default search action
Rafael Molina 0001
Person information
- affiliation: University of Granada, Department of Computer Science and Artificial Intelligence, Spain
Other persons with the same name
- Rafael Molina 0002 — Institute of Physical Chemistry Rocasolano, Deparment of Crystallography and Structural Biology, Madrid, Spain
- Rafael Molina 0003 — Illinois Institute of Technology, Chicago, IL, USA
- Rafael Molina 0004 — Castilla La Mancha University, Spain
- Rafael Molina 0005 (aka: Rafael Molina Sánchez) — Technical University of Madrid, Harbor Research Laboratory, Spain
- Rafael Molina 0006 — Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j97]Francisco M. Castro-Macías, Pablo Morales-Álvarez, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos:
Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection. Artif. Intell. 331: 104115 (2024) - [j96]Fernando Pérez-Bueno, Kjersti Engan, Rafael Molina:
Robust blind color deconvolution and blood detection on histological images using Bayesian K-SVD. Artif. Intell. Medicine 156: 102969 (2024) - [j95]Neel Kanwal, Miguel López-Pérez, Umay Kiraz, Tahlita C. M. Zuiverloon, Rafael Molina, Kjersti Engan:
Are you sure it's an artifact? Artifact detection and uncertainty quantification in histological images. Comput. Medical Imaging Graph. 112: 102321 (2024) - [j94]Miguel López-Pérez, Pablo Morales-Álvarez, Lee A. D. Cooper, Christopher Felicelli, Jeffery A. Goldstein, Brian Vadasz, Rafael Molina, Aggelos K. Katsaggelos:
Learning from crowds for automated histopathological image segmentation. Comput. Medical Imaging Graph. 112: 102327 (2024) - [j93]Miguel López-Pérez, Alba Morquecho, Arne Schmidt, Fernando Pérez-Bueno, Aurelio Martín-Castro, Javier Mateos, Rafael Molina:
The CrowdGleason dataset: Learning the Gleason grade from crowds and experts. Comput. Methods Programs Biomed. 257: 108472 (2024) - [j92]Shuowen Yang, Fernando Pérez-Bueno, Francisco M. Castro-Macías, Rafael Molina, Aggelos K. Katsaggelos:
BCD-net: Stain separation of histological images using deep variational Bayesian blind color deconvolution. Digit. Signal Process. 145: 104318 (2024) - [j91]Jose Pérez-Cano, Yunan Wu, Arne Schmidt, Miguel López-Pérez, Pablo Morales-Álvarez, Rafael Molina, Aggelos K. Katsaggelos:
An end-to-end approach to combine attention feature extraction and Gaussian Process models for deep multiple instance learning in CT hemorrhage detection. Expert Syst. Appl. 240: 122296 (2024) - [j90]Arne Schmidt, Pablo Morales-Álvarez, Lee A. D. Cooper, Lee A. Newberg, Andinet Enquobahrie, Rafael Molina, Aggelos K. Katsaggelos:
Focused active learning for histopathological image classification. Medical Image Anal. 95: 103162 (2024) - [j89]Pablo Morales-Álvarez, Arne Schmidt, José Miguel Hernández-Lobato, Rafael Molina:
Introducing instance label correlation in multiple instance learning. Application to cancer detection on histopathological images. Pattern Recognit. 146: 110057 (2024) - [j88]Xinyi Wu, Santiago López-Tapia, Xijun Wang, Rafael Molina, Aggelos K. Katsaggelos:
Real-Time Lightweight Video Super-Resolution With RRED-Based Perceptual Constraint. IEEE Trans. Circuits Syst. Video Technol. 34(10): 10310-10325 (2024) - [j87]Arne Schmidt, Pablo Morales-Álvarez, Rafael Molina:
Probabilistic Attention Based on Gaussian Processes for Deep Multiple Instance Learning. IEEE Trans. Neural Networks Learn. Syst. 35(8): 10909-10922 (2024) - [c133]Francisco M. Castro-Macías, Fernando Pérez-Bueno, Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Blind Color Deconvolution and Classification of Histological Images Using the Hyperbolic Secant Prior. ISBI 2024: 1-5 - [d2]Rocío del Amor, Jose Pérez-Cano, Miguel López-Pérez, Liria Terradez, José Aneiros-Fernández, Sandra Morales, Javier Mateos, Rafael Molina, Valery Naranjo:
CR-AI4SkIN dataset. Zenodo, 2024 - [i18]Xijun Wang, Santiago López-Tapia, Alice Lucas, Xinyi Wu, Rafael Molina, Aggelos K. Katsaggelos:
A General Method to Incorporate Spatial Information into Loss Functions for GAN-based Super-resolution Models. CoRR abs/2403.10589 (2024) - [i17]Francisco M. Castro-Macías, Pablo Morales-Álvarez, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos:
Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection. CoRR abs/2403.14829 (2024) - [i16]Arne Schmidt, Pablo Morales-Álvarez, Lee A. D. Cooper, Lee A. Newberg, Andinet Enquobahrie, Aggelos K. Katsaggelos, Rafael Molina:
Focused Active Learning for Histopathological Image Classification. CoRR abs/2404.04663 (2024) - [i15]Francisco M. Castro-Macías, Pablo Morales-Álvarez, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos:
Sm: enhanced localization in Multiple Instance Learning for medical imaging classification. CoRR abs/2410.03276 (2024) - 2023
- [j86]Miguel López-Pérez, Pablo Morales-Álvarez, Lee A. D. Cooper, Rafael Molina, Aggelos K. Katsaggelos:
Deep Gaussian Processes for Classification With Multiple Noisy Annotators. Application to Breast Cancer Tissue Classification. IEEE Access 11: 6922-6934 (2023) - [j85]Rocío del Amor, Jose Pérez-Cano, Miguel López-Pérez, Liria Terradez, José Aneiros-Fernández, Sandra Morales, Javier Mateos, Rafael Molina, Valery Naranjo:
Annotation protocol and crowdsourcing multiple instance learning classification of skin histological images: The CR-AI4SkIN dataset. Artif. Intell. Medicine 145: 102686 (2023) - [j84]Santiago López-Tapia, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Learning Moore-Penrose based residuals for robust non-blind image deconvolution. Digit. Signal Process. 142: 104193 (2023) - [j83]Pablo Ruiz, Pablo Morales-Álvarez, Scott Coughlin, Rafael Molina, Aggelos K. Katsaggelos:
Probabilistic fusion of crowds and experts for the search of gravitational waves. Knowl. Based Syst. 261: 110183 (2023) - [c132]Fernando Pérez-Bueno, Kjersti Engan, Rafael Molina:
A Robust BKSVD Method for Blind Color Deconvolution and Blood Detection on H &E Histological Images. AIME 2023: 207-217 - [c131]Miguel López-Pérez, Pablo Morales-Álvarez, Lee A. D. Cooper, Rafael Molina, Aggelos K. Katsaggelos:
Crowdsourcing Segmentation of Histopathological Images Using Annotations Provided by Medical Students. AIME 2023: 245-249 - [c130]Arne Schmidt, Pablo Morales-Álvarez, Rafael Molina:
Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation. ICCV 2023: 21040-21049 - [c129]Shuowen Yang, Fernando Pérez-Bueno, Francisco M. Castro-Macías, Rafael Molina, Aggelos K. Katsaggelos:
Deep Bayesian Blind Color Deconvolution of Histological Images. ICIP 2023: 710-714 - [c128]Santiago López-Tapia, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Deep Robust Image Restoration Using the Moore-Penrose Blur Inverse. ICIP 2023: 775-779 - [c127]Yunan Wu, Francisco M. Castro-Macías, Pablo Morales-Álvarez, Rafael Molina, Aggelos K. Katsaggelos:
Smooth Attention for Deep Multiple Instance Learning: Application to CT Intracranial Hemorrhage Detection. MICCAI (5) 2023: 327-337 - [d1]Fernando Pérez-Bueno, Rafael Molina Soriano:
Practicas Jupyter para Extracción de Carácteristicas en Imágenes (Master DATCOM 21/22). Zenodo, 2023 - [i14]Fernando Pérez-Bueno, Luz García, Gabriel Maciá-Fernández, Rafael Molina:
Leveraging a Probabilistic PCA Model to Understand the Multivariate Statistical Network Monitoring Framework for Network Security Anomaly Detection. CoRR abs/2302.01759 (2023) - [i13]Arne Schmidt, Pablo Morales-Álvarez, Rafael Molina:
Probabilistic Attention based on Gaussian Processes for Deep Multiple Instance Learning. CoRR abs/2302.04061 (2023) - [i12]Yunan Wu, Francisco M. Castro-Macías, Pablo Morales-Álvarez, Rafael Molina, Aggelos K. Katsaggelos:
Smooth Attention for Deep Multiple Instance Learning: Application to CT Intracranial Hemorrhage Detection. CoRR abs/2307.09457 (2023) - [i11]Arne Schmidt, Pablo Morales-Álvarez, Rafael Molina:
Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation. CoRR abs/2307.11397 (2023) - [i10]Pablo Morales-Álvarez, Arne Schmidt, José Miguel Hernández-Lobato, Rafael Molina:
Introducing instance label correlation in multiple instance learning. Application to cancer detection on histopathological images. CoRR abs/2310.19359 (2023) - 2022
- [j82]Arne Schmidt, Julio Silva-Rodríguez, Rafael Molina, Valery Naranjo:
Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning. IEEE Access 10: 9763-9773 (2022) - [j81]Neel Kanwal, Fernando Pérez-Bueno, Arne Schmidt, Kjersti Engan, Rafael Molina:
The Devil is in the Details: Whole Slide Image Acquisition and Processing for Artifacts Detection, Color Variation, and Data Augmentation: A Review. IEEE Access 10: 58821-58844 (2022) - [j80]Julio Silva-Rodríguez, Arne Schmidt, María Á. Sales, Rafael Molina, Valery Naranjo:
Proportion constrained weakly supervised histopathology image classification. Comput. Biol. Medicine 147: 105714 (2022) - [j79]Fernando Pérez-Bueno, Juan G. Serra, Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian K-SVD for H and E blind color deconvolution. Applications to stain normalization, data augmentation and cancer classification. Comput. Medical Imaging Graph. 97: 102048 (2022) - [j78]Miguel López-Pérez, Arne Schmidt, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos:
Deep Gaussian processes for multiple instance learning: Application to CT intracranial hemorrhage detection. Comput. Methods Programs Biomed. 219: 106783 (2022) - [j77]Pablo Morales-Álvarez, Pablo Ruiz, Scott Coughlin, Rafael Molina, Aggelos K. Katsaggelos:
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO. IEEE Trans. Pattern Anal. Mach. Intell. 44(3): 1534-1551 (2022) - [j76]Fernando Pérez-Bueno, Luz García, Gabriel Maciá-Fernández, Rafael Molina:
Leveraging a Probabilistic PCA Model to Understand the Multivariate Statistical Network Monitoring Framework for Network Security Anomaly Detection. IEEE/ACM Trans. Netw. 30(3): 1217-1229 (2022) - 2021
- [j75]Fernando Pérez-Bueno, Miguel Vega, María Á. Sales, José Aneiros-Fernández, Valery Naranjo, Rafael Molina, Aggelos K. Katsaggelos:
Blind color deconvolution, normalization, and classification of histological images using general super Gaussian priors and Bayesian inference. Comput. Methods Programs Biomed. 211: 106453 (2021) - [j74]Santiago López-Tapia, Rafael Molina, Aggelos K. Katsaggelos:
Deep learning approaches to inverse problems in imaging: Past, present and future. Digit. Signal Process. 119: 103285 (2021) - [j73]Miguel López-Pérez, Luz García, M. Carmen Benítez, Rafael Molina:
A Contribution to Deep Learning Approaches for Automatic Classification of Volcano-Seismic Events: Deep Gaussian Processes. IEEE Trans. Geosci. Remote. Sens. 59(5): 3875-3890 (2021) - [c126]Pablo Morales-Alvarez, Daniel Hernández-Lobato, Rafael Molina, José Miguel Hernández-Lobato:
Activation-level uncertainty in deep neural networks. ICLR 2021 - [c125]Yunan Wu, Arne Schmidt, Enrique Hernández-Sánchez, Rafael Molina, Aggelos K. Katsaggelos:
Combining Attention-Based Multiple Instance Learning and Gaussian Processes for CT Hemorrhage Detection. MICCAI (2) 2021: 582-591 - [i9]Daniel Heestermans Svendsen, Pablo Morales-Alvarez, Ana Belen Ruescas, Rafael Molina, Gustau Camps-Valls:
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model Inversion. CoRR abs/2104.10638 (2021) - [i8]Julio Silva-Rodríguez, Adrián Colomer, María Á. Sales, Rafael Molina, Valery Naranjo:
Going Deeper through the Gleason Scoring Scale: An Automatic end-to-end System for Histology Prostate Grading and Cribriform Pattern Detection. CoRR abs/2105.10490 (2021) - 2020
- [j72]Julio Silva-Rodríguez, Adrián Colomer, María Á. Sales, Rafael Molina, Valery Naranjo:
Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection. Comput. Methods Programs Biomed. 195: 105637 (2020) - [j71]Fernando Pérez-Bueno, Miguel López-Pérez, Miguel Vega, Javier Mateos, Valery Naranjo, Rafael Molina, Aggelos K. Katsaggelos:
A TV-based image processing framework for blind color deconvolution and classification of histological images. Digit. Signal Process. 101: 102727 (2020) - [j70]Santiago López-Tapia, Alice Lucas, Rafael Molina, Aggelos K. Katsaggelos:
A single video super-resolution GAN for multiple downsampling operators based on pseudo-inverse image formation models. Digit. Signal Process. 104: 102801 (2020) - [j69]Fernando Pérez-Bueno, Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian Pansharpening with Super-Gaussian Sparse Image Priors. Sensors 20(18): 5308 (2020) - [j68]Natalia Hidalgo-Gavira, Javier Mateos, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian Blind Color Deconvolution of Histopathological Images. IEEE Trans. Image Process. 29: 2026-2036 (2020) - [j67]Xu Zhou, Rafael Molina, Yi Ma, Tianfu Wang, Dong Ni:
Parameter-Free Gaussian PSF Model for Extended Depth of Field in Brightfield Microscopy. IEEE Trans. Image Process. 29: 3227-3238 (2020) - [c124]Santiago López-Tapia, Alice Lucas, Rafael Molina, Aggelos K. Katsaggelos:
Gated Recurrent Networks for Video Super Resolution. EUSIPCO 2020: 700-704 - [c123]Fernando Pérez-Bueno, Miguel Vega, Valery Naranjo, Rafael Molina, Aggelos K. Katsaggelos:
Fully Automatic Blind Color Deconvolution of Histological Images Using Super Gaussians. EUSIPCO 2020: 1254-1258 - [c122]Fernando Pérez-Bueno, Miguel Vega, Valery Naranjo, Rafael Molina, Aggelos K. Katsaggelos:
Super Gaussian Priors for Blind Color Deconvolution of Histological Images. ICIP 2020: 3010-3014 - [i7]Daniel Heestermans Svendsen, Pablo Morales-Álvarez, Rafael Molina, Gustau Camps-Valls:
Deep Gaussian Processes for geophysical parameter retrieval. CoRR abs/2012.12099 (2020)
2010 – 2019
- 2019
- [j66]Ángel E. Esteban, Miguel López-Pérez, Adrián Colomer, María Á. Sales, Rafael Molina, Valery Naranjo:
A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes. Comput. Methods Programs Biomed. 178: 303-317 (2019) - [j65]Juan G. Serra, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Variational EM method for blur estimation using the spike-and-slab image prior. Digit. Signal Process. 88: 116-129 (2019) - [j64]Pablo Morales-Alvarez, Pablo Ruiz, Raúl Santos-Rodríguez, Rafael Molina, Aggelos K. Katsaggelos:
Scalable and efficient learning from crowds with Gaussian processes. Inf. Fusion 52: 110-127 (2019) - [j63]Pablo Ruiz, Pablo Morales-Alvarez, Rafael Molina, Aggelos K. Katsaggelos:
Learning from crowds with variational Gaussian processes. Pattern Recognit. 88: 298-311 (2019) - [j62]Santiago López-Tapia, Rafael Molina, Nicolás Pérez de la Blanca:
Deep CNNs for Object Detection Using Passive Millimeter Sensors. IEEE Trans. Circuits Syst. Video Technol. 29(9): 2580-2589 (2019) - [j61]Alice Lucas, Santiago Lopez Tapia, Rafael Molina, Aggelos K. Katsaggelos:
Generative Adversarial Networks and Perceptual Losses for Video Super-Resolution. IEEE Trans. Image Process. 28(7): 3312-3327 (2019) - [c121]Santiago Lopez Tapia, Alice Lucas, Rafael Molina, Aggelos K. Katsaggelos:
Multiple-Degradation Video Super-Resolution with Direct Inversion of the Low-Resolution Formation Model. EUSIPCO 2019: 1-5 - [c120]Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayes Color Deconvolution with a Total Variation Prior. EUSIPCO 2019: 1-5 - [c119]Xijun Wang, Alice Lucas, Santiago Lopez Tapia, Xinyi Wu, Rafael Molina, Aggelos K. Katsaggelos:
A Composite Discriminator for Generative Adversarial Network based Video Super-Resolution. EUSIPCO 2019: 1-5 - [c118]Xinyi Wu, Alice Lucas, Santiago López-Tapia, Xijun Wang, Yul Hee Kim, Rafael Molina, Aggelos K. Katsaggelos:
Semantic Prior Based Generative Adversarial Network for Video Super-Resolution. EUSIPCO 2019: 1-5 - [c117]Xijun Wang, Alice Lucas, Santiago Lopez Tapia, Xinyi Wu, Rafael Molina, Aggelos K. Katsaggelos:
Spatially Adaptive Losses for Video Super-resolution with GANs. ICASSP 2019: 1697-1701 - [c116]Santiago López-Tapia, Alice Lucas, Rafael Molina, Aggelos K. Katsaggelos:
Gan-Based Video Super-Resolution With Direct Regularized Inversion of the Low-Resolution Formation Model. ICIP 2019: 2886-2890 - [c115]Alice Lucas, Santiago López-Tapia, Rafael Molina, Aggelos K. Katsaggelos:
Efficient Fine-Tuning of Neural Networks for Artifact Removal in Deep Learning for Inverse Imaging Problems. ICIP 2019: 3591-3595 - [c114]Miguel López-Pérez, Adrián Colomer, María Á. Sales, Rafael Molina, Valery Naranjo:
Classifying Prostate Histological Images Using Deep Gaussian Processes on a New Optical Density Granulometry-Based Descriptor. IDEAL (1) 2019: 39-46 - [i6]Santiago López-Tapia, Alice Lucas, Rafael Molina, Aggelos K. Katsaggelos:
A Single Video Super-Resolution GAN for Multiple Downsampling Operators based on Pseudo-Inverse Image Formation Models. CoRR abs/1907.01399 (2019) - [i5]Pablo Morales-Alvarez, Pablo Ruiz, Scott Coughlin, Rafael Molina, Aggelos K. Katsaggelos:
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO. CoRR abs/1911.01915 (2019) - [i4]Alice Lucas, Santiago Lopez Tapia, Rafael Molina, Aggelos K. Katsaggelos:
Self-Supervised Fine-tuning for Image Enhancement of Super-Resolution Deep Neural Networks. CoRR abs/1912.12879 (2019) - 2018
- [j60]Salvador Villena, Miguel Vega, Javier Mateos, Duska Rosenberg, Fionn Murtagh, Rafael Molina, Aggelos K. Katsaggelos:
Image super-resolution for outdoor digital forensics. Usability and legal aspects. Comput. Ind. 98: 34-47 (2018) - [j59]Santiago Lopez Tapia, Rafael Molina, Nicolas Pérez de la Blanca:
Using machine learning to detect and localize concealed objects in passive millimeter-wave images. Eng. Appl. Artif. Intell. 67: 81-90 (2018) - [j58]Neda Rohani, Pablo Ruiz, Rafael Molina, Aggelos K. Katsaggelos:
Variational Gaussian process for multisensor classification problems. Pattern Recognit. Lett. 116: 80-87 (2018) - [j57]Alice Lucas, Michael Iliadis, Rafael Molina, Aggelos K. Katsaggelos:
Using Deep Neural Networks for Inverse Problems in Imaging: Beyond Analytical Methods. IEEE Signal Process. Mag. 35(1): 20-36 (2018) - [j56]Pablo Morales-Alvarez, Adrian Perez-Suay, Rafael Molina, Gustau Camps-Valls:
Remote Sensing Image Classification With Large-Scale Gaussian Processes. IEEE Trans. Geosci. Remote. Sens. 56(2): 1103-1114 (2018) - [c113]Adrián Colomer, Pablo Ruiz, Valery Naranjo, Rafael Molina, Aggelos K. Katsaggelos:
Hard Exudate Detection Using Local Texture Analysis and Gaussian Processes. ICIAR 2018: 639-649 - [c112]Alice Lucas, Aggelos K. Katsaggelos, Santiago Lopez Tapia, Rafael Molina:
Generative Adversarial Networks and Perceptual Losses for Video Super-Resolution. ICIP 2018: 51-55 - [c111]Natalia Hidalgo-Gavira, Javier Mateos, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Blind Color Deconvolution of Histopathological Images Using a Variational Bayesian Approach. ICIP 2018: 983-987 - [c110]Daniel Heestermans Svendsen, Pablo Morales-Alvarez, Rafael Molina, Gustau Camps-Valls:
Deep Gaussian Processes for Geophysical Parameter Retrieval. IGARSS 2018: 6175-6178 - [c109]Natalia Hidalgo-Gavira, Javier Mateos, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Fully Automated Blind Color Deconvolution of Histopathological Images. MICCAI (2) 2018: 183-191 - [i3]Alice Lucas, Santiago Lopez Tapia, Rafael Molina, Aggelos K. Katsaggelos:
Generative Adversarial Networks and Perceptual Losses for Video Super-Resolution. CoRR abs/1806.05764 (2018) - 2017
- [j55]Xu Zhou, Miguel Vega, Fugen Zhou, Rafael Molina, Aggelos K. Katsaggelos:
Fast Bayesian blind deconvolution with Huber Super Gaussian priors. Digit. Signal Process. 60: 122-133 (2017) - [j54]Michael Iliadis, Haohong Wang, Rafael Molina, Aggelos K. Katsaggelos:
Robust and Low-Rank Representation for Fast Face Identification With Occlusions. IEEE Trans. Image Process. 26(5): 2203-2218 (2017) - [j53]Juan G. Serra, Matteo Testa, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian K-SVD Using Fast Variational Inference. IEEE Trans. Image Process. 26(7): 3344-3359 (2017) - [c108]Juan G. Serra, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Parameter estimation in spike and slab variational inference for blind image deconvolution. EUSIPCO 2017: 1495-1499 - [c107]Pablo Morales-Alvarez, Adrian Perez-Suay, Rafael Molina, Gustau Camps-Valls, Aggelos K. Katsaggelos:
Passive millimeter wave image classification with large scale Gaussian processes. ICIP 2017: 370-374 - [c106]Juan G. Serra, Salvador Villena, Rafael Molina, Aggelos K. Katsaggelos:
Greedy Bayesian double sparsity dictionary learning. ICIP 2017: 1935-1939 - [c105]Juan G. Serra, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Spike and slab variational inference for blind image deconvolution. ICIP 2017: 3765-3769 - [c104]Pablo Morales-Alvarez, Adrian Perez-Suay, Rafael Molina, Gustau Camps-Valls:
Efficient remote sensing image classification with Gaussian processes and Fourier features. IGARSS 2017: 2227-2230 - [i2]Pablo Morales-Alvarez, Adrian Perez-Suay, Rafael Molina, Gustau Camps-Valls:
Remote Sensing Image Classification with Large Scale Gaussian Processes. CoRR abs/1710.00575 (2017) - 2016
- [j52]Wael AlSaafin, Salvador Villena, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Compressive sensing super resolution from multiple observations with application to passive millimeter wave images. Digit. Signal Process. 50: 180-190 (2016) - [j51]Pablo Ruiz Matarán, Rafael Molina, Aggelos K. Katsaggelos:
Joint Data Filtering and Labeling Using Gaussian Processes and Alternating Direction Method of Multipliers. IEEE Trans. Image Process. 25(7): 3059-3072 (2016) - [c103]Wael Saafin, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Compressed sensing super resolution of color images. EUSIPCO 2016: 1563-1567 - [c102]Emre Besler, Pablo Ruiz, Rafael Molina, Aggelos K. Katsaggelos:
Classification of multiple annotator data using variational Gaussian process inference. EUSIPCO 2016: 2025-2029 - [c101]Santiago Lopez Tapia, Rafael Molina, Nicolas Pérez de la Blanca:
Detection and localization of objects in Passive Millimeter Wave Images. EUSIPCO 2016: 2101-2105 - [c100]Juan G. Serra, Pablo Ruiz, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian logistic regression with sparse general representation prior for multispectral image classification. ICIP 2016: 1893-1897 - [c99]Javier Mateos, Antonio López, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Multiframe blind deconvolution of passive millimeter wave images using variational dirichlet blur kernel estimation. ICIP 2016: 2678-2682 - [c98]Pablo Ruiz, Emre Besler, Rafael Molina, Aggelos K. Katsaggelos:
Variational Gaussian process for missing label crowdsourcing classification problems. MLSP 2016: 1-6 - [i1]Michael Iliadis, Haohong Wang, Rafael Molina, Aggelos K. Katsaggelos:
Robust and Low-Rank Representation for Fast Face Identification with Occlusions. CoRR abs/1605.02266 (2016) - 2015
- [j50]Pablo Ruiz, Xu Zhou, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian Blind Image Deconvolution: A review. Digit. Signal Process. 47: 116-127 (2015) - [j49]Aggelos K. Katsaggelos, Sara Bahaadini, Rafael Molina:
Audiovisual Fusion: Challenges and New Approaches. Proc. IEEE 103(9): 1635-1653 (2015) - [j48]Xu Zhou, Javier Mateos, Fugen Zhou, Rafael Molina, Aggelos K. Katsaggelos:
Variational Dirichlet Blur Kernel Estimation. IEEE Trans. Image Process. 24(12): 5127-5139 (2015) - [j47]Zhaofu Chen, Rafael Molina, Aggelos K. Katsaggelos:
Robust Recovery of Temporally Smooth Signals From Under-Determined Multiple Measurements. IEEE Trans. Signal Process. 63(7): 1779-1791 (2015) - [c97]Neda Rohani, Pablo Ruiz, Emre Besler, Rafael Molina, Aggelos K. Katsaggelos:
Variational Gaussian process for sensor fusion. EUSIPCO 2015: 170-174 - [c96]I. Gomez Maqueda, Nicolas Pérez de la Blanca, Rafael Molina, Aggelos K. Katsaggelos:
Fast millimeter wave threat detection algorithm. EUSIPCO 2015: 599-603 - [c95]Wael Saafin, Salvador Villena, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
PMMW image super resolution from compressed sensing observations. EUSIPCO 2015: 1815-1819 - [c94]Wael Saafin, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Image super-resolution from compressed sensing observations. ICIP 2015: 4268-4272 - 2014
- [j46]Salvador Villena, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
A non-stationary image prior combination in super-resolution. Digit. Signal Process. 32: 1-10 (2014) - [j45]Martin Luessi, S. Derin Babacan, Rafael Molina, James R. Booth, Aggelos K. Katsaggelos:
Variational Bayesian causal connectivity analysis for fMRI. Frontiers Neuroinformatics 8: 45 (2014) - [j44]Pablo Ruiz, Hiram Madero Orozco, Javier Mateos, Osslan Osiris Vergara-Villegas, Rafael Molina, Aggelos K. Katsaggelos:
Combining Poisson singular integral and total variation prior models in image restoration. Signal Process. 103: 296-308 (2014) - [j43]Zhaofu Chen, Rafael Molina, Aggelos K. Katsaggelos:
Automated Recovery of Compressedly Observed Sparse Signals From Smooth Background. IEEE Signal Process. Lett. 21(8): 1012-1016 (2014) - [j42]Pablo Ruiz, Javier Mateos, Gustavo Camps-Valls, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian Active Remote Sensing Image Classification. IEEE Trans. Geosci. Remote. Sens. 52(4): 2186-2196 (2014) - [j41]Lei Song, Fan Jiang, Zhongke Shi, Rafael Molina, Aggelos K. Katsaggelos:
Toward Dynamic Scene Understanding by Hierarchical Motion Pattern Mining. IEEE Trans. Intell. Transp. Syst. 15(3): 1273-1285 (2014) - [j40]Zhaofu Chen, S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian Methods For Multimedia Problems. IEEE Trans. Multim. 16(4): 1000-1017 (2014) - [c93]Ana Illanas, Faraón Llorens, Rafael Molina, Francisco Gallego, Patricia Compañ, Rosana Satorre, Carlos Villagrá:
¿Puede un videojuego ayudarnos a predecir los resultados de aprendizaje? CoSECivi 2014: 11-22 - [c92]Zhaofu Chen, Rafael Molina, Aggelos K. Katsaggelos:
Recovery of correlated sparse signals from under-sampled measurements. EUSIPCO 2014: 451-455 - [c91]Pablo Ruiz, Nicolas Pérez de la Blanca, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian classification and active learning using lp-priors. Application to image segmentation. EUSIPCO 2014: 1183-1187 - [c90]Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Parameter estimation in Bayesian Blind Deconvolution with super Gaussian image priors. EUSIPCO 2014: 1632-1636 - [c89]Xu Zhou, Rafael Molina, Fugen Zhou, Aggelos K. Katsaggelos:
Fast iteratively reweighted least squares for lp regularized image deconvolution and reconstruction. ICIP 2014: 1783-1787 - [c88]Pablo Ruiz, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Learning filters in Gaussian process classification problems. ICIP 2014: 2913-2917 - [c87]Faraón Llorens, Rafael Molina, Patricia Compañ, Rosana Satorre:
Technological Ecosystem for Open Education. IDT/IIMSS/STET 2014: 706-715 - 2013
- [j39]Salvador Villena, Miguel Vega, S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian combination of sparse and non-sparse priors in image super resolution. Digit. Signal Process. 23(2): 530-541 (2013) - [j38]Miguel Tallon, Javier Mateos, S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Space-variant blur deconvolution and denoising in the dual exposure problem. Inf. Fusion 14(4): 396-409 (2013) - [j37]Zhaofu Chen, Rafael Molina, Aggelos K. Katsaggelos:
A Variational Approach for Sparse Component Estimation and Low-Rank Matrix Recovery. J. Commun. 8(9): 600-611 (2013) - [j36]Bruno Amizic, Leonidas Spinoulas, Rafael Molina, Aggelos K. Katsaggelos:
Compressive Blind Image Deconvolution. IEEE Trans. Image Process. 22(10): 3994-4006 (2013) - [j35]Martin Luessi, S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian Simultaneous Sparse Approximation With Smooth Signals. IEEE Trans. Signal Process. 61(22): 5716-5729 (2013) - [c86]Bruno Amizic, Leonidas Spinoulas, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian compressive blind image deconvolution. EUSIPCO 2013: 1-5 - [c85]Hiram Madero Orozco, Pablo Ruiz, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Image deblurring combining poisson singular integral and total variation prior models. EUSIPCO 2013: 1-5 - [c84]Jorge Rubio, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
A general sparse image prior combination in Compressed Sensing. EUSIPCO 2013: 1-5 - [c83]Pablo Ruiz, Javier Mateos, María C. Cárdenas, Shinichi Nakajima, Rafael Molina, Aggelos K. Katsaggelos:
Light field acquisition from blurred observations using a programmable coded aperture camera. EUSIPCO 2013: 1-5 - [c82]Salvador Villena, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
A general sparse image prior combination in super-resolution. DSP 2013: 1-6 - [p1]Pablo Ruiz, Javier Mateos, Gustavo Camps-Valls, Rafael Molina, Aggelos K. Katsaggelos:
Interactive Pansharpening and Active Classification in Remote Sensing. Multimodal Interaction in Image and Video Applications 2013: 67-81 - 2012
- [j34]Bruno Amizic, Rafael Molina, Aggelos K. Katsaggelos:
Sparse Bayesian blind image deconvolution with parameter estimation. EURASIP J. Image Video Process. 2012: 20 (2012) - [j33]S. Derin Babacan, Reto Ansorge, Martin Luessi, Pablo Ruiz Matarán, Rafael Molina, Aggelos K. Katsaggelos:
Compressive Light Field Sensing. IEEE Trans. Image Process. 21(12): 4746-4757 (2012) - [j32]S. Derin Babacan, Martin Luessi, Rafael Molina, Aggelos K. Katsaggelos:
Sparse Bayesian Methods for Low-Rank Matrix Estimation. IEEE Trans. Signal Process. 60(8): 3964-3977 (2012) - [c81]S. Derin Babacan, Rafael Molina, Minh N. Do, Aggelos K. Katsaggelos:
Bayesian Blind Deconvolution with General Sparse Image Priors. ECCV (6) 2012: 341-355 - [c80]Miguel Tallon, S. Derin Babacan, Javier Mateos, Minh N. Do, Rafael Molina, Aggelos K. Katsaggelos:
Upsampling and denoising of depth maps via joint-segmentation. EUSIPCO 2012: 245-249 - [c79]Antonio López, Jesús M. Cortés, Domingo López-Oller, Rafael Molina, Aggelos K. Katsaggelos:
Hyperparameters estimation for the Bayesian localization of the EEG sources with TV priors. EUSIPCO 2012: 489-493 - [c78]Leonidas Spinoulas, Bruno Amizic, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Simultaneous Bayesian compressive sensing and blind deconvolution. EUSIPCO 2012: 1414-1418 - [c77]Bruno Amizic, Leonidas Spinoulas, Rafael Molina, Aggelos K. Katsaggelos:
Compressive sampling with unknown blurring function: Application to passive millimeter-wave imaging. ICIP 2012: 925-928 - 2011
- [j31]Israa Amro, Javier Mateos, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011: 79 (2011) - [j30]Martin Luessi, S. Derin Babacan, Rafael Molina, James R. Booth, Aggelos K. Katsaggelos:
Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors. NeuroImage 55(1): 113-132 (2011) - [j29]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian Super Resolution. IEEE Trans. Image Process. 20(4): 984-999 (2011) - [j28]Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Super Resolution of Multispectral Images using ℓ1 Image Models and Interband Correlations. J. Signal Process. Syst. 65(3): 509-523 (2011) - [c76]Bruno Amizic, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian partial out-of-focus blur removal with parameter estimation. EUSIPCO 2011: 1673-1677 - [c75]Miguel Tallon, Javier Mateos, S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Space-variant kernel deconvolution for dual exposure problem. EUSIPCO 2011: 1678-1682 - [c74]S. Derin Babacan, Martin Luessi, Rafael Molina, Aggelos K. Katsaggelos:
Low-rank matrix completion by variational sparse Bayesian learning. ICASSP 2011: 2188-2191 - [c73]Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian TV denoising of SAR images. ICIP 2011: 165-168 - [c72]Esteban Vera, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
A novel iterative image restoration algorithm using nonstationary image priors. ICIP 2011: 3457-3460 - [c71]Pablo Ruiz, S. Derin Babacan, Li Gao, Zhu Li, Rafael Molina, Aggelos K. Katsaggelos:
Video retrieval using sparse Bayesian reconstruction. ICME 2011: 1-6 - [c70]Miguel Tallon, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Image prior combination in space-variant blur deconvolution for the dual exposure problem. ISPA 2011: 408-413 - [c69]Pablo Ruiz, S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Retrieval of video clips with missing frames using sparse Bayesian reconstruction. ISPA 2011: 443-448 - [c68]Pablo Ruiz, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
A Bayesian Active Learning Framework for a Two-Class Classification Problem. MUSCLE 2011: 42-53 - 2010
- [j27]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian Compressive Sensing Using Laplace Priors. IEEE Trans. Image Process. 19(1): 53-63 (2010) - [j26]Giannis K. Chantas, Nikolas P. Galatsanos, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian Image Restoration With a Product of Spatially Weighted Total Variation Image Priors. IEEE Trans. Image Process. 19(2): 351-362 (2010) - [j25]S. Derin Babacan, Jingnan Wang, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian Blind Deconvolution From Differently Exposed Image Pairs. IEEE Trans. Image Process. 19(11): 2874-2888 (2010) - [c67]Giannis K. Chantas, Nikolaos Galatsanos, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian inference image restoration using a product of total variation-like image priors. CIP 2010: 227-231 - [c66]Miguel Tallon, Javier Mateos, S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Combining observation models in dual exposure problems using the Kullback-Leibler divergence. EUSIPCO 2010: 323-327 - [c65]Salvador Villena, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Image prior combination in super-resolution image reconstruction. EUSIPCO 2010: 616-620 - [c64]Bruno Amizic, S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Sparse Bayesian blind image deconvolution with parameter estimation. EUSIPCO 2010: 626-630 - [c63]Martin Luessi, S. Derin Babacan, Rafael Molina, James R. Booth, Aggelos K. Katsaggelos:
Symmetrical EEG/FMRI fusion with spatially adaptive priors using variational distribution approximation. ICASSP 2010: 638-641 - [c62]Bruno Amizic, S. Derin Babacan, Michael K. Ng, Rafael Molina, Aggelos K. Katsaggelos:
Fast total variation image restoration with parameter estimation using bayesian inference. ICASSP 2010: 770-773 - [c61]Salvador Villena, Miguel Vega, S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Using the Kullback-Leibler divergence to combine image priors in Super-Resolution image reconstruction. ICIP 2010: 893-896 - [c60]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Sparse Bayesian image restoration. ICIP 2010: 3577-3580
2000 – 2009
- 2009
- [j24]Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Super-Resolution of Multispectral Images. Comput. J. 52(1): 153-167 (2009) - [j23]Aggelos K. Katsaggelos, Rafael Molina:
Guest Editorial. Comput. J. 52(4): 395-396 (2009) - [j22]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Variational Bayesian Blind Deconvolution Using a Total Variation Prior. IEEE Trans. Image Process. 18(1): 12-26 (2009) - [c59]Salvador Villena, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Parameter Estimation in Bayesian Super-Resolution Image Reconstruction from Low Resolution Rotated and Translated Images. ACIVS 2009: 188-199 - [c58]S. Derin Babacan, Luis Mancera, Rafael Molina, Aggelos K. Katsaggelos:
Non-convex priors in Bayesian compressed sensing. EUSIPCO 2009: 110-114 - [c57]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Fast bayesian compressive sensing using Laplace priors. ICASSP 2009: 2873-2876 - [c56]Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
L1 prior majorization in Bayesian image restoration. DPS 2009: 1-6 - [c55]Javier Mateos, Tom E. Bishop, Rafael Molina, Aggelos K. Katsaggelos:
Local Bayesian image restoration using variational methods and Gamma-Normal distributions. ICIP 2009: 129-132 - [c54]S. Derin Babacan, Jingnan Wang, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian blind deconvolution from differently exposed image pairs. ICIP 2009: 133-136 - [c53]S. Derin Babacan, Reto Ansorge, Martin Luessi, Rafael Molina, Aggelos K. Katsaggelos:
Compressive sensing of light fields. ICIP 2009: 2337-2340 - [c52]Luis Mancera, S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Image restoration by mixture modelling of an overcomplete linear representation. ICIP 2009: 3949-3952 - 2008
- [j21]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation. IEEE Trans. Image Process. 17(3): 326-339 (2008) - [c51]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Parameter estimation in total variation blind deconvolution. EUSIPCO 2008: 1-5 - [c50]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Generalized Gaussian Markov random field image restoration using variational distribution approximation. ICASSP 2008: 1265-1268 - [c49]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Total variation super resolution using a variational approach. ICIP 2008: 641-644 - [c48]Tom E. Bishop, Rafael Molina, James R. Hopgood:
Blind restoration of blurred photographs via AR modelling and MCMC. ICIP 2008: 669-672 - [c47]Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Super Resolution of Multispectral Images Using TV Image Models. KES (3) 2008: 408-415 - [c46]Bruno Amizic, Aggelos K. Katsaggelos, Rafael Molina:
Using Logarithmic Opinion Pooling Techniques in Bayesian Blind Multi-Channel Restoration. VISAPP (1) 2008: 565-570 - 2007
- [b1]Aggelos K. Katsaggelos, Rafael Molina, Javier Mateos:
Super Resolution of Images and Video. Synthesis Lectures on Image, Video, and Multimedia Processing, Morgan & Claypool Publishers 2007, ISBN 978-3-031-01115-3 - [j20]Dácil Barreto, Luis D. Alvarez, Rafael Molina, Aggelos K. Katsaggelos, Gustavo M. Callicó:
Region-based super-resolution for compression. Multidimens. Syst. Signal Process. 18(2-3): 59-81 (2007) - [c45]Antonio Javier Gallego, Rafael Molina, Patricia Compañ, Carlos Villagrá:
3D Reconstruction and Mapping from Stereo Pairs with Geometrical Rectification. BVAI 2007: 318-327 - [c44]Antonio Javier Gallego, Rafael Molina, Patricia Compañ, Carlos Villagrá:
Rectified Reconstruction from Stereo Pairs and Robot Mapping. CAIP 2007: 141-148 - [c43]Rafael Molina, Javier Mateos, Miguel Vega, Aggelos K. Katsaggelos:
Super resolution of multispectral images using locally adaptive models. EUSIPCO 2007: 1497-1501 - [c42]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Total variation blind deconvolution using a variational approach to parameter, image, and blur estimation. EUSIPCO 2007: 2164-2168 - [c41]S. Derin Babacan, Rafael Molina, Aggelos K. Katsaggelos:
Total Variation Image Restoration and Parameter Estimation using Variational Posterior Distribution Approximation. ICIP (1) 2007: 97-100 - [c40]Rafael Molina, Miguel Vega, Aggelos K. Katsaggelos:
From Global to Local Bayesian Parameter Estimation in Image Restoration using Variational Distribution Approximations. ICIP (1) 2007: 121-124 - [c39]Tom E. Bishop, Rafael Molina, James R. Hopgood:
Nonstationary Blind Image Restoration using Variational Methods. ICIP (1) 2007: 125-128 - [c38]Rafael Molina, Antonio López, José Manuel Martín, Aggelos K. Katsaggelos:
Variational posterior distribution approximation in bayesian emission tomography reconstruction using a gamma mixture prior. VISAPP (Special Sessions) 2007: 165-176 - 2006
- [j19]Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
A Bayesian Super-Resolution Approach to Demosaicing of Blurred Images. EURASIP J. Adv. Signal Process. 2006 (2006) - [j18]Rafael Molina, Javier Mateos, Aggelos K. Katsaggelos:
Blind Deconvolution Using a Variational Approach to Parameter, Image, and Blur Estimation. IEEE Trans. Image Process. 15(12): 3715-3727 (2006) - [c37]Rafael Molina, Miguel Vega, Javier Mateos, Aggelos K. Katsaggelos:
Hierarchical Bayesian super resolution reconstruction of multispectral images. EUSIPCO 2006: 1-5 - [c36]Antonio López, José Manuel Martín, Rafael Molina, Aggelos K. Katsaggelos:
Transmission Tomography Reconstruction Using Compound Gauss-Markov Random Fields and Ordered Subsets. ICIAR (2) 2006: 559-569 - [c35]Rafael Molina, Miguel Vega, Javier Mateos, Aggelos K. Katsaggelos:
Parameter Estimation in Bayesian Reconstruction of Multispectral Images using Super Resolution Techniques. ICIP 2006: 1749-1752 - [c34]Pilar Arques, Rafael Molina, Mar Pujol, Ramón Rizo:
Distance histogram to centroid as a unique feature to recognize objects. VISAPP (1) 2006: 492-500 - 2005
- [c33]Fidel Aznar Gregori, Mireia Sempere, Mar Pujol, Ramón Rizo, Rafael Molina:
3D Robot Mapping: Combining Active and Non Active Sensors in a Probabilistic Framework. CAEPIA 2005: 11-20 - [c32]Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian Reconstruction of Color Images Acquired with a Single CCD. IbPRIA (1) 2005: 343-350 - [c31]Antonio López, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian Reconstruction for Transmission Tomography with Scale Hyperparameter Estimation. IbPRIA (2) 2005: 455-462 - [c30]Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Approximations of posterior distributions in blind deconvolution using variational methods. ICIP (2) 2005: 770-773 - 2004
- [j17]Antonio López, Rafael Molina, Aggelos K. Katsaggelos, Antonio Rodriguez, José M. López, José M. Llamas-Elvira:
Parameter estimation in Bayesian reconstruction of SPECT images: An aid in nuclear medicine diagnosis. Int. J. Imaging Syst. Technol. 14(1): 21-27 (2004) - [j16]Luis D. Alvarez, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
High-resolution images from compressed low-resolution video: Motion estimation and observable pixels. Int. J. Imaging Syst. Technol. 14(2): 58-66 (2004) - [j15]C. Andrew Segall, Aggelos K. Katsaggelos, Rafael Molina, Javier Mateos:
Bayesian resolution enhancement of compressed video. IEEE Trans. Image Process. 13(7): 898-911 (2004) - [c29]Salvador Villena, Javier Abad, Rafael Molina, Aggelos K. Katsaggelos:
Estimation of High Resolution Images and Registration Parameters from Low Resolution Observations. CIARP 2004: 509-516 - [c28]Luis D. Alvarez, Rafael Molina, Aggelos K. Katsaggelos:
Motion estimation in high resolution image reconstruction from compressed video sequences. ICIP 2004: 1795-1798 - 2003
- [j14]C. Andrew Segall, Rafael Molina, Aggelos K. Katsaggelos:
High-resolution images from low-resolution compressed video. IEEE Signal Process. Mag. 20(3): 37-48 (2003) - [j13]Rafael Molina, Javier Mateos, Aggelos K. Katsaggelos, Miguel Vega:
Bayesian multichannel image restoration using compound Gauss-Markov random fields. IEEE Trans. Image Process. 12(12): 1642-1654 (2003) - [j12]Rafael Molina, Miguel Vega, Javier Abad, Aggelos K. Katsaggelos:
Parameter estimation in Bayesian high-resolution image reconstruction with multisensors. IEEE Trans. Image Process. 12(12): 1655-1667 (2003) - [c27]Luis D. Alvarez, Rafael Molina, Aggelos K. Katsaggelos:
Multi-channel Reconstruction of Video Sequences from Low-Resolution and Compressed Observations. CIARP 2003: 46-53 - [c26]Antonio López, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian SPECT Image Reconstruction with Scale Hyperparameter Estimation for Scalable Prior. IbPRIA 2003: 445-452 - [c25]Javier Mateos, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian Image Estimation from an Incomplete Set of Blurred, Undersampled Low Resolution Images. IbPRIA 2003: 538-546 - [c24]Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian high resolution image reconstruction with incomplete multisensor low resolution systems. ICASSP (3) 2003: 705-708 - [c23]Javier Abad, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos:
Parameter estimation in super-resolution image reconstruction problems. ICASSP (3) 2003: 709-712 - [c22]Miguel Vega, Javier Mateos, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian parameter estimation in image reconstruction from subsampled blurred observations. ICIP (2) 2003: 969-972 - [c21]Francisco J. Cortijo, Salvador Villena, Rafael Molina, Aggelos K. Katsaggelos:
Bayesian super-resolution of text image sequences from low resolution observations. ISSPA (1) 2003: 421-424 - 2002
- [j11]Antonio López, Rafael Molina, Javier Mateos, Aggelos K. Katsaggelos:
SPECT Image Reconstruction Using Compound Prior Models. Int. J. Pattern Recognit. Artif. Intell. 16(3): 317-330 (2002) - [c20]C. Andrew Segall, Rafael Molina, Aggelos K. Katsaggelos, Javier Mateos:
Reconstruction of high-resolution image frames from a sequence of low-resolution and compressed observations. ICASSP 2002: 1701-1704 - [c19]Antonio López, Rafael Molina, Aggelos K. Katsaggelos:
Scale hyperparameter estimation for GGMRF prior models with application to SPECT images. DSP 2002: 521-524 - [c18]Rafael Molina, Javier Mateos, Aggelos K. Katsaggelos, Miguel Vega:
A General Multichannel Image Restoration Method Using Compound Models. ICPR (3) 2002: 835-838 - 2001
- [j10]Rafael Molina, Jorge Núñez, Francisco J. Cortijo, Javier Mateos:
Image restoration in astronomy: a Bayesian perspective. IEEE Signal Process. Mag. 18(2): 11-29 (2001) - [c17]Antonio López, Rafael Molina, Aggelos K. Katsaggelos, Javier Mateos:
SPECT image reconstruction using compound models. ICASSP 2001: 1909-1912 - [c16]Rafael Molina, Aggelos K. Katsaggelos, Javier Mateos, C. Andrew Segall:
Bayesian high-resolution reconstruction of low-resolution compressed video. ICIP (2) 2001: 25-28 - 2000
- [j9]Rafael Molina, Aggelos K. Katsaggelos, Javier Mateos, Aurora Hermoso, C. Andrew Segall:
Restoration of severely blurred high range images using stochastic and deterministic relaxation algorithms in compound Gauss?CMarkov random fields. Pattern Recognit. 33(4): 555-571 (2000) - [j8]Javier Mateos, Aggelos K. Katsaggelos, Rafael Molina:
A Bayesian approach for the estimation and transmission of regularization parameters for reducing blocking artifacts. IEEE Trans. Image Process. 9(7): 1200-1215 (2000) - [j7]Nikolas P. Galatsanos, Vladimir Z. Mesarovic, Rafael Molina, Aggelos K. Katsaggelos:
Hierarchical Bayesian image restoration from partially known blurs. IEEE Trans. Image Process. 9(10): 1784-1797 (2000) - [c15]Javier Mateos, Aggelos K. Katsaggelos, Rafael Molina:
Color image restoration using compound Gauss-Markov Random Fields. EUSIPCO 2000: 1-4 - [c14]Javier Mateos, Aggelos K. Katsaggelos, Rafael Molina:
High-resolution color image reconstruction from compressed video sequences. EUSIPCO 2000: 1-4 - [c13]Rafael Molina, Javier Mateos, Aggelos K. Katsaggelos:
Multichannel image restoration using compound Gauss-Markov random fields. ICASSP 2000: 141-144 - [c12]Javier Mateos, Aggelos K. Katsaggelos, Rafael Molina:
Resolution enhancement of compressed low resolution video. ICASSP 2000: 1919-1922 - [c11]Javier Mateos, Aggelos K. Katsaggelos, Rafael Molina:
Simultaneous Motion Estimation and Resolution Enhancement of Compressed low Resolution Video. ICIP 2000: 653-656
1990 – 1999
- 1999
- [j6]Rafael Molina, Aggelos K. Katsaggelos, Javier Mateos:
Bayesian and regularization methods for hyperparameter estimation in image restoration. IEEE Trans. Image Process. 8(2): 231-246 (1999) - [c10]Rafael Molina, Aggelos K. Katsaggelos, Javier Abad:
Bayesian image restoration using a wavelet-based subband decomposition. ICASSP 1999: 3257-3260 - [c9]Antonio López, Rafael Molina, Aggelos K. Katsaggelos:
Hyperparameter Estimation for Emission Computed Tomography Data. ICIP (2) 1999: 677-680 - 1998
- [c8]Vladimir Z. Mesarovic, Nikolas P. Galatsanos, Rafael Molina, Aggelos K. Katsaggelos:
Hierarchical Bayesian image restoration from partially-known blurs. ICASSP 1998: 2905-2908 - [c7]Javier Mateos, Carlos Ilia Herráiz Montalvo, Blas C. Ruiz Jiménez, Rafael Molina, Aggelos K. Katsaggelos:
Reduction of Blocking Artifacts in Block Transformed Compressed Color Images. ICIP (1) 1998: 401-405 - 1997
- [c6]Rafael Molina, Aggelos K. Katsaggelos, Javier Mateos, Aurora Hermoso:
Restoration of Severely Blurred High Range Images Using Stochastic and Deterministic Relaxation Algorithms in Compound Gauss Markov Random Fields. EMMCVPR 1997: 117-132 - [c5]Rafael Molina, Aggelos K. Katsaggelos, Javier Abad, Javier Mateos:
A Bayesian approach to blind deconvolution based on Dirichlet distributions. ICASSP 1997: 2809-2812 - 1996
- [c4]Rafael Molina, Aggelos K. Katsaggelos, Javier Mateos, Javier Abad:
Restoration of severely blurred high range images using compound models. ICIP (2) 1996: 469-472 - 1995
- [j5]Rafael Molina, Javier Mateos, Javier Abad, Nicolas Pérez de la Blanca, A. Molina, Fernando Moreno:
Bayesian image restoration in astronomy: Application to images of the recent collision of comet shoemaker-levy 9 with jupiter. Int. J. Imaging Syst. Technol. 6(4): 370-375 (1995) - [j4]Jose A. García, J. Fdez-Valdivia, Rafael Molina:
A method for invariant pattern recognition using the scale-vector representation of planar curves. Signal Process. 43(1): 39-53 (1995) - [j3]Jose A. García, J. Fdez-Valdivia, Francisco J. Cortijo, Rafael Molina:
A dynamic approach for clustering data. Signal Process. 44(2): 181-196 (1995) - 1994
- [j2]Rafael Molina:
On the Hierarchical Bayesian Approach to Image Restoration: Applications to Astronomical Images. IEEE Trans. Pattern Anal. Mach. Intell. 16(11): 1122-1128 (1994) - [j1]Jose A. García, Rafael Molina, Nicolas Pérez de la Blanca:
Automatic characterization of spiral and elliptical galaxies from digital images. Pattern Recognit. Lett. 15(9): 861-869 (1994) - 1992
- [c3]Rafael Molina, Brian D. Ripley, Francisco J. Cortijo:
On the Bayesian deconvolution of planets. ICPR (3) 1992: 147-150 - [c2]A. Sutherland, Bob Henery, Rafael Molina, Charles C. Taylor, Ross D. King:
Statistical Methods in Learning. IPMU 1992: 173-182 - 1991
- [c1]Silvia Acid, Luis M. de Campos, Antonio González, Rafael Molina, Nicolas Pérez de la Blanca:
Learning with CASTLE. ECSQARU 1991: 99-106
Coauthor Index
aka: Nicolás Pérez de la Blanca
aka: Pablo Morales-Álvarez
aka: Pablo Ruiz Matarán
aka: Santiago López-Tapia
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-27 00:52 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint