Martinez, Vasilis Syrgkanis:
RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests. ICML 2022: 3901-3914 - [c67]Qizhao Chen, Vasilis Syrgkanis, Morgane Austern:
Debiased Machine Learning without Sample-Splitting for Stable Estimators. NeurIPS 2022 - [c66]Vahid Balazadeh Meresht, Vasilis Syrgkanis, Rahul G. Krishnan:
Partial Identification of Treatment Effects with Implicit Generative Models. NeurIPS 2022 - [c65]Dhruv Rohatgi, Vasilis Syrgkanis:
Robust Generalized Method of Moments: A Finite Sample Viewpoint. NeurIPS 2022 - [i75]Rahul Singh, Vasilis Syrgkanis:
Automatic Debiased Machine Learning for Dynamic Treatment Effects. CoRR abs/2203.13887 (2022) - [i74]Kartik Ahuja, Divyat Mahajan, Vasilis Syrgkanis, Ioannis Mitliagkas:
Towards efficient representation identification in supervised learning. CoRR abs/2204.04606 (2022) - [i73]Qizhao Chen, Vasilis Syrgkanis, Morgane Austern:
Debiased Machine Learning without Sample-Splitting for Stable Estimators. CoRR abs/2206.01825 (2022) - [i72]Vahid Balazadeh Meresht, Vasilis Syrgkanis, Rahul G. Krishnan:
Partial Identification of Treatment Effects with Implicit Generative Models. CoRR abs/2210.08139 (2022) - [i71]Anish Agarwal, Vasilis Syrgkanis:
Synthetic Blip Effects: Generalizing Synthetic Controls for the Dynamic Treatment Regime. CoRR abs/2210.11003 (2022) - [i70]Divyat Mahajan, Ioannis Mitliagkas, Brady Neal, Vasilis Syrgkanis:
Empirical Analysis of Model Selection for Heterogenous Causal Effect Estimation. CoRR abs/2211.01939 (2022) - 2021
- [j7]Nicole Immorlica, Brendan Lucier, Jieming Mao, Vasilis Syrgkanis, Christos Tzamos:
Combinatorial Assortment Optimization. ACM Trans. Economics and Comput. 9(1): 5:1-5:34 (2021) - [c64]Tri Dao, Govinda M. Kamath, Vasilis Syrgkanis, Lester Mackey:
Knowledge Distillation as Semiparametric Inference. ICLR 2021 - [c63]Dung Daniel T. Ngo, Logan Stapleton, Vasilis Syrgkanis, Steven Wu:
Incentivizing Compliance with Algorithmic Instruments. ICML 2021: 8045-8055 - [c62]Vasilis Syrgkanis, Greg Lewis, Miruna Oprescu, Maggie Hei, Keith Battocchi, Eleanor Dillon, Jing Pan, Yifeng Wu, Paul Lo, Huigang Chen, Totte Harinen, Jeong-Yoon Lee:
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber. KDD 2021: 4072-4073 - [c61]Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Miruna Oprescu, Vasilis Syrgkanis:
Estimating the Long-Term Effects of Novel Treatments. NeurIPS 2021: 2925-2935 - [c60]Morgane Austern, Vasilis Syrgkanis:
Asymptotics of the Bootstrap via Stability with Applications to Inference with Model Selection. NeurIPS 2021: 10705-10717 - [c59]Greg Lewis, Vasilis Syrgkanis:
Double/Debiased Machine Learning for Dynamic Treatment Effects. NeurIPS 2021: 22695-22707 - [c58]Annie Liang, Xiaosheng Mu, Vasilis Syrgkanis:
Dynamically Aggregating Diverse Information. EC 2021: 687-688 - [c57]Gali Noti, Vasilis Syrgkanis:
Bid Prediction in Repeated Auctions with Learning. WWW 2021: 3953-3964 - [i69]Victor Chernozhukov, Whitney Newey, Rahul Singh, Vasilis Syrgkanis:
Adversarial Estimation of Riesz Representers. CoRR abs/2101.00009 (2021) - [i68]Jann Spiess, Vasilis Syrgkanis:
Evidence-Based Policy Learning. CoRR abs/2103.07066 (2021) - [i67]Tri Dao, Govinda M. Kamath, Vasilis Syrgkanis, Lester Mackey:
Knowledge Distillation as Semiparametric Inference. CoRR abs/2104.09732 (2021) - [i66]Dung Daniel T. Ngo, Logan Stapleton, Vasilis Syrgkanis, Zhiwei Steven Wu:
Incentivizing Compliance with Algorithmic Instruments. CoRR abs/2107.10093 (2021) - [i65]Amit Sharma, Vasilis Syrgkanis, Cheng Zhang, Emre Kiciman:
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions. CoRR abs/2108.13518 (2021) - [i64]Victor Chernozhukov, Whitney K. Newey, Victor Quintas-Martinez, Vasilis Syrgkanis:
RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests. CoRR abs/2110.03031 (2021) - [i63]Dhruv Rohatgi, Vasilis Syrgkanis:
Robust Generalized Method of Moments: A Finite Sample Viewpoint. CoRR abs/2110.03070 (2021) - [i62]Victor Chernozhukov, Carlos Cinelli, Whitney Newey, Amit Sharma, Vasilis Syrgkanis:
Omitted Variable Bias in Machine Learned Causal Models. CoRR abs/2112.13398 (2021) - 2020
- [j6]Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis:
Bayesian Incentive-Compatible Bandit Exploration. Oper. Res. 68(4): 1132-1161 (2020) - [j5]Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Oracle-efficient Online Learning and Auction Design. J. ACM 67(5): 26:1-26:57 (2020) - [c56]Vasilis Syrgkanis, Manolis Zampetakis:
Estimation and Inference with Trees and Forests in High Dimensions. COLT 2020: 3453-3454 - [c55]Dylan J. Foster, Vasilis Syrgkanis:
Statistical Learning with a Nuisance Component (Extended Abstract). IJCAI 2020: 4726-4729 - [c54]Nishanth Dikkala, Greg Lewis, Lester Mackey, Vasilis Syrgkanis:
Minimax Estimation of Conditional Moment Models. NeurIPS 2020 - [c53]Constantinos Daskalakis, Maxwell Fishelson, Brendan Lucier, Vasilis Syrgkanis, Santhoshini Velusamy:
Simple, Credible, and Approximately-Optimal Auctions. EC 2020: 713 - [i61]Constantinos Daskalakis, Maxwell Fishelson, Brendan Lucier, Vasilis Syrgkanis, Santhoshini Velusamy:
Simple, Credible, and Approximately-Optimal Auctions. CoRR abs/2002.06702 (2020) - [i60]Greg Lewis, Vasilis Syrgkanis:
Double/Debiased Machine Learning for Dynamic Treatment Effects. CoRR abs/2002.07285 (2020) - [i59]Nishanth Dikkala, Greg Lewis, Lester Mackey, Vasilis Syrgkanis:
Minimax Estimation of Conditional Moment Models. CoRR abs/2006.07201 (2020) - [i58]Vasilis Syrgkanis, Manolis Zampetakis:
Estimation and Inference with Trees and Forests in High Dimensions. CoRR abs/2007.03210 (2020) - [i57]Gali Noti, Vasilis Syrgkanis:
Bid Prediction in Repeated Auctions with Learning. CoRR abs/2007.13193 (2020) - [i56]Morgane Austern, Vasilis Syrgkanis:
Asymptotics of the Empirical Bootstrap Method Beyond Asymptotic Normality. CoRR abs/2011.11248 (2020)
2010 – 2019
- 2019
- [j4]Vasilis Syrgkanis, David Kempe, Éva Tardos:
Information Asymmetries in Common-Value Auctions with Discrete Signals. Math. Oper. Res. 44(4): 1450-1476 (2019) - [c52]Dylan J. Foster, Vasilis Syrgkanis:
Statistical Learning with a Nuisance Component. COLT 2019: 1346-1348 - [c51]Miruna Oprescu, Vasilis Syrgkanis, Zhiwei Steven Wu:
Orthogonal Random Forest for Causal Inference. ICML 2019: 4932-4941 - [c50]Victor Chernozhukov, Mert Demirer, Greg Lewis, Vasilis Syrgkanis:
Semi-Parametric Efficient Policy Learning with Continuous Actions. NeurIPS 2019: 15039-15049 - [c49]Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, Greg Lewis:
Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. NeurIPS 2019: 15167-15176 - [c48]Jonas Mueller, Vasilis Syrgkanis, Matt Taddy:
Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing. NeurIPS 2019: 15442-15452 - [i55]Khashayar Khosravi, Greg Lewis, Vasilis Syrgkanis:
Non-Parametric Inference Adaptive to Intrinsic Dimension. CoRR abs/1901.03719 (2019) - [i54]Dylan J. Foster, Vasilis Syrgkanis:
Orthogonal Statistical Learning. CoRR abs/1901.09036 (2019) - [i53]Mert Demirer, Vasilis Syrgkanis, Greg Lewis, Victor Chernozhukov:
Semi-Parametric Efficient Policy Learning with Continuous Actions. CoRR abs/1905.10116 (2019) - [i52]Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, Greg Lewis:
Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. CoRR abs/1905.10176 (2019) - [i51]Annie Liang, Xiaosheng Mu, Vasilis Syrgkanis:
Dynamically Aggregating Diverse Information. CoRR abs/1910.07015 (2019) - 2018
- [c47]Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, Haoyang Zeng:
Training GANs with Optimism. ICLR (Poster) 2018 - [c46]Yash Deshpande, Lester W. Mackey, Vasilis Syrgkanis, Matt Taddy:
Accurate Inference for Adaptive Linear Models. ICML 2018: 1202-1211 - [c45]Akshay Krishnamurthy, Zhiwei Steven Wu, Vasilis Syrgkanis:
Semiparametric Contextual Bandits. ICML 2018: 2781-2790 - [c44]Ilias Zadik, Lester W. Mackey, Vasilis Syrgkanis:
Orthogonal Machine Learning: Power and Limitations. ICML 2018: 5723-5731 - [c43]Jimmy Wu, Diondra Peck, Scott Hsieh, Vandana Dialani, Constance D. Lehman, Bolei Zhou, Vasilis Syrgkanis, Lester W. Mackey, Genevieve Patterson:
Expert identification of visual primitives used by CNNs during mammogram classification. Computer-Aided Diagnosis 2018: 105752T - [c42]Amy Greenwald, Takehiro Oyakawa, Vasilis Syrgkanis:
On Revenue-Maximizing Mechanisms Assuming Convex Costs. SAGT 2018: 113-124 - [c41]Yiling Chen, Nicole Immorlica, Brendan Lucier, Vasilis Syrgkanis, Juba Ziani:
Optimal Data Acquisition for Statistical Estimation. EC 2018: 27-44 - [c40]Annie Liang, Xiaosheng Mu, Vasilis Syrgkanis:
Optimal and Myopic Information Acquisition. EC 2018: 45-46 - [c39]Zhe Feng, Chara Podimata, Vasilis Syrgkanis:
Learning to Bid Without Knowing your Value. EC 2018: 505-522 - [c38]Nikhil R. Devanur, Balasubramanian Sivan, Vasilis Syrgkanis:
Truthful Multi-Parameter Auctions with Online Supply: an Impossible Combination. SODA 2018: 753-769 - [c37]Nicole Immorlica, Brendan Lucier, Jieming Mao, Vasilis Syrgkanis, Christos Tzamos:
Combinatorial Assortment Optimization. WINE 2018: 218-231 - [c36]Amy Greenwald, Takehiro Oyakawa, Vasilis Syrgkanis:
Simple vs Optimal Contests with Convex Costs. WWW 2018: 1429-1438 - [i50]Jonas Mueller, Vasilis Syrgkanis, Matt Taddy:
Low-rank Bandit Methods for High-dimensional Dynamic Pricing. CoRR abs/1801.10242 (2018) - [i49]Akshay Krishnamurthy, Zhiwei Steven Wu, Vasilis Syrgkanis:
Semiparametric Contextual Bandits. CoRR abs/1803.04204 (2018) - [i48]Jimmy Wu, Diondra Peck, Scott Hsieh, Vandana Dialani, Constance D. Lehman, Bolei Zhou, Vasilis Syrgkanis, Lester W. Mackey, Genevieve Patterson:
Expert identification of visual primitives used by CNNs during mammogram classification. CoRR abs/1803.04858 (2018) - [i47]Greg Lewis, Vasilis Syrgkanis:
Adversarial Generalized Method of Moments. CoRR abs/1803.07164 (2018) - [i46]Miruna Oprescu, Vasilis Syrgkanis, Zhiwei Steven Wu:
Orthogonal Random Forest for Heterogeneous Treatment Effect Estimation. CoRR abs/1806.03467 (2018) - [i45]Victor Chernozhukov, Denis Nekipelov, Vira Semenova, Vasilis Syrgkanis:
Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. CoRR abs/1806.04823 (2018) - 2017
- [j3]Tim Roughgarden, Vasilis Syrgkanis, Éva Tardos:
The Price of Anarchy in Auctions. J. Artif. Intell. Res. 59: 59-101 (2017) - [c35]Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Oracle-Efficient Online Learning and Auction Design. FOCS 2017: 528-539 - [c34]Darrell Hoy, Denis Nekipelov, Vasilis Syrgkanis:
Welfare Guarantees from Data. NIPS 2017: 3768-3777 - [c33]Robert S. Chen, Brendan Lucier, Yaron Singer, Vasilis Syrgkanis:
Robust Optimization for Non-Convex Objectives. NIPS 2017: 4705-4714 - [c32]Vasilis Syrgkanis:
A Sample Complexity Measure with Applications to Learning Optimal Auctions. NIPS 2017: 5352-5359 - [c31]Vasilis Syrgkanis:
Fast convergence of learning in games (invited talk). STOC 2017: 5 - [i44]Amy Greenwald, Takehiro Oyakawa, Vasilis Syrgkanis:
Simple vs Optimal Mechanisms in Auctions with Convex Payments. CoRR abs/1702.06062 (2017) - [i43]Annie Liang, Xiaosheng Mu, Vasilis Syrgkanis:
Optimal Learning from Multiple Information Sources. CoRR abs/1703.06367 (2017) - [i42]Vasilis Syrgkanis:
A Sample Complexity Measure with Applications to Learning Optimal Auctions. CoRR abs/1704.02598 (2017) - [i41]Vasilis Syrgkanis:
A Proof of Orthogonal Double Machine Learning with Z-Estimators. CoRR abs/1704.03754 (2017) - [i40]Robert S. Chen, Brendan Lucier, Yaron Singer, Vasilis Syrgkanis:
Robust Optimization for Non-Convex Objectives. CoRR abs/1707.01047 (2017) - [i39]Vasilis Syrgkanis, Elie Tamer, Juba Ziani:
Inference on Auctions with Weak Assumptions on Information. CoRR abs/1710.03830 (2017) - [i38]Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, Haoyang Zeng:
Training GANs with Optimism. CoRR abs/1711.00141 (2017) - [i37]Lester W. Mackey, Vasilis Syrgkanis, Ilias Zadik:
Orthogonal Machine Learning: Power and Limitations. CoRR abs/1711.00342 (2017) - [i36]Yiling Chen, Nicole Immorlica, Brendan Lucier, Vasilis Syrgkanis, Juba Ziani:
Optimal Data Acquisition for Statistical Estimation. CoRR abs/1711.01295 (2017) - [i35]Zhe Feng, Chara Podimata, Vasilis Syrgkanis:
Learning to Bid Without Knowing your Value. CoRR abs/1711.01333 (2017) - [i34]Nicole Immorlica, Brendan Lucier, Jieming Mao, Vasilis Syrgkanis, Christos Tzamos:
Combinatorial Assortment Optimization. CoRR abs/1711.02601 (2017) - [i33]Yash Deshpande, Lester W. Mackey, Vasilis Syrgkanis, Matt Taddy:
Accurate Inference for Adaptive Linear Models. CoRR abs/1712.06695 (2017) - 2016
- [c30]Constantinos Daskalakis, Vasilis Syrgkanis:
Learning in Auctions: Regret is Hard, Envy is Easy. FOCS 2016: 219-228 - [c29]Vasilis Syrgkanis, Akshay Krishnamurthy, Robert E. Schapire:
Efficient Algorithms for Adversarial Contextual Learning. ICML 2016: 2159-2168 - [c28]Vasilis Syrgkanis, Haipeng Luo, Akshay Krishnamurthy, Robert E. Schapire:
Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits. NIPS 2016: 3135-3143 - [c27]Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis, Zhiwei Steven Wu:
Bayesian Exploration: Incentivizing Exploration in Bayesian Games. EC 2016: 661 - [c26]Thodoris Lykouris, Vasilis Syrgkanis, Éva Tardos:
Learning and Efficiency in Games with Dynamic Population. SODA 2016: 120-129 - [c25]Michal Feldman, Nicole Immorlica, Brendan Lucier, Tim Roughgarden, Vasilis Syrgkanis:
The price of anarchy in large games. STOC 2016: 963-976 - [c24]David M. Pennock, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Bounded Rationality in Wagering Mechanisms. UAI 2016 - [i32]Amy Greenwald, Takehiro Oyakawa, Vasilis Syrgkanis:
Optimal Auctions with Convex Perceived Payments. CoRR abs/1601.07163 (2016) - [i31]Vasilis Syrgkanis, Akshay Krishnamurthy, Robert E. Schapire:
Efficient Algorithms for Adversarial Contextual Learning. CoRR abs/1602.02454 (2016) - [i30]Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis, Zhiwei Steven Wu:
Bayesian Exploration: Incentivizing Exploration in Bayesian Games. CoRR abs/1602.07570 (2016) - [i29]Vasilis Syrgkanis, Haipeng Luo, Akshay Krishnamurthy, Robert E. Schapire:
Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits. CoRR abs/1606.00313 (2016) - [i28]Tim Roughgarden, Vasilis Syrgkanis, Éva Tardos:
The Price of Anarchy in Auctions. CoRR abs/1607.07684 (2016) - [i27]Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Oracle-Efficient Learning and Auction Design. CoRR abs/1611.01688 (2016) - 2015
- [j2]Vasilis Syrgkanis:
Algorithmic game theory and econometrics. SIGecom Exch. 14(1): 105-108 (2015) - [c23]Uriel Feige, Michal Feldman, Nicole Immorlica, Rani Izsak, Brendan Lucier, Vasilis Syrgkanis:
A Unifying Hierarchy of Valuations with Complements and Substitutes. AAAI 2015: 872-878 - [c22]Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, Robert E. Schapire:
Fast Convergence of Regularized Learning in Games. NIPS 2015: 2989-2997 - [c21]Jason D. Hartline, Vasilis Syrgkanis, Éva Tardos:
No-Regret Learning in Bayesian Games. NIPS 2015: 3061-3069 - [c20]Denis Nekipelov, Vasilis Syrgkanis, Éva Tardos:
Econometrics for Learning Agents. EC 2015: 1-18 - [c19]Brendan Lucier, Vasilis Syrgkanis:
Greedy Algorithms Make Efficient Mechanisms. EC 2015: 221-238 - [c18]Vasilis Syrgkanis, David Kempe, Éva Tardos:
Information Asymmetries in Common-Value Auctions with Discrete Signals. EC 2015: 303 - [c17]Nikhil R. Devanur, Jamie Morgenstern, Vasilis Syrgkanis, S. Matthew Weinberg:
Simple Auctions with Simple Strategies. EC 2015: 305-322 - [c16]Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis:
Bayesian Incentive-Compatible Bandit Exploration. EC 2015: 565-582 - [c15]Nicole Immorlica, Gregory Stoddard, Vasilis Syrgkanis:
Social Status and Badge Design. WWW 2015: 473-483 - [i26]Yishay Mansour, Aleksandrs Slivkins, Vasilis Syrgkanis:
Bayesian Incentive-Compatible Bandit Exploration. CoRR abs/1502.04147 (2015) - [i25]Vasilis Syrgkanis:
Price of Stability in Games of Incomplete Information. CoRR abs/1503.03739 (2015) - [i24]Michal Feldman, Nicole Immorlica, Brendan Lucier, Tim Roughgarden, Vasilis Syrgkanis:
The Price of Anarchy in Large Games. CoRR abs/1503.04755 (2015) - [i23]Brendan Lucier, Vasilis Syrgkanis:
Greedy Algorithms make Efficient Mechanisms. CoRR abs/1503.05608 (2015) - [i22]Thodoris Lykouris, Vasilis Syrgkanis, Éva Tardos:
Learning and Efficiency in Games with Dynamic Population. CoRR abs/1505.00391 (2015) - [i21]Darrell Hoy, Denis Nekipelov, Vasilis Syrgkanis:
Robust Data-Driven Efficiency Guarantees in Auctions. CoRR abs/1505.00437 (2015) - [i20]Denis Nekipelov, Vasilis Syrgkanis, Éva Tardos:
Econometrics for Learning Agents. CoRR abs/1505.00720 (2015) - [i19]Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, Robert E. Schapire:
Fast Convergence of Regularized Learning in Games. CoRR abs/1507.00407 (2015) - [i18]Jason D. Hartline, Vasilis Syrgkanis, Éva Tardos:
No-Regret Learning in Repeated Bayesian Games. CoRR abs/1507.00418 (2015) - [i17]Vasilis Syrgkanis, Johannes Gehrke:
Pricing Queries Approximately Optimally. CoRR abs/1508.05347 (2015) - [i16]Constantinos Daskalakis, Vasilis Syrgkanis:
Learning in Auctions: Regret is Hard, Envy is Easy. CoRR abs/1511.01411 (2015) - [i15]Nikhil R. Devanur, Balasubramanian Sivan, Vasilis Syrgkanis:
Multi-parameter Auctions with Online Supply. CoRR abs/1511.03699 (2015) - 2014
- [b1]Vasileios Syrgkanis:
Efficiency of Mechanisms in Complex Markets. Cornell University, USA, 2014 - [c14]Yoram Bachrach, Vasilis Syrgkanis, Éva Tardos, Milan Vojnovic:
Strong Price of Anarchy, Utility Games and Coalitional Dynamics. SAGT 2014: 218-230 - [i14]Uriel Feige, Michal Feldman, Nicole Immorlica, Rani Izsak, Brendan Lucier, Vasilis Syrgkanis:
A Unifying Hierarchy of Valuations with Complements and Substitutes. CoRR abs/1408.1211 (2014) - [i13]Uriel Feige, Michal Feldman, Nicole Immorlica, Rani Izsak, Brendan Lucier, Vasilis Syrgkanis:
A Unifying Hierarchy of Valuations with Complements and Substitutes. Electron. Colloquium Comput. Complex. TR14 (2014) - 2013
- [c13]Evangelos Bampas, Aris Pagourtzis, George Pierrakos, Vasilis Syrgkanis:
Selfish Resource Allocation in Optical Networks. CIAC 2013: 25-36 - [c12]Hu Fu, Brendan Lucier, Balasubramanian Sivan, Vasilis Syrgkanis:
Cost-recovering bayesian algorithmic mechanism design. EC 2013: 453-470 - [c11]Vasilis Syrgkanis, Éva Tardos:
Composable and efficient mechanisms. STOC 2013: 211-220 - [c10]Yoram Bachrach, Vasilis Syrgkanis, Milan Vojnovic:
Incentives and Efficiency in Uncertain Collaborative Environments. WINE 2013: 26-39 - [c9]Michal Feldman, Brendan Lucier, Vasilis Syrgkanis:
Limits of Efficiency in Sequential Auctions. WINE 2013: 160-173 - [c8]Brendan Lucier, Yaron Singer, Vasilis Syrgkanis, Éva Tardos:
Equilibrium in Combinatorial Public Projects. WINE 2013: 347-360 - [c7]Balasubramanian Sivan, Vasilis Syrgkanis:
Vickrey Auctions for Irregular Distributions. WINE 2013: 422-435 - [i12]Hu Fu, Brendan Lucier, Balasubramanian Sivan, Vasilis Syrgkanis:
Cost-Recovering Bayesian Algorithmic Mechanism Design. CoRR abs/1305.0598 (2013) - [i11]Balasubramanian Sivan, Vasilis Syrgkanis:
Auctions vs Negotiations in Irregular Markets. CoRR abs/1306.4022 (2013) - [i10]Yoram Bachrach, Vasilis Syrgkanis, Éva Tardos, Milan Vojnovic:
Strong Price of Anarchy and Coalitional Dynamics. CoRR abs/1307.2537 (2013) - [i9]Yoram Bachrach, Vasilis Syrgkanis, Milan Vojnovic:
Incentives and Efficiency in Uncertain Collaborative Environments. CoRR abs/1308.0990 (2013) - [i8]Michal Feldman, Brendan Lucier, Vasilis Syrgkanis:
Limits of Efficiency in Sequential Auctions. CoRR abs/1309.2529 (2013) - [i7]Nikhil R. Devanur, Jamie Morgenstern, Vasilis Syrgkanis:
Draft Auctions. CoRR abs/1311.2820 (2013) - [i6]Nicole Immorlica, Gregory Stoddard, Vasilis Syrgkanis:
Social Status and Badge Design. CoRR abs/1312.2299 (2013) - 2012
- [j1]Renato Paes Leme, Vasilis Syrgkanis, Éva Tardos:
The dining bidder problem: à la russe et à la française. SIGecom Exch. 11(2): 25-28 (2012) - [c6]Renato Paes Leme, Vasilis Syrgkanis, Éva Tardos:
The curse of simultaneity. ITCS 2012: 60-67 - [c5]Vasilis Syrgkanis, Éva Tardos:
Bayesian sequential auctions. EC 2012: 929-944 - [c4]Renato Paes Leme, Vasilis Syrgkanis, Éva Tardos:
Sequential auctions and externalities. SODA 2012: 869-886 - [c3]Balasubramanian Sivan, Vasilis Syrgkanis, Omer Tamuz:
Lower Bounds on Revenue of Approximately Optimal Auctions. WINE 2012: 526-531 - [i5]Vasilis Syrgkanis:
Bayesian Games and the Smoothness Framework. CoRR abs/1203.5155 (2012) - [i4]Vasilis Syrgkanis, Éva Tardos:
Bayesian Sequential Auctions. CoRR abs/1206.4771 (2012) - [i3]Balasubramanian Sivan, Vasilis Syrgkanis, Omer Tamuz:
Lower Bounds on Revenue of Approximately Optimal Auctions. CoRR abs/1210.0275 (2012) - [i2]Vasilis Syrgkanis, Éva Tardos:
Composable and Efficient Mechanisms. CoRR abs/1211.1325 (2012) - 2011
- [i1]Renato Paes Leme, Vasilis Syrgkanis, Éva Tardos:
Sequential Auctions and Externalities. CoRR abs/1108.2452 (2011) - 2010
- [c2]Vasilis Syrgkanis:
The Complexity of Equilibria in Cost Sharing Games. WINE 2010: 366-377
2000 – 2009
- 2009
- [c1]Evangelos Bampas, Aris Pagourtzis, George Pierrakos, Vasileios Syrgkanis:
Colored Resource Allocation Games. CTW 2009: 68-72
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint