default search action
Shinichi Nakajima
Person information
- affiliation: Berlin Big Data Center, Germany
- affiliation: TU Berlin, Machine Learning Group, Germany
- affiliation: Nikon Corporation, Tokyo, Japan
- affiliation: Tokyo Institute of Technology, Japan
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j25]Khaled Kahouli, Stefaan Simon Pierre Hessmann, Klaus-Robert Müller, Shinichi Nakajima, Stefan Gugler, Niklas W. A. Gebauer:
Molecular relaxation by reverse diffusion with time step prediction. Mach. Learn. Sci. Technol. 5(3): 35038 (2024) - [c40]Christopher J. Anders, Kim Andrea Nicoli, Bingting Wu, Naima Elosegui, Samuele Pedrielli, Lena Funcke, Karl Jansen, Stefan Kühn, Shinichi Nakajima:
Adaptive Observation Cost Control for Variational Quantum Eigensolvers. ICML 2024 - [d1]Khaled Kahouli, Stefaan Simon Pierre Hessmann, Klaus-Robert Müller, Shinichi Nakajima, Stefan Gugler, Niklas W. A. Gebauer:
MoreRed: Molecular Relaxation by Reverse Diffusion with Time Step Prediction. Zenodo, 2024 - [i38]Dennis Grinwald, Philipp Wiesner, Shinichi Nakajima:
Solution Simplex Clustering for Heterogeneous Federated Learning. CoRR abs/2403.03333 (2024) - [i37]Khaled Kahouli, Stefaan Simon Pierre Hessmann, Klaus-Robert Müller, Shinichi Nakajima, Stefan Gugler, Niklas W. A. Gebauer:
Molecular relaxation by reverse diffusion with time step prediction. CoRR abs/2404.10935 (2024) - [i36]Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Klaus-Robert Müller, Paolo Stornati, Pan Kessel, Shinichi Nakajima:
Physics-Informed Bayesian Optimization of Variational Quantum Circuits. CoRR abs/2406.06150 (2024) - [i35]Thomas Schnake, Farnoush Rezaei Jafari, Jonas Lederer, Ping Xiong, Shinichi Nakajima, Stefan Gugler, Grégoire Montavon, Klaus-Robert Müller:
Towards Symbolic XAI - Explanation Through Human Understandable Logical Relationships Between Features. CoRR abs/2408.17198 (2024) - [i34]Andrea Bulgarelli, Elia Cellini, Karl Jansen, Stefan Kühn, Alessandro Nada, Shinichi Nakajima, Kim A. Nicoli, Marco Panero:
Flow-based Sampling for Entanglement Entropy and the Machine Learning of Defects. CoRR abs/2410.14466 (2024) - [i33]Marco Morik, Ali Hashemi, Klaus-Robert Müller, Stefan Haufe, Shinichi Nakajima:
Enhancing Brain Source Reconstruction through Physics-Informed 3D Neural Networks. CoRR abs/2411.00143 (2024) - 2023
- [j24]David Lassner, Stephanie Brandl, Anne Baillot, Shinichi Nakajima:
Domain-Specific Word Embeddings with Structure Prediction. Trans. Assoc. Comput. Linguistics 11: 320-335 (2023) - [j23]Dennis Grinwald, Kirill Bykov, Shinichi Nakajima, Marina M.-C. Höhne:
Visualizing the Diversity of Representations Learned by Bayesian Neural Networks. Trans. Mach. Learn. Res. 2023 (2023) - [j22]Danny Panknin, Stefan Chmiela, Klaus-Robert Müller, Shinichi Nakajima:
Local Function Complexity for Active Learning via Mixture of Gaussian Processes. Trans. Mach. Learn. Res. 2023 (2023) - [j21]Vignesh Srinivasan, Klaus-Robert Müller, Wojciech Samek, Shinichi Nakajima:
Langevin Cooling for Unsupervised Domain Translation. IEEE Trans. Neural Networks Learn. Syst. 34(10): 7675-7688 (2023) - [c39]Ping Xiong, Thomas Schnake, Michael Gastegger, Grégoire Montavon, Klaus-Robert Müller, Shinichi Nakajima:
Relevant Walk Search for Explaining Graph Neural Networks. ICML 2023: 38301-38324 - [c38]Kirill Bykov, Laura Kopf, Shinichi Nakajima, Marius Kloft, Marina M.-C. Höhne:
Labeling Neural Representations with Inverse Recognition. NeurIPS 2023 - [c37]Kim Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Klaus-Robert Müller, Paolo Stornati, Pan Kessel, Shinichi Nakajima:
Physics-Informed Bayesian Optimization of Variational Quantum Circuits. NeurIPS 2023 - [i32]Kim A. Nicoli, Christopher J. Anders, Tobias Hartung, Karl Jansen, Pan Kessel, Shinichi Nakajima:
Detecting and Mitigating Mode-Collapse for Flow-based Sampling of Lattice Field Theories. CoRR abs/2302.14082 (2023) - [i31]Gabriel Nobis, Marco Aversa, Maximilian Springenberg, Michael Detzel, Stefano Ermon, Shinichi Nakajima, Roderick Murray-Smith, Sebastian Lapuschkin, Christoph Knochenhauer, Luis Oala, Wojciech Samek:
Generative Fractional Diffusion Models. CoRR abs/2310.17638 (2023) - [i30]Kirill Bykov, Laura Kopf, Shinichi Nakajima, Marius Kloft, Marina M.-C. Höhne:
Labeling Neural Representations with Inverse Recognition. CoRR abs/2311.13594 (2023) - 2022
- [j20]Lorenz Vaitl, Kim A. Nicoli, Shinichi Nakajima, Pan Kessel:
Gradients should stay on path: better estimators of the reverse- and forward KL divergence for normalizing flows. Mach. Learn. Sci. Technol. 3(4): 45006 (2022) - [j19]Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt, Klaus-Robert Müller, Grégoire Montavon:
Higher-Order Explanations of Graph Neural Networks via Relevant Walks. IEEE Trans. Pattern Anal. Mach. Intell. 44(11): 7581-7596 (2022) - [j18]Susanna Schwarzmann, Clarissa Cassales Marquezan, Riccardo Trivisonno, Shinichi Nakajima, Vincent Barriac, Thomas Zinner:
ML-Based QoE Estimation in 5G Networks Using Different Regression Techniques. IEEE Trans. Netw. Serv. Manag. 19(3): 3516-3532 (2022) - [c36]Kirill Bykov, Anna Hedström, Shinichi Nakajima, Marina M.-C. Höhne:
NoiseGrad - Enhancing Explanations by Introducing Stochasticity to Model Weights. AAAI 2022: 6132-6140 - [c35]Lorenz Vaitl, Kim Andrea Nicoli, Shinichi Nakajima, Pan Kessel:
Path-Gradient Estimators for Continuous Normalizing Flows. ICML 2022: 21945-21959 - [c34]Ping Xiong, Thomas Schnake, Grégoire Montavon, Klaus-Robert Müller, Shinichi Nakajima:
Efficient Computation of Higher-Order Subgraph Attribution via Message Passing. ICML 2022: 24478-24495 - [i29]Dennis Grinwald, Kirill Bykov, Shinichi Nakajima, Marina M.-C. Höhne:
Visualizing the diversity of representations learned by Bayesian neural networks. CoRR abs/2201.10859 (2022) - [i28]Jannik Wolff, Tassilo Klein, Moin Nabi, Rahul G. Krishnan, Shinichi Nakajima:
Mixture-of-experts VAEs can disregard variation in surjective multimodal data. CoRR abs/2204.05229 (2022) - [i27]Lorenz Vaitl, Kim A. Nicoli, Shinichi Nakajima, Pan Kessel:
Path-Gradient Estimators for Continuous Normalizing Flows. CoRR abs/2206.09016 (2022) - [i26]Lorenz Vaitl, Kim A. Nicoli, Shinichi Nakajima, Pan Kessel:
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows. CoRR abs/2207.08219 (2022) - [i25]Stephanie Brandl, David Lassner, Anne Baillot, Shinichi Nakajima:
Domain-Specific Word Embeddings with Structure Prediction. CoRR abs/2210.04962 (2022) - 2021
- [j17]Vignesh Srinivasan, Csaba Rohrer, Arturo Marbán, Klaus-Robert Müller, Wojciech Samek, Shinichi Nakajima:
Robustifying models against adversarial attacks by Langevin dynamics. Neural Networks 137: 1-17 (2021) - [i24]Danny Panknin, Shinichi Nakajima, Klaus-Robert Müller:
Optimal Sampling Density for Nonparametric Regression. CoRR abs/2105.11990 (2021) - [i23]Kirill Bykov, Anna Hedström, Shinichi Nakajima, Marina M.-C. Höhne:
NoiseGrad: enhancing explanations by introducing stochasticity to model weights. CoRR abs/2106.10185 (2021) - [i22]Kirill Bykov, Marina M.-C. Höhne, Adelaida Creosteanu, Klaus-Robert Müller, Frederick Klauschen, Shinichi Nakajima, Marius Kloft:
Explaining Bayesian Neural Networks. CoRR abs/2108.10346 (2021) - [i21]Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Pan Kessel, Shinichi Nakajima, Paolo Stornati:
Machine Learning of Thermodynamic Observables in the Presence of Mode Collapse. CoRR abs/2111.11303 (2021) - 2020
- [j16]Alexander Bauer, Shinichi Nakajima, Nico Görnitz, Klaus-Robert Müller:
Optimizing for Measure of Performance in Max-Margin Parsing. IEEE Trans. Neural Networks Learn. Syst. 31(7): 2680-2684 (2020) - [c33]Vignesh Srinivasan, Klaus-Robert Müller, Wojciech Samek, Shinichi Nakajima:
Benign Examples: Imperceptible Changes Can Enhance Image Translation Performance. AAAI 2020: 5842-5850 - [c32]Susanna Schwarzmann, Clarissa Cassales Marquezan, Riccardo Trivisonno, Shinichi Nakajima, Thomas Zinner:
Accuracy vs. Cost Trade-off for Machine Learning Based QoE Estimation in 5G Networks. ICC 2020: 1-6 - [c31]Maximilian Kohlbrenner, Alexander Bauer, Shinichi Nakajima, Alexander Binder, Wojciech Samek, Sebastian Lapuschkin:
Towards Best Practice in Explaining Neural Network Decisions with LRP. IJCNN 2020: 1-7 - [i20]David Lassner, Anne Baillot, Sergej Dogadov, Klaus-Robert Müller, Shinichi Nakajima:
Automatic Identification of Types of Alterations in Historical Manuscripts. CoRR abs/2003.09136 (2020) - [i19]Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt, Klaus-Robert Müller, Grégoire Montavon:
XAI for Graphs: Explaining Graph Neural Network Predictions by Identifying Relevant Walks. CoRR abs/2006.03589 (2020) - [i18]Kirill Bykov, Marina M.-C. Höhne, Klaus-Robert Müller, Shinichi Nakajima, Marius Kloft:
How Much Can I Trust You? - Quantifying Uncertainties in Explaining Neural Networks. CoRR abs/2006.09000 (2020) - [i17]Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Pan Kessel, Shinichi Nakajima, Paolo Stornati:
On Estimation of Thermodynamic Observables in Lattice Field Theories with Deep Generative Models. CoRR abs/2007.07115 (2020) - [i16]Vignesh Srinivasan, Klaus-Robert Müller, Wojciech Samek, Shinichi Nakajima:
Langevin Cooling for Domain Translation. CoRR abs/2008.13723 (2020)
2010 – 2019
- 2019
- [c30]Alexander Bauer, Shinichi Nakajima, Nico Görnitz, Klaus-Robert Müller:
Partial Optimality of Dual Decomposition for MAP Inference in Pairwise MRFs. AISTATS 2019: 1696-1703 - [c29]Vignesh Srinivasan, Ercan E. Kuruoglu, Klaus-Robert Müller, Wojciech Samek, Shinichi Nakajima:
Black-Box Decision based Adversarial Attack with Symmetric α-stable Distribution. EUSIPCO 2019: 1-5 - [i15]Danny Panknin, Shinichi Nakajima, Thanh Binh Bui, Klaus-Robert Müller:
Local Bandwidth Estimation via Mixture of Gaussian Processes. CoRR abs/1902.10664 (2019) - [i14]Kim Nicoli, Pan Kessel, Nils Strodthoff, Wojciech Samek, Klaus-Robert Müller, Shinichi Nakajima:
Comment on "Solving Statistical Mechanics Using VANs": Introducing saVANt - VANs Enhanced by Importance and MCMC Sampling. CoRR abs/1903.11048 (2019) - [i13]Vignesh Srinivasan, Ercan E. Kuruoglu, Klaus-Robert Müller, Wojciech Samek, Shinichi Nakajima:
Black-Box Decision based Adversarial Attack with Symmetric α-stable Distribution. CoRR abs/1904.05586 (2019) - [i12]Maximilian Kohlbrenner, Alexander Bauer, Shinichi Nakajima, Alexander Binder, Wojciech Samek, Sebastian Lapuschkin:
Towards best practice in explaining neural network decisions with LRP. CoRR abs/1910.09840 (2019) - [i11]Kim A. Nicoli, Shinichi Nakajima, Nils Strodthoff, Wojciech Samek, Klaus-Robert Müller, Pan Kessel:
Asymptotically Unbiased Generative Neural Sampling. CoRR abs/1910.13496 (2019) - [i10]Alexander Bauer, Shinichi Nakajima:
Worst-Case Polynomial-Time Exact MAP Inference on Discrete Models with Global Dependencies. CoRR abs/1912.12090 (2019) - 2018
- [j15]Stephan Kaltenstadler, Shinichi Nakajima, Klaus-Robert Müller, Wojciech Samek:
Wasserstein Stationary Subspace Analysis. IEEE J. Sel. Top. Signal Process. 12(6): 1213-1223 (2018) - [j14]Nico Görnitz, Luiz Alberto Lima, Luiz Eduardo Varella, Klaus-Robert Müller, Shinichi Nakajima:
Transductive Regression for Data With Latent Dependence Structure. IEEE Trans. Neural Networks Learn. Syst. 29(7): 2743-2756 (2018) - [j13]Nico Görnitz, Luiz Alberto Lima, Klaus-Robert Müller, Marius Kloft, Shinichi Nakajima:
Support Vector Data Descriptions and k-Means Clustering: One Class? IEEE Trans. Neural Networks Learn. Syst. 29(9): 3994-4006 (2018) - [i9]Vignesh Srinivasan, Arturo Marbán, Klaus-Robert Müller, Wojciech Samek, Shinichi Nakajima:
Counterstrike: Defending Deep Learning Architectures Against Adversarial Samples by Langevin Dynamics with Supervised Denoising Autoencoder. CoRR abs/1805.12017 (2018) - [i8]Hannah Marienwald, Wikor Pronobis, Klaus-Robert Müller, Shinichi Nakajima:
Tight Bound of Incremental Cover Trees for Dynamic Diversification. CoRR abs/1806.06126 (2018) - [i7]Jacob R. Kauffmann, Grégoire Montavon, Luiz Alberto Lima, Shinichi Nakajima, Klaus-Robert Müller, Nico Görnitz:
Unsupervised Detection and Explanation of Latent-class Contextual Anomalies. CoRR abs/1806.11326 (2018) - 2017
- [j12]Luiz Alberto Lima, Nico Görnitz, Luiz Eduardo Varella, Marley M. B. R. Vellasco, Klaus-Robert Müller, Shinichi Nakajima:
Porosity estimation by semi-supervised learning with sparsely available labeled samples. Comput. Geosci. 106: 33-48 (2017) - [j11]Stephan Mandt, Florian Wenzel, Shinichi Nakajima, John P. Cunningham, Christoph Lippert, Marius Kloft:
Sparse probit linear mixed model. Mach. Learn. 106(9-10): 1621-1642 (2017) - [j10]Alexander Bauer, Shinichi Nakajima, Klaus-Robert Müller:
Efficient Exact Inference With Loss Augmented Objective in Structured Learning. IEEE Trans. Neural Networks Learn. Syst. 28(11): 2566-2579 (2017) - [c28]Sergej Dogadov, Andrés R. Masegosa, Shinichi Nakajima:
Variational Robust Subspace Clustering with Mean Update Algorithm. ICCV Workshops 2017: 1792-1799 - [c27]János Höner, Shinichi Nakajima, Alexander Bauer, Klaus-Robert Müller, Nico Görnitz:
Minimizing Trust Leaks for Robust Sybil Detection. ICML 2017: 1520-1528 - [i6]Alexander Bauer, Shinichi Nakajima, Nico Görnitz, Klaus-Robert Müller:
Partial Optimality of Dual Decomposition for MAP Inference in Pairwise MRFs. CoRR abs/1708.03314 (2017) - [i5]Alexander Bauer, Shinichi Nakajima, Nico Görnitz, Klaus-Robert Müller:
Optimizing for Measure of Performance in Max-Margin Parsing. CoRR abs/1709.01562 (2017) - 2016
- [c26]Stephan Mandt, Florian Wenzel, Shinichi Nakajima, Christoph Lippert, Marius Kloft:
Separating Sparse Signals from Correlated Noise in Binary Classification. CFA@UAI 2016: 48-58 - [i4]Shinichi Nakajima, Sebastian Krause, Dirk Weissenborn, Sven Schmeier, Nico Görnitz, Feiyu Xu:
SynsetRank: Degree-adjusted Random Walk for Relation Identification. CoRR abs/1609.00626 (2016) - [i3]Wikor Pronobis, Danny Panknin, Johannes Kirschnick, Vignesh Srinivasan, Wojciech Samek, Volker Markl, Manohar Kaul, Klaus-Robert Müller, Shinichi Nakajima:
Sharing Hash Codes for Multiple Purposes. CoRR abs/1609.03219 (2016) - 2015
- [j9]Shinichi Nakajima, Ryota Tomioka, Masashi Sugiyama, S. Derin Babacan:
Condition for perfect dimensionality recovery by variational Bayesian PCA. J. Mach. Learn. Res. 16: 3757-3811 (2015) - [i2]Stephan Mandt, Florian Wenzel, Shinichi Nakajima, John P. Cunningham, Christoph Lippert, Marius Kloft:
Sparse Estimation in a Correlated Probit Model. CoRR abs/1507.04777 (2015) - 2014
- [j8]S. Derin Babacan, Shinichi Nakajima, Minh N. Do:
Bayesian Group-Sparse Modeling and Variational Inference. IEEE Trans. Signal Process. 62(11): 2906-2921 (2014) - [c25]Shinichi Nakajima, Masashi Sugiyama:
Analysis of Empirical MAP and Empirical Partially Bayes: Can They be Alternatives to Variational Bayes? AISTATS 2014: 20-28 - [c24]Shinichi Nakajima, Issei Sato, Masashi Sugiyama, Kazuho Watanabe, Hiroko Kobayashi:
Analysis of Variational Bayesian Latent Dirichlet Allocation: Weaker Sparsity Than MAP. NIPS 2014: 1224-1232 - 2013
- [j7]Shinichi Nakajima, Masashi Sugiyama, S. Derin Babacan, Ryota Tomioka:
Global analytic solution of fully-observed variational Bayesian matrix factorization. J. Mach. Learn. Res. 14(1): 1-37 (2013) - [j6]Shinichi Nakajima, Masashi Sugiyama, S. Derin Babacan:
Variational Bayesian sparse additive matrix factorization. Mach. Learn. 92(2-3): 319-347 (2013) - [c23]Pablo Ruiz, Javier Mateos, María C. Cárdenas, Shinichi Nakajima, Rafael Molina, Aggelos K. Katsaggelos:
Light field acquisition from blurred observations using a programmable coded aperture camera. EUSIPCO 2013: 1-5 - [c22]Ichiro Takeuchi, Tatsuya Hongo, Masashi Sugiyama, Shinichi Nakajima:
Parametric Task Learning. NIPS 2013: 1358-1366 - [c21]Shinichi Nakajima, Akiko Takeda, S. Derin Babacan, Masashi Sugiyama, Ichiro Takeuchi:
Global Solver and Its Efficient Approximation for Variational Bayesian Low-rank Subspace Clustering. NIPS 2013: 1439-1447 - 2012
- [c20]Shinichi Nakajima, Ryota Tomioka, Masashi Sugiyama, S. Derin Babacan:
Perfect Dimensionality Recovery by Variational Bayesian PCA. NIPS 2012: 980-988 - [c19]S. Derin Babacan, Shinichi Nakajima, Minh N. Do:
Probabilistic Low-Rank Subspace Clustering. NIPS 2012: 2753-2761 - [c18]Shinichi Nakajima, Masashi Sugiyama, S. Derin Babacan:
Sparse Additive Matrix Factorization for Robust PCA and Its Generalization. ACML 2012: 301-316 - 2011
- [j5]Shinichi Nakajima, Masashi Sugiyama:
Theoretical Analysis of Bayesian Matrix Factorization. J. Mach. Learn. Res. 12: 2583-2648 (2011) - [c17]Shinichi Nakajima, Masashi Sugiyama, S. Derin Babacan:
On Bayesian PCA: Automatic Dimensionality Selection and Analytic Solution. ICML 2011: 497-504 - [c16]Shinichi Nakajima, Masashi Sugiyama, S. Derin Babacan:
Global Solution of Fully-Observed Variational Bayesian Matrix Factorization is Column-Wise Independent. NIPS 2011: 208-216 - [c15]Takeshi Matsuo, Shinichi Nakajima:
Attribute-Based MED System with Word Histograms. TRECVID 2011 - [i1]Alexander Binder, Shinichi Nakajima, Marius Kloft, Christina Müller, Wojciech Samek, Ulf Brefeld, Klaus-Robert Müller, Motoaki Kawanabe:
Insights from Classifying Visual Concepts with Multiple Kernel Learning. CoRR abs/1112.3697 (2011) - 2010
- [j4]Masashi Sugiyama, Tsuyoshi Idé, Shinichi Nakajima, Jun Sese:
Semi-supervised local Fisher discriminant analysis for dimensionality reduction. Mach. Learn. 78(1-2): 35-61 (2010) - [c14]Shinichi Nakajima, Masashi Sugiyama:
Implicit Regularization in Variational Bayesian Matrix Factorization. ICML 2010: 815-822 - [c13]Shinichi Nakajima, Masashi Sugiyama, Ryota Tomioka:
Global Analytic Solution for Variational Bayesian Matrix Factorization. NIPS 2010: 1768-1776 - [c12]Takeshi Matsuo, Shinichi Nakajima:
Nikon Multimedia Event Detection System. TRECVID 2010
2000 – 2009
- 2009
- [j3]Masashi Sugiyama, Shinichi Nakajima:
Pool-based active learning in approximate linear regression. Mach. Learn. 75(3): 249-274 (2009) - [c11]Motoaki Kawanabe, Shinichi Nakajima, Alexander Binder:
A procedure of adaptive kernel combination with kernel-target alignment for object classification. CIVR 2009 - [c10]Nils Plath, Marc Toussaint, Shinichi Nakajima:
Multi-class image segmentation using conditional random fields and global classification. ICML 2009: 817-824 - [c9]Shinichi Nakajima, Masashi Sugiyama:
Analysis of Variational Bayesian Matrix Factorization. PAKDD 2009: 314-326 - [c8]Marius Kloft, Shinichi Nakajima, Ulf Brefeld:
Feature Selection for Density Level-Sets. ECML/PKDD (1) 2009: 692-704 - 2008
- [c7]Masashi Sugiyama, Tsuyoshi Idé, Shinichi Nakajima, Jun Sese:
Semi-Supervised Local Fisher Discriminant Analysis for Dimensionality Reduction. PAKDD 2008: 333-344 - [c6]Masashi Sugiyama, Shinichi Nakajima:
Pool-Based Agnostic Experiment Design in Linear Regression. ECML/PKDD (2) 2008: 406-422 - 2007
- [j2]Shinichi Nakajima, Sumio Watanabe:
Variational Bayes Solution of Linear Neural Networks and Its Generalization Performance. Neural Comput. 19(4): 1112-1153 (2007) - [c5]Shinichi Nakajima, Sumio Watanabe:
Generalization Error of Automatic Relevance Determination. ICANN (1) 2007: 1-10 - [c4]Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul von Bünau, Motoaki Kawanabe:
Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation. NIPS 2007: 1433-1440 - 2006
- [j1]Shinichi Nakajima, Sumio Watanabe:
Generalization Performance of Subspace Bayes Approach in Linear Neural Networks. IEICE Trans. Inf. Syst. 89-D(3): 1128-1138 (2006) - [c3]Shinichi Nakajima, Sumio Watanabe:
Analytic Solution of Hierarchical Variational Bayes in Linear Inverse Problem. ICANN (2) 2006: 240-249 - [c2]Shingo Takamatsu, Shinichi Nakajima, Sumio Watanabe:
Localized Bayes Estimation for Non-identifiable Models. ICONIP (1) 2006: 650-659 - 2005
- [c1]Shinichi Nakajima, Sumio Watanabe:
Generalization Error of Linear Neural Networks in an Empirical Bayes Approach. IJCAI 2005: 804-810
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 12:55 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint