default search action
Ryota Tomioka
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c40]Marco Federici, Patrick Forré, Ryota Tomioka, Bastiaan S. Veeling:
Latent Representation and Simulation of Markov Processes via Time-Lagged Information Bottleneck. ICLR 2024 - 2023
- [c39]Leon Klein, Andrew Y. K. Foong, Tor Erlend Fjelde, Bruno Mlodozeniec, Marc Brockschmidt, Sebastian Nowozin, Frank Noé, Ryota Tomioka:
Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics. NeurIPS 2023 - [i26]Leon Klein, Andrew Y. K. Foong, Tor Erlend Fjelde, Bruno Mlodozeniec, Marc Brockschmidt, Sebastian Nowozin, Frank Noé, Ryota Tomioka:
Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics. CoRR abs/2302.01170 (2023) - [i25]Marco Federici, Patrick Forré, Ryota Tomioka, Bastiaan S. Veeling:
Latent Representation and Simulation of Markov Processes via Time-Lagged Information Bottleneck. CoRR abs/2309.07200 (2023) - [i24]Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Sasha Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, Ryota Tomioka, Tian Xie:
MatterGen: a generative model for inorganic materials design. CoRR abs/2312.03687 (2023) - 2021
- [c38]Hisham Husain, Kamil Ciosek, Ryota Tomioka:
Regularized Policies are Reward Robust. AISTATS 2021: 64-72 - [c37]Keshav Santhanam, Siddharth Krishna, Ryota Tomioka, Andrew W. Fitzgibbon, Tim Harris:
DistIR: An Intermediate Representation for Optimizing Distributed Neural Networks. EuroMLSys@EuroSys 2021: 15-23 - [c36]Marco Federici, Ryota Tomioka, Patrick Forré:
An Information-theoretic Approach to Distribution Shifts. NeurIPS 2021: 17628-17641 - [i23]Hisham Husain, Kamil Ciosek, Ryota Tomioka:
Regularized Policies are Reward Robust. CoRR abs/2101.07012 (2021) - [i22]Marco Federici, Ryota Tomioka, Patrick Forré:
An Information-theoretic Approach to Distribution Shifts. CoRR abs/2106.03783 (2021) - [i21]Keshav Santhanam, Siddharth Krishna, Ryota Tomioka, Tim Harris, Matei Zaharia:
DistIR: An Intermediate Representation and Simulator for Efficient Neural Network Distribution. CoRR abs/2111.05426 (2021) - 2020
- [c35]Kamil Ciosek, Vincent Fortuin, Ryota Tomioka, Katja Hofmann, Richard E. Turner:
Conservative Uncertainty Estimation By Fitting Prior Networks. ICLR 2020 - [c34]Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, Sabine Süsstrunk:
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them. NeurIPS 2020 - [i20]Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, Sabine Süsstrunk:
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them. CoRR abs/2006.08403 (2020)
2010 – 2019
- 2019
- [c33]Chen Liu, Ryota Tomioka, Volkan Cevher:
On Certifying Non-Uniform Bounds against Adversarial Attacks. ICML 2019: 4072-4081 - [c32]Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, Yee Whye Teh:
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders. NeurIPS 2019: 12544-12555 - [i19]Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, Yee Whye Teh:
Hierarchical Representations with Poincaré Variational Auto-Encoders. CoRR abs/1901.06033 (2019) - [i18]Chen Liu, Ryota Tomioka, Volkan Cevher:
On Certifying Non-uniform Bound against Adversarial Attacks. CoRR abs/1903.06603 (2019) - 2018
- [c31]Diane Bouchacourt, Ryota Tomioka, Sebastian Nowozin:
Multi-Level Variational Autoencoder: Learning Disentangled Representations From Grouped Observations. AAAI 2018: 2095-2102 - [i17]Justas Dauparas, Ryota Tomioka, Katja Hofmann:
Depth and nonlinearity induce implicit exploration for RL. CoRR abs/1805.11711 (2018) - 2017
- [c30]Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter:
Batch Policy Gradient Methods for Improving Neural Conversation Models. ICLR (Poster) 2017 - [c29]Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, Milan Vojnovic:
QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding. NIPS 2017: 1709-1720 - [i16]Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter:
Batch Policy Gradient Methods for Improving Neural Conversation Models. CoRR abs/1702.03334 (2017) - [i15]Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, Nathan Srebro:
Geometry of Optimization and Implicit Regularization in Deep Learning. CoRR abs/1705.03071 (2017) - [i14]Diane Bouchacourt, Ryota Tomioka, Sebastian Nowozin:
Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations. CoRR abs/1705.08841 (2017) - [i13]Alex Gaunt, Matthew Johnson, Maik Riechert, Daniel Tarlow, Ryota Tomioka, Dimitrios Vytiniotis, Sam Webster:
AMPNet: Asynchronous Model-Parallel Training for Dynamic Neural Networks. CoRR abs/1705.09786 (2017) - 2016
- [j15]Kishan Wimalawarne, Ryota Tomioka, Masashi Sugiyama:
Theoretical and Experimental Analyses of Tensor-Based Regression and Classification. Neural Comput. 28(4): 686-715 (2016) - [c28]Sebastian Nowozin, Botond Cseke, Ryota Tomioka:
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization. NIPS 2016: 271-279 - [c27]Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, Nathan Srebro:
Data-Dependent Path Normalization in Neural Networks. ICLR (Poster) 2016 - [i12]Sebastian Nowozin, Botond Cseke, Ryota Tomioka:
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization. CoRR abs/1606.00709 (2016) - [i11]Dan Alistarh, Jerry Li, Ryota Tomioka, Milan Vojnovic:
QSGD: Randomized Quantization for Communication-Optimal Stochastic Gradient Descent. CoRR abs/1610.02132 (2016) - [i10]Liwen Zhang, John M. Winn, Ryota Tomioka:
Gaussian Attention Model and Its Application to Knowledge Base Embedding and Question Answering. CoRR abs/1611.02266 (2016) - 2015
- [j14]Franz J. Király, Louis Theran, Ryota Tomioka:
The algebraic combinatorial approach for low-rank matrix completion. J. Mach. Learn. Res. 16: 1391-1436 (2015) - [j13]Shinichi Nakajima, Ryota Tomioka, Masashi Sugiyama, S. Derin Babacan:
Condition for perfect dimensionality recovery by variational Bayesian PCA. J. Mach. Learn. Res. 16: 3757-3811 (2015) - [j12]Shota Saito, Ryota Tomioka, Kenji Yamanishi:
Early detection of persistent topics in social networks. Soc. Netw. Anal. Min. 5(1): 19:1-19:15 (2015) - [c26]Behnam Neyshabur, Ryota Tomioka, Nathan Srebro:
Norm-Based Capacity Control in Neural Networks. COLT 2015: 1376-1401 - [c25]Qinqing Zheng, Ryota Tomioka:
Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm. NIPS 2015: 3106-3113 - [c24]Behnam Neyshabur, Ryota Tomioka, Nathan Srebro:
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning. ICLR (Workshop) 2015 - [i9]Behnam Neyshabur, Ryota Tomioka, Nathan Srebro:
Norm-Based Capacity Control in Neural Networks. CoRR abs/1503.00036 (2015) - [i8]Liwen Zhang, Subhransu Maji, Ryota Tomioka:
Jointly Learning Multiple Perceptual Similarities. CoRR abs/1503.01521 (2015) - [i7]Qinqing Zheng, Ryota Tomioka:
Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm. CoRR abs/1503.05479 (2015) - [i6]Kishan Wimalawarne, Ryota Tomioka, Masashi Sugiyama:
Theoretical and Experimental Analyses of Tensor-Based Regression and Classification. CoRR abs/1509.01770 (2015) - 2014
- [j11]Toshimitsu Takahashi, Ryota Tomioka, Kenji Yamanishi:
Discovering Emerging Topics in Social Streams via Link-Anomaly Detection. IEEE Trans. Knowl. Data Eng. 26(1): 120-130 (2014) - [c23]Shota Saito, Ryota Tomioka, Kenji Yamanishi:
Early detection of persistent topics in social networks. ASONAM 2014: 417-424 - [c22]Kishan Wimalawarne, Masashi Sugiyama, Ryota Tomioka:
Multitask learning meets tensor factorization: task imputation via convex optimization. NIPS 2014: 2825-2833 - 2013
- [j10]Shinichi Nakajima, Masashi Sugiyama, S. Derin Babacan, Ryota Tomioka:
Global analytic solution of fully-observed variational Bayesian matrix factorization. J. Mach. Learn. Res. 14(1): 1-37 (2013) - [c21]Zenghan Liang, Ryota Tomioka, Hiroshi Murata, Ryo Asaoka, Kenji Yamanishi:
Quantitative Prediction of Glaucomatous Visual Field Loss from Few Measurements. ICDM 2013: 1121-1126 - [c20]Koh Takeuchi, Ryota Tomioka, Katsuhiko Ishiguro, Akisato Kimura, Hiroshi Sawada:
Non-negative Multiple Tensor Factorization. ICDM 2013: 1199-1204 - [c19]Kazuyoshi Yoshii, Ryota Tomioka, Daichi Mochihashi, Masataka Goto:
Infinite Positive Semidefinite Tensor Factorization for Source Separation of Mixture Signals. ICML (3) 2013: 576-584 - [c18]Kazuyoshi Yoshii, Ryota Tomioka, Daichi Mochihashi, Masataka Goto:
Beyond NMF: Time-Domain Audio Source Separation without Phase Reconstruction. ISMIR 2013: 369-374 - [c17]Ryota Tomioka, Taiji Suzuki:
Convex Tensor Decomposition via Structured Schatten Norm Regularization. NIPS 2013: 1331-1339 - [i5]Ryota Tomioka, Taiji Suzuki:
Convex Tensor Decomposition via Structured Schatten Norm Regularization. CoRR abs/1303.6370 (2013) - 2012
- [j9]Atsuhiro Narita, Kohei Hayashi, Ryota Tomioka, Hisashi Kashima:
Tensor factorization using auxiliary information. Data Min. Knowl. Discov. 25(2): 298-324 (2012) - [c16]Franz J. Király, Ryota Tomioka:
A Combinatorial Algebraic Approach for the Identifiability of Low-Rank Matrix Completion. ICML 2012 - [c15]Shinichi Nakajima, Ryota Tomioka, Masashi Sugiyama, S. Derin Babacan:
Perfect Dimensionality Recovery by Variational Bayesian PCA. NIPS 2012: 980-988 - [c14]Kohei Hayashi, Takashi Takenouchi, Ryota Tomioka, Hisashi Kashima:
Self-measuring Similarity for Multi-task Gaussian Process. ICML Unsupervised and Transfer Learning 2012: 145-154 - [c13]Ryota Tomioka, Morten Mørup:
A Bayesian Analysis of the Radioactive Releases of Fukushima. AISTATS 2012: 1243-1251 - [i4]Franz J. Király, Louis Theran, Ryota Tomioka, Takeaki Uno:
The Algebraic Combinatorial Approach for Low-Rank Matrix Completion. CoRR abs/1211.4116 (2012) - 2011
- [j8]Ryota Tomioka, Taiji Suzuki, Masashi Sugiyama:
Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparsity Regularized Estimation. J. Mach. Learn. Res. 12: 1537-1586 (2011) - [j7]Taiji Suzuki, Ryota Tomioka:
SpicyMKL: a fast algorithm for Multiple Kernel Learning with thousands of kernels. Mach. Learn. 85(1-2): 77-108 (2011) - [j6]Stefan Haufe, Ryota Tomioka, Thorsten Dickhaus, Claudia Sannelli, Benjamin Blankertz, Guido Nolte, Klaus-Robert Müller:
Large-scale EEG/MEG source localization with spatial flexibility. NeuroImage 54(2): 851-859 (2011) - [c12]Xu Sun, Hisashi Kashima, Ryota Tomioka, Naonori Ueda, Ping Li:
A New Multi-task Learning Method for Personalized Activity Recognition. ICDM 2011: 1218-1223 - [c11]Toshimitsu Takahashi, Ryota Tomioka, Kenji Yamanishi:
Discovering Emerging Topics in Social Streams via Link Anomaly Detection. ICDM 2011: 1230-1235 - [c10]Ryota Tomioka, Taiji Suzuki, Kohei Hayashi, Hisashi Kashima:
Statistical Performance of Convex Tensor Decomposition. NIPS 2011: 972-980 - [c9]Yasuhiro Urabe, Kenji Yamanishi, Ryota Tomioka, Hiroki Iwai:
Real-Time Change-Point Detection Using Sequentially Discounting Normalized Maximum Likelihood Coding. PAKDD (2) 2011: 185-197 - [c8]Xu Sun, Hisashi Kashima, Ryota Tomioka, Naonori Ueda:
Large Scale Real-Life Action Recognition Using Conditional Random Fields with Stochastic Training. PAKDD (2) 2011: 222-233 - [c7]Atsuhiro Narita, Kohei Hayashi, Ryota Tomioka, Hisashi Kashima:
Tensor Factorization Using Auxiliary Information. ECML/PKDD (2) 2011: 501-516 - [i3]Toshimitsu Takahashi, Ryota Tomioka, Kenji Yamanishi:
Discovering Emerging Topics in Social Streams via Link Anomaly Detection. CoRR abs/1110.2899 (2011) - 2010
- [j5]Neil Rubens, Ryota Tomioka, Masashi Sugiyama:
Output Divergence Criterion for Active Learning in Collaborative Settings. Inf. Media Technol. 5(1): 119-128 (2010) - [j4]Ryota Tomioka, Klaus-Robert Müller:
A regularized discriminative framework for EEG analysis with application to brain-computer interface. NeuroImage 49(1): 415-432 (2010) - [j3]Stefan Haufe, Ryota Tomioka, Guido Nolte, Klaus-Robert Müller, Motoaki Kawanabe:
Modeling Sparse Connectivity Between Underlying Brain Sources for EEG/MEG. IEEE Trans. Biomed. Eng. 57(8): 1954-1963 (2010) - [c6]Ryota Tomioka, Taiji Suzuki, Masashi Sugiyama, Hisashi Kashima:
A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices. ICML 2010: 1087-1094 - [c5]Shinichi Nakajima, Masashi Sugiyama, Ryota Tomioka:
Global Analytic Solution for Variational Bayesian Matrix Factorization. NIPS 2010: 1768-1776 - [i2]Ryota Tomioka, Taiji Suzuki:
Regularization Strategies and Empirical Bayesian Learning for MKL. CoRR abs/1011.3090 (2010)
2000 – 2009
- 2009
- [j2]Ryota Tomioka, Masashi Sugiyama:
Dual-Augmented Lagrangian Method for Efficient Sparse Reconstruction. IEEE Signal Process. Lett. 16(12): 1067-1070 (2009) - [i1]Ryota Tomioka, Taiji Suzuki, Masashi Sugiyama:
Super-Linear Convergence of Dual Augmented-Lagrangian Algorithm for Sparsity Regularized Estimation. CoRR abs/0911.4046 (2009) - 2008
- [j1]Benjamin Blankertz, Ryota Tomioka, Steven Lemm, Motoaki Kawanabe, Klaus-Robert Müller:
Optimizing Spatial filters for Robust EEG Single-Trial Analysis. IEEE Signal Process. Mag. 25(1): 41-56 (2008) - 2007
- [c4]Ryota Tomioka, Kazuyuki Aihara:
Classifying matrices with a spectral regularization. ICML 2007: 895-902 - [c3]Benjamin Blankertz, Motoaki Kawanabe, Ryota Tomioka, Friederike U. Hohlefeld, Vadim V. Nikulin, Klaus-Robert Müller:
Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing. NIPS 2007: 113-120 - 2006
- [c2]Ryota Tomioka, Guido Dornhege, Guido Nolte, Kazuyuki Aihara, Klaus-Robert Müller:
Optimizing Spectral Filters for Single Trial EEG Classification. DAGM-Symposium 2006: 414-423 - [c1]Ryota Tomioka, Kazuyuki Aihara, Klaus-Robert Müller:
Logistic Regression for Single Trial EEG Classification. NIPS 2006: 1377-1384
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-15 21:44 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint