


default search action
Michèle Sebag
Person information
- affiliation: University of Paris-Sud, Laboratory for Computer Science (LRI), France
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [i42]Armand Lacombe, Michèle Sebag:
Asymmetrical Latent Representation for Individual Treatment Effect Modeling. CoRR abs/2501.14006 (2025) - 2024
- [c157]Nicolas Atienza, Roman Bresson, Cyriaque Rousselot, Philippe Caillou, Johanne Cohen, Christophe Labreuche, Michèle Sebag:
Cutting the Black Box: Conceptual Interpretation of a Deep Neural Net with Multi-Modal Embeddings and Multi-Criteria Decision Aid. IJCAI 2024: 3669-3678 - [c156]Audrey Poinsot, Alessandro Ferreira Leite, Nicolas Chesneau, Michèle Sebag, Marc Schoenauer:
Learning Structural Causal Models through Deep Generative Models: Methods, Guarantees, and Challenges. IJCAI 2024: 8207-8215 - [c155]Alice Lacan, Blaise Hanczar, Michèle Sebag:
Frugal Generative Modeling for Tabular Data. ECML/PKDD (8) 2024: 55-72 - [c154]Johanne Cohen, Emmanuel Goutierre, Hayg Guler, Fatios Kapotos, Sida-Bastien Li, Michèle Sebag, Bowen Zhu:
Modelling Dynamical Systems: Learning ODEs with No Internal ODE Resolution. RP 2024: 221-237 - [i41]Audrey Poinsot, Alessandro Ferreira Leite, Nicolas Chesneau, Michèle Sebag, Marc Schoenauer:
Learning Structural Causal Models through Deep Generative Models: Methods, Guarantees, and Challenges. CoRR abs/2405.05025 (2024) - [i40]Shuyu Dong, Michèle Sebag, Kento Uemura, Akito Fujii, Shuang Chang, Yusuke Koyanagi, Koji Maruhashi:
DCDILP: a distributed learning method for large-scale causal structure learning. CoRR abs/2406.10481 (2024) - 2023
- [j28]Alice Lacan, Michèle Sebag, Blaise Hanczar:
GAN-based data augmentation for transcriptomics: survey and comparative assessment. Bioinform. 39(Supplement-1): 111-120 (2023) - [c153]Guillaume Bied, Christophe Gaillac, Morgane Hoffmann, Philippe Caillou, Bruno Crépon, Solal Nathan, Michèle Sebag:
Fairness in job recommendations: estimating, explaining, and reducing gender gaps. AEQUITAS@ECAI 2023 - [c152]Guillaume Bied, Elia Perennes, Solal Nathan, Victor Naya, Philippe Caillou, Bruno Crépon, Christophe Gaillac, Michèle Sebag:
RECTO : REcommandation diminuant la Congestion par Transport Optimal. APIA 2023: 89-98 - [c151]Guillaume Bied, Solal Nathan, Elia Perennes, Morgane Hoffmann, Philippe Caillou, Bruno Crépon, Christophe Gaillac, Michèle Sebag:
Toward Job Recommendation for All. IJCAI 2023: 5906-5914 - 2022
- [j27]Diviyan Kalainathan, Olivier Goudet
, Isabelle Guyon, David Lopez-Paz, Michèle Sebag:
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs. J. Mach. Learn. Res. 23: 219:1-219:62 (2022) - [c150]Herilalaina Rakotoarison, Louisot Milijaona, Andry Rasoanaivo, Michèle Sebag, Marc Schoenauer:
Learning meta-features for AutoML. ICLR 2022 - [c149]Shuyu Dong, Michèle Sebag:
From Graphs to DAGs: A Low-Complexity Model and a Scalable Algorithm. ECML/PKDD (5) 2022: 107-122 - [i39]Shuyu Dong, Michèle Sebag:
From graphs to DAGs: a low-complexity model and a scalable algorithm. CoRR abs/2204.04644 (2022) - [i38]Shuyu Dong, Kento Uemura, Akito Fujii, Shuang Chang, Yusuke Koyanagi, Koji Maruhashi, Michèle Sebag:
High-Dimensional Causal Discovery: Learning from Inverse Covariance via Independence-based Decomposition. CoRR abs/2211.14221 (2022) - 2021
- [j26]Philippe Caillou, Jonas Renault, Jean-Daniel Fekete
, Anne-Catherine Letournel, Michèle Sebag:
Cartolabe: A Web-Based Scalable Visualization of Large Document Collections. IEEE Computer Graphics and Applications 41(2): 76-88 (2021) - [c148]Ksenia Gasnikova, Olivier Allais, Michèle Sebag:
Towards causal modeling of nutritional outcomes. CAWS 2021: 5-19 - [c147]Erich Kummerfeld, Thomas Woolf, Will Glad, Michèle Sebag, Sisi Ma:
Important Topics in Causal Analysis: Summary of the CAWS 2021 Round Table Discussion. CAWS 2021: 52-54 - [c146]Omar Shrit, Michèle Sebag:
I2SL: Learn How to Swarm Autonomous Quadrotors Using Iterative Imitation Supervised Learning. EPIA 2021: 418-432 - [c145]Omar Shrit, David Filliat, Michèle Sebag:
Iterative Learning for Model Reactive Control: Application to Autonomous Multi-agent Control. ICARA 2021: 140-146 - [c144]Roman Bresson, Johanne Cohen, Eyke Hüllermeier, Christophe Labreuche, Michèle Sebag:
On the Identifiability of Hierarchical Decision Models. KR 2021: 151-161 - [i37]Victor Berger, Michèle Sebag:
Boltzmann Tuning of Generative Models. CoRR abs/2104.05252 (2021) - [i36]Mikhail Evchenko, Joaquin Vanschoren, Holger H. Hoos, Marc Schoenauer, Michèle Sebag:
Frugal Machine Learning. CoRR abs/2111.03731 (2021) - 2020
- [j25]Remy Kusters
, Dusan Misevic, Hugues Berry
, Antoine Cully
, Yann Le Cunff
, Loic Dandoy, Natalia Díaz Rodríguez
, Marion Ficher, Jonathan Grizou, Alice Othmani, Themis Palpanas, Matthieu Komorowski
, Patrick Loiseau, Clément Moulin-Frier, Santino Nanini, Daniele Quercia, Michèle Sebag, Françoise Fogelman-Soulié, Sofiane Taleb, Liubov Tupikina, Vaibhav Sahu, Jill-Jênn Vie
, Fatima Wehbi:
Interdisciplinary Research in Artificial Intelligence: Challenges and Opportunities. Frontiers Big Data 3: 577974 (2020) - [c143]Mandar Chandorkar, Cyril Furtlehner, Bala Poduval, Enrico Camporeale, Michèle Sebag:
Dynamic Time Lag Regression: Predicting What & When. ICLR 2020 - [c142]Roman Bresson, Johanne Cohen, Eyke Hüllermeier, Christophe Labreuche, Michèle Sebag:
Neural Representation and Learning of Hierarchical 2-additive Choquet Integrals. IJCAI 2020: 1984-1991 - [i35]Victor Berger, Michèle Sebag:
From abstract items to latent spaces to observed data and back: Compositional Variational Auto-Encoder. CoRR abs/2001.07910 (2020) - [i34]Philippe Caillou, Jonas Renault, Jean-Daniel Fekete
, Anne-Catherine Letournel, Michèle Sebag:
Cartolabe: A Web-Based Scalable Visualization of Large Document Collections. CoRR abs/2003.00975 (2020) - [i33]Victor Berger, Michèle Sebag:
Variational Auto-Encoder: not all failures are equal. CoRR abs/2003.01972 (2020) - [i32]Gwendoline de Bie, Herilalaina Rakotoarison
, Gabriel Peyré, Michèle Sebag:
Distribution-Based Invariant Deep Networks for Learning Meta-Features. CoRR abs/2006.13708 (2020)
2010 – 2019
- 2019
- [c141]Alice Schoenauer Sebag, Louise Heinrich, Marc Schoenauer, Michèle Sebag, Lani F. Wu, Steven J. Altschuler:
Multi-Domain Adversarial Learning. ICLR (Poster) 2019 - [c140]Herilalaina Rakotoarison
, Marc Schoenauer, Michèle Sebag:
Automated Machine Learning with Monte-Carlo Tree Search. IJCAI 2019: 3296-3303 - [c139]Victor Berger
, Michèle Sebag:
From Abstract Items to Latent Spaces to Observed Data and Back: Compositional Variational Auto-Encoder. ECML/PKDD (1) 2019: 274-289 - [c138]Guillaume Doquet, Michèle Sebag:
Agnostic Feature Selection. ECML/PKDD (1) 2019: 343-358 - [p6]Olivier Goudet
, Diviyan Kalainathan, Michèle Sebag, Isabelle Guyon:
Learning Bivariate Functional Causal Models. Cause Effect Pairs in Machine Learning 2019: 101-153 - [p5]Diviyan Kalainathan, Olivier Goudet
, Michèle Sebag, Isabelle Guyon:
Discriminant Learning Machines. Cause Effect Pairs in Machine Learning 2019: 155-189 - [p4]Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Sergio Escalera
, Zhengying Liu, Damir Jajetic, Bisakha Ray, Mehreen Saeed, Michèle Sebag, Alexander R. Statnikov, Wei-Wei Tu, Evelyne Viegas:
Analysis of the AutoML Challenge Series 2015-2018. Automated Machine Learning 2019: 177-219 - [i31]Alice Schoenauer Sebag, Louise Heinrich, Marc Schoenauer, Michèle Sebag, Lani F. Wu, Steven J. Altschuler:
Multi-Domain Adversarial Learning. CoRR abs/1903.09239 (2019) - [i30]Herilalaina Rakotoarison, Marc Schoenauer, Michèle Sebag:
Automated Machine Learning with Monte-Carlo Tree Search (Extended Version). CoRR abs/1906.00170 (2019) - [i29]Jorge G. Madrid, Hugo Jair Escalante, Eduardo F. Morales, Wei-Wei Tu, Yang Yu, Lisheng Sun-Hosoya, Isabelle Guyon, Michèle Sebag:
Towards AutoML in the presence of Drift: first results. CoRR abs/1907.10772 (2019) - 2018
- [c137]Lisheng Sun-Hosoya, Isabelle Guyon, Michèle Sebag:
ActivMetal: Algorithm Recommendation with Active Meta Learning. IAL@PKDD/ECML 2018: 48-59 - 2017
- [j24]Mustafa Misir
, Michèle Sebag:
Alors: An algorithm recommender system. Artif. Intell. 244: 291-314 (2017) - [j23]Yoann Isaac, Quentin Barthélemy, Cédric Gouy-Pailler, Michèle Sebag, Jamal Atif:
Multi-dimensional signal approximation with sparse structured priors using split Bregman iterations. Signal Process. 130: 389-402 (2017) - [c136]Thomas Schmitt, François Gonard, Phillipe Caillou, Michèle Sebag:
Language Modelling for Collaborative Filtering: Application to Job Applicant Matching. ICTAI 2017: 1226-1233 - [r6]Lorenza Saitta, Michèle Sebag:
Grammatical Inference. Encyclopedia of Machine Learning and Data Mining 2017: 569-570 - [r5]Michèle Sebag:
Nonstandard Criteria in Evolutionary Learning. Encyclopedia of Machine Learning and Data Mining 2017: 906-916 - [r4]Lorenza Saitta, Michèle Sebag:
Phase Transitions in Machine Learning. Encyclopedia of Machine Learning and Data Mining 2017: 974-982 - [i28]François Gonard, Marc Schoenauer, Michèle Sebag:
ASAP.V2 and ASAP.V3: Sequential optimization of an Algorithm Selector and a Scheduler. OASC 2017: 8-11 - [i27]Olivier Bousquet, Sylvain Gelly, Karol Kurach, Marc Schoenauer, Michèle Sebag, Olivier Teytaud, Damien Vincent:
Toward Optimal Run Racing: Application to Deep Learning Calibration. CoRR abs/1706.03199 (2017) - [i26]Alice Schoenauer Sebag, Marc Schoenauer, Michèle Sebag:
Stochastic Gradient Descent: Going As Fast As Possible But Not Faster. CoRR abs/1709.01427 (2017) - 2016
- [c135]Thomas Schmitt, Phillipe Caillou, Michèle Sebag:
Matching Jobs and Resumes: a Deep Collaborative Filtering Task. GCAI 2016: 124-137 - [c134]Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera, Damir Jajetic, James Robert Lloyd, Núria Macià, Bisakha Ray, Lukasz Romaszko, Michèle Sebag, Alexander R. Statnikov, Sébastien Treguer, Evelyne Viegas:
A brief Review of the ChaLearn AutoML Challenge: Any-time Any-dataset Learning without Human Intervention. AutoML@ICML 2016: 21-30 - [c133]Michèle Sebag, Riad Akrour
, Basile Mayeur, Marc Schoenauer
:
Anti Imitation-Based Policy Learning. ECML/PKDD (2) 2016: 559-575 - [i25]Yoann Isaac, Quentin Barthélemy, Cédric Gouy-Pailler, Michèle Sebag, Jamal Atif:
Multi-dimensional signal approximation with sparse structured priors using split Bregman iterations. CoRR abs/1609.09525 (2016) - 2015
- [c132]Michèle Sebag:
Collaborative Algorithm Platforms. DATA 2015: IS-5 - [c131]Masaharu Yoshioka
, Masahiko Itoh, Michèle Sebag:
Interactive Metric Learning-Based Visual Data Exploration: Application to the Visualization of a Scientific Social Network. ISIP 2015: 142-156 - 2014
- [j22]Michèle Sebag:
A tour of machine learning: An AI perspective. AI Commun. 27(1): 11-23 (2014) - [j21]Cheng-Wei Chou, Ping-Chiang Chou, Jean-Joseph Christophe, Adrien Couëtoux, Pierre de Freminville, Nicolas Galichet, Chang-Shing Lee, Jialin Liu, David Lupien Saint-Pierre, Michèle Sebag, Olivier Teytaud, Mei-Hui Wang, Li-Wen Wu, Shi-Jim Yen:
Strategic Choices in Optimization. J. Inf. Sci. Eng. 30(3): 727-747 (2014) - [j20]Xiangliang Zhang
, Cyril Furtlehner, Cécile Germain-Renaud, Michèle Sebag:
Data Stream Clustering With Affinity Propagation. IEEE Trans. Knowl. Data Eng. 26(7): 1644-1656 (2014) - [c130]Joel Ribeiro
, Josep Carmona
, Mustafa Misir
, Michèle Sebag:
A Recommender System for Process Discovery. BPM 2014: 67-83 - [c129]Marc Schoenauer, Riad Akrour, Michèle Sebag, Jean-Christophe Souplet:
Programming by Feedback. ICML 2014: 1503-1511 - [c128]Artémis Llamosi, Adel Mezine, Florence d'Alché-Buc, Véronique Letort
, Michèle Sebag:
Experimental Design in Dynamical System Identification: A Bandit-Based Active Learning Approach. ECML/PKDD (2) 2014: 306-321 - [c127]Blaise Hanczar, Michèle Sebag:
Combination of One-Class Support Vector Machines for Classification with Reject Option. ECML/PKDD (1) 2014: 547-562 - [c126]Ilya Loshchilov, Marc Schoenauer, Michèle Sebag, Nikolaus Hansen:
Maximum Likelihood-Based Online Adaptation of Hyper-Parameters in CMA-ES. PPSN 2014: 70-79 - [c125]Guohua Zhang, Michèle Sebag:
Coupling Evolution and Information Theory for Autonomous Robotic Exploration. PPSN 2014: 852-861 - [p3]Sébastien Rebecchi, Hélène Paugam-Moisy, Michèle Sebag:
Learning Sparse Features with an Auto-Associator. Growing Adaptive Machines 2014: 139-158 - [i24]Nicolas Galichet, Michèle Sebag, Olivier Teytaud:
Exploration vs Exploitation vs Safety: Risk-averse Multi-Armed Bandits. CoRR abs/1401.1123 (2014) - [i23]Ilya Loshchilov, Marc Schoenauer, Michèle Sebag, Nikolaus Hansen:
Maximum Likelihood-based Online Adaptation of Hyper-parameters in CMA-ES. CoRR abs/1406.2623 (2014) - [i22]Luc De Raedt, Siegfried Nijssen, Barry O'Sullivan, Michèle Sebag:
Constraints, Optimization and Data (Dagstuhl Seminar 14411). Dagstuhl Reports 4(10): 1-31 (2014) - 2013
- [j19]Weijia Wang, Michèle Sebag:
Hypervolume indicator and dominance reward based multi-objective Monte-Carlo Tree Search. Mach. Learn. 92(2-3): 403-429 (2013) - [c124]Nicolas Galichet, Michèle Sebag, Olivier Teytaud:
Exploration vs Exploitation vs Safety: Risk-Aware Multi-Armed Bandits. ACML 2013: 245-260 - [c123]Shigeru Takano, Ilya Loshchilov, David Meunier, Michèle Sebag, Einoshin Suzuki:
Fast Adaptive Object Detection towards a Smart Environment by a Mobile Robot. AmI 2013: 182-197 - [c122]Manuel Loth, Michèle Sebag, Youssef Hamadi, Marc Schoenauer
:
Bandit-Based Search for Constraint Programming. CP 2013: 464-480 - [c121]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Intensive surrogate model exploitation in self-adaptive surrogate-assisted cma-es (saacm-es). GECCO 2013: 439-446 - [c120]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Bi-population CMA-ES agorithms with surrogate models and line searches. GECCO (Companion) 2013: 1177-1184 - [c119]François-Michel De Rainville, Michèle Sebag, Christian Gagné
, Marc Schoenauer
, Denis Laurendeau:
Sustainable cooperative coevolution with a multi-armed bandit. GECCO 2013: 1517-1524 - [c118]Yoann Isaac, Quentin Barthélemy, Jamal Atif, Cédric Gouy-Pailler, Michèle Sebag:
Multi-dimensional sparse structured signal approximation using split bregman iterations. ICASSP 2013: 3826-3830 - [c117]Rémi Bardenet, Mátyás Brendel, Balázs Kégl, Michèle Sebag:
Collaborative hyperparameter tuning. ICML (2) 2013: 199-207 - [c116]Manuel Loth, Michèle Sebag, Youssef Hamadi, Marc Schoenauer
, Christian Schulte:
Hybridizing Constraint Programming and Monte-Carlo Tree Search: Application to the Job Shop Problem. LION 2013: 315-320 - [i21]Yoann Isaac, Quentin Barthélemy, Jamal Atif, Cédric Gouy-Pailler, Michèle Sebag:
Multi-dimensional sparse structured signal approximation using split Bregman iterations. CoRR abs/1303.5197 (2013) - [i20]François-Michel De Rainville, Michèle Sebag, Christian Gagné, Marc Schoenauer, Denis Laurendeau:
Sustainable Cooperative Coevolution with a Multi-Armed Bandit. CoRR abs/1304.3138 (2013) - [i19]Ilya Loshchilov, Marc Schoenauer, Michèle Sebag:
KL-based Control of the Learning Schedule for Surrogate Black-Box Optimization. CoRR abs/1308.2655 (2013) - 2012
- [j18]Sylvain Gelly, Levente Kocsis, Marc Schoenauer
, Michèle Sebag, David Silver, Csaba Szepesvári, Olivier Teytaud:
The grand challenge of computer Go: Monte Carlo tree search and extensions. Commun. ACM 55(3): 106-113 (2012) - [c115]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Black-box optimization benchmarking of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-2012 noiseless testbed. GECCO (Companion) 2012: 175-182 - [c114]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Black-box optimization benchmarking of IPOP-saACM-ES on the BBOB-2012 noisy testbed. GECCO (Companion) 2012: 261-268 - [c113]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Black-box optimization benchmarking of NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the BBOB-2012 noiseless testbed. GECCO (Companion) 2012: 269-276 - [c112]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy. GECCO 2012: 321-328 - [c111]Tianshi Chen, Yunji Chen
, Marc Duranton, Qi Guo, Atif Hashmi, Mikko H. Lipasti, Andrew Nere, Shi Qiu, Michèle Sebag, Olivier Temam:
BenchNN: On the broad potential application scope of hardware neural network accelerators. IISWC 2012: 36-45 - [c110]Thomas Philip Runarsson
, Marc Schoenauer
, Michèle Sebag:
Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling. LION 2012: 160-174 - [c109]Michèle Sebag, Olivier Teytaud:
Upper Confidence Tree-Based Consistent Reactive Planning Application to MineSweeper. LION 2012: 220-234 - [c108]Riad Akrour, Marc Schoenauer
, Michèle Sebag:
APRIL: Active Preference Learning-Based Reinforcement Learning. ECML/PKDD (2) 2012: 116-131 - [c107]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Alternative Restart Strategies for CMA-ES. PPSN (1) 2012: 296-305 - [c106]Weijia Wang, Michèle Sebag:
Multi-objective Monte-Carlo Tree Search. ACML 2012: 507-522 - [p2]Jorge Maturana, Álvaro Fialho, Frédéric Saubion, Marc Schoenauer
, Frédéric Lardeux
, Michèle Sebag:
Adaptive Operator Selection and Management in Evolutionary Algorithms. Autonomous Search 2012: 161-189 - [p1]Alejandro Arbelaez
, Youssef Hamadi, Michèle Sebag:
Continuous Search in Constraint Programming. Autonomous Search 2012: 219-243 - [i18]Ilya Loshchilov, Marc Schoenauer, Michèle Sebag:
Self-Adaptive Surrogate-Assisted Covariance Matrix Adaptation Evolution Strategy. CoRR abs/1204.2356 (2012) - [i17]Ilya Loshchilov, Marc Schoenauer, Michèle Sebag:
Black-box optimization benchmarking of IPOP-saACM-ES on the BBOB-2012 noisy testbed. CoRR abs/1206.0974 (2012) - [i16]Ilya Loshchilov, Marc Schoenauer, Michèle Sebag:
Black-box optimization benchmarking of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-2012 noiseless testbed. CoRR abs/1206.5780 (2012) - [i15]Ilya Loshchilov, Marc Schoenauer, Michèle Sebag:
Alternative Restart Strategies for CMA-ES. CoRR abs/1207.0206 (2012) - [i14]Riad Akrour
, Marc Schoenauer, Michèle Sebag:
APRIL: Active Preference-learning based Reinforcement Learning. CoRR abs/1208.0984 (2012) - [i13]Thomas Philip Runarsson, Marc Schoenauer, Michèle Sebag:
Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling. CoRR abs/1210.0374 (2012) - 2011
- [j17]Tamás Éltetö, Cécile Germain-Renaud, Pascal Bondon
, Michèle Sebag:
Towards Non-Stationary Grid Models. J. Grid Comput. 9(4): 423-440 (2011) - [j16]Cédric Gouy-Pailler, Michèle Sebag, Anthony Larue, Antoine Souloumiac:
Single trial variability in brain-computer interfaces based on motor imagery: Learning in the presence of labeling noise. Int. J. Imaging Syst. Technol. 21(2): 148-157 (2011) - [c105]Cécile Germain-Renaud, Alain Cady, Philippe Gauron, Michel Jouvin, Charles Loomis, Janusz Martyniak, Julien Nauroy, Guillaume Philippon, Michèle Sebag:
The Grid Observatory. CCGRID 2011: 114-123 - [c104]Sylvain Chevallier, Nicolas Bredèche, Hélène Paugam-Moisy, Michèle Sebag:
Emergence of temporal and spatial synchronous behaviors in a foraging swarm. ECAL 2011: 125-132 - [c103]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Not All Parents Are Equal for MO-CMA-ES. EMO 2011: 31-45 - [c102]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Adaptive coordinate descent. GECCO 2011: 885-892 - [c101]Asuki Kouno, Jean-Marc Montanier, Shigeru Takano, Nicolas Bredèche, Marc Schoenauer
, Michèle Sebag, Einoshin Suzuki:
On-Board Evolutionary Algorithm and Off-Line Rule Discovery for Column Formation in Swarm Robotics. IAT 2011: 220-227 - [c100]David Meunier, Michèle Sebag, Shin Ando
:
Characterizing Anomalous Behaviors and Revising Robotic Controllers. ICDM Workshops 2011: 705-710 - [c99]Emi Matsumoto, Michèle Sebag, Einoshin Suzuki:
Using SVM to Avoid Humans: A Case of a Small Autonomous Mobile Robot in an Office. ISCIS 2011: 283-287 - [c98]Riad Akrour, Marc Schoenauer
, Michèle Sebag:
Preference-Based Policy Learning. ECML/PKDD (1) 2011: 12-27 - [c97]Adrien Couëtoux, Mario Milone, Mátyás Brendel, Hassen Doghmen, Michèle Sebag, Olivier Teytaud:
Continuous RAVE. ACML 2011: 19-31 - 2010
- [j15]Álvaro Fialho, Luís Da Costa, Marc Schoenauer
, Michèle Sebag:
Analyzing bandit-based adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60(1-2): 25-64 (2010) - [j14]José L. Balcázar, Francesco Bonchi, Aristides Gionis, Michèle Sebag:
Guest editors' introduction: special issue of selected papers from ECML PKDD 2010. Data Min. Knowl. Discov. 21(2): 221-223 (2010) - [j13]José L. Balcázar, Francesco Bonchi, Aristides Gionis, Michèle Sebag:
Special issue for ECML PKDD 2010: Guest editors' introduction. Mach. Learn. 81(1): 1-4 (2010) - [c96]Tamás Éltetö, Cécile Germain-Renaud, Pascal Bondon
, Michèle Sebag:
Discovering Piecewise Linear Models of Grid Workload. CCGRID 2010: 474-484 - [c95]Ludovic Arnold, Hélène Paugam-Moisy, Michèle Sebag:
Unsupervised Layer-Wise Model Selection in Deep Neural Networks. ECAI 2010: 915-920 - [c94]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
A mono surrogate for multiobjective optimization. GECCO 2010: 471-478 - [c93]Álvaro Fialho, Marc Schoenauer
, Michèle Sebag:
Toward comparison-based adaptive operator selection. GECCO 2010: 767-774 - [c92]Álvaro Fialho, Marc Schoenauer
, Michèle Sebag:
Fitness-AUC bandit adaptive strategy selection vs. the probability matching one within differential evolution: an empirical comparison on the bbob-2010 noiseless testbed. GECCO (Companion) 2010: 1535-1542 - [c91]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
A pareto-compliant surrogate approach for multiobjective optimization. GECCO (Companion) 2010: 1979-1982 - [c90]Xiangliang Zhang
, Cécile Germain, Michèle Sebag:
Adaptively detecting changes in Autonomic Grid Computing. GRID 2010: 387-392 - [c89]Xiangliang Zhang
, Wei Wang, Kjetil Nørvåg
, Michèle Sebag:
K-AP: Generating Specified K Clusters by Efficient Affinity Propagation. ICDM 2010: 1187-1192 - [c88]Alejandro Arbelaez, Youssef Hamadi, Michèle Sebag:
Building Portfolios for the Protein Structure Prediction Problem. WCB@ICLP 2010: 2-7 - [c87]Romaric Gaudel, Michèle Sebag:
Feature Selection as a One-Player Game. ICML 2010: 359-366 - [c86]Alejandro Arbelaez
, Youssef Hamadi, Michèle Sebag:
Continuous Search in Constraint Programming. ICTAI (1) 2010: 53-60 - [c85]Sylvain Chevallier, Hélène Paugam-Moisy, Michèle Sebag:
SpikeAnts, a spiking neuron network modelling the emergence of organization in a complex system. NIPS 2010: 379-387 - [c84]Álvaro Fialho, Raymond Ros, Marc Schoenauer
, Michèle Sebag:
Comparison-Based Adaptive Strategy Selection with Bandits in Differential Evolution. PPSN (1) 2010: 194-203 - [c83]Pierre Delarboulas, Marc Schoenauer
, Michèle Sebag:
Open-Ended Evolutionary Robotics: An Information Theoretic Approach. PPSN (1) 2010: 334-343 - [c82]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Comparison-Based Optimizers Need Comparison-Based Surrogates. PPSN (1) 2010: 364-373 - [c81]Ilya Loshchilov, Marc Schoenauer
, Michèle Sebag:
Dominance-Based Pareto-Surrogate for Multi-Objective Optimization. SEAL 2010: 230-239 - [e4]José L. Balcázar, Francesco Bonchi, Aristides Gionis, Michèle Sebag:
Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part I. Lecture Notes in Computer Science 6321, Springer 2010, ISBN 978-3-642-15879-7 [contents] - [e3]José L. Balcázar, Francesco Bonchi, Aristides Gionis, Michèle Sebag:
Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part II. Lecture Notes in Computer Science 6322, Springer 2010, ISBN 978-3-642-15882-7 [contents] - [e2]José L. Balcázar, Francesco Bonchi, Aristides Gionis, Michèle Sebag:
Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part III. Lecture Notes in Computer Science 6323, Springer 2010, ISBN 978-3-642-15938-1 [contents] - [r3]Lorenza Saitta, Michèle Sebag:
Grammatical Inference. Encyclopedia of Machine Learning 2010: 458 - [r2]Michèle Sebag:
Nonstandard Criteria in Evolutionary Learning. Encyclopedia of Machine Learning 2010: 722-731 - [r1]Lorenza Saitta, Michèle Sebag:
Phase Transitions in Machine Learning. Encyclopedia of Machine Learning 2010: 767-773 - [i12]Pierre Delarboulas, Marc Schoenauer, Michèle Sebag:
Open-Ended Evolutionary Robotics: an Information Theoretic Approach. CoRR abs/1006.4959 (2010)
2000 – 2009
- 2009
- [c80]Xiangliang Zhang, Michèle Sebag, Cécile Germain-Renaud:
Multi-scale Real-Time Grid Monitoring with Job Stream Mining. CCGRID 2009: 420-427 - [c79]Jorge Maturana, Álvaro Fialho, Frédéric Saubion, Marc Schoenauer
, Michèle Sebag:
Extreme compass and Dynamic Multi-Armed Bandits for Adaptive Operator Selection. IEEE Congress on Evolutionary Computation 2009: 365-372 - [c78]Cédric Hartland, Nicolas Bredèche, Michèle Sebag:
Memory-enhanced Evolutionary Robotics: The Echo State Network Approach. IEEE Congress on Evolutionary Computation 2009: 2788-2795 - [c77]Álvaro Fialho, Marc Schoenauer
, Michèle Sebag:
Analysis of adaptive operator selection techniques on the royal road and long k-path problems. GECCO 2009: 779-786 - [c76]Philippe Rolet, Michèle Sebag, Olivier Teytaud:
Optimal robust expensive optimization is tractable. GECCO 2009: 1951-1956 - [c75]Álvaro Fialho, Luís Da Costa, Marc Schoenauer, Michèle Sebag:
Extreme: dynamic multi-armed bandits for adaptive operator selection. GECCO (Companion) 2009: 2213-2216 - [c74]Xiangliang Zhang, Cyril Furtlehner, Julien Perez, Cécile Germain-Renaud, Michèle Sebag:
Toward autonomic grids: analyzing the job flow with affinity streaming. KDD 2009: 987-996 - [c73]Álvaro Fialho, Luís Da Costa, Marc Schoenauer
, Michèle Sebag:
Dynamic Multi-Armed Bandits and Extreme Value-Based Rewards for Adaptive Operator Selection in Evolutionary Algorithms. LION 2009: 176-190 - [c72]Philippe Rolet, Michèle Sebag, Olivier Teytaud:
Boosting Active Learning to Optimality: A Tractable Monte-Carlo, Billiard-Based Algorithm. ECML/PKDD (2) 2009: 302-317 - [i11]Cyril Furtlehner, Michèle Sebag, Xiangliang Zhang:
Scaling Analysis of Affinity Propagation. CoRR abs/0910.1800 (2009) - 2008
- [j12]Antoine Cornuéjols, Michèle Sebag:
A note on phase transitions and computational pitfalls of learning from sequences. J. Intell. Inf. Syst. 31(2): 177-189 (2008) - [j11]Alexandre Termier, Marie-Christine Rousset, Michèle Sebag, Kouzou Ohara, Takashi Washio, Hiroshi Motoda:
DryadeParent, An Efficient and Robust Closed Attribute Tree Mining Algorithm. IEEE Trans. Knowl. Data Eng. 20(3): 300-320 (2008) - [c71]Luís Da Costa, Álvaro Fialho, Marc Schoenauer, Michèle Sebag:
Adaptive operator selection with dynamic multi-armed bandits. GECCO 2008: 913-920 - [c70]Xiangliang Zhang, Cyril Furtlehner, Michèle Sebag:
Data Streaming with Affinity Propagation. ECML/PKDD (2) 2008: 628-643 - [c69]Álvaro Fialho, Luís Da Costa, Marc Schoenauer
, Michèle Sebag:
Extreme Value Based Adaptive Operator Selection. PPSN 2008: 175-184 - [c68]Xiangliang Zhang, Cyril Furtlehner, Michèle Sebag:
Distributed and Incremental Clustering Based on Weighted Affinity Propagation. STAIRS 2008: 199-210 - [i10]Nicolas Baskiotis, Michèle Sebag, Marie-Claude Gaudel:
SoftwareTesting with Active Learning in a Graph. Evolutionary Test Generation 2008 - 2007
- [c67]Christian Gagné
, Michèle Sebag, Marc Schoenauer, Marco Tomassini:
Ensemble learning for free with evolutionary algorithms? GECCO 2007: 1782-1789 - [c66]Xiangliang Zhang, Michèle Sebag, Cécile Germain:
Toward Behavioral Modeling of a Grid System: Mining the Logging and Bookkeeping Files. ICDM Workshops 2007: 581-588 - [c65]Nicolas Baskiotis, Michèle Sebag, Marie-Claude Gaudel, Sandrine-Dominique Gouraud:
A Machine Learning Approach for Statistical Software Testing. IJCAI 2007: 2274-2279 - [c64]Nicolas Baskiotis, Michèle Sebag:
Structural Statistical Software Testing with Active Learning in a Graph. ILP 2007: 49-62 - [c63]Romaric Gaudel, Michèle Sebag, Antoine Cornuéjols:
A Phase Transition-Based Perspective on Multiple Instance Kernels. ILP 2007: 112-121 - [i9]Nicolas Baskiotis, Michèle Sebag:
Structural Sampling for Statistical Software Testing. Probabilistic, Logical and Relational Learning - A Further Synthesis 2007 - [i8]Christian Gagné, Michèle Sebag, Marc Schoenauer, Marco Tomassini:
Ensemble Learning for Free with Evolutionary Algorithms ? CoRR abs/0704.3905 (2007) - [i7]Nicolas Godzik, Marc Schoenauer, Michèle Sebag:
Evolving Symbolic Controllers. CoRR abs/0705.1244 (2007) - 2006
- [c62]Vojtech Krmicek, Michèle Sebag:
Functional Brain Imaging with Multi-objective Multi-modal Evolutionary Optimization. PPSN 2006: 382-391 - [c61]Christian Gagné
, Marc Schoenauer, Michèle Sebag, Marco Tomassini:
Genetic Programming for Kernel-Based Learning with Co-evolving Subsets Selection. PPSN 2006: 1008-1017 - [i6]Marc Schoenauer, Michèle Sebag:
Using Domain Knowledge in Evolutionary System Identification. CoRR abs/cs/0602021 (2006) - [i5]Alain Ratle, Michèle Sebag:
Avoiding the Bloat with Stochastic Grammar-based Genetic Programming. CoRR abs/cs/0602022 (2006) - [i4]Christian Gagné, Marc Schoenauer, Michèle Sebag, Marco Tomassini:
Genetic Programming for Kernel-based Learning with Co-evolving Subsets Selection. CoRR abs/cs/0611135 (2006) - [i3]Vojtech Krmicek, Michèle Sebag:
Functional Brain Imaging with Multi-Objective Multi-Modal Evolutionary Optimization. CoRR abs/cs/0611138 (2006) - 2005
- [c60]Nicolas Pernot, Antoine Cornuéjols, Michèle Sebag:
Phase transitions in grammatical inference. CAP 2005: 49-60 - [c59]Sylvain Gelly, Nicolas Bredèche, Michèle Sebag:
HMM hiérarchiques et factorisés: mécanisme d'inférence et apprentissage à partir de peu de données. CAP 2005: 143-144 - [c58]Nicolas Baskiotis, Michèle Sebag, Olivier Teytaud:
Systèmes inductifs-déductifs: une approche statistique. CAP 2005: 145-146 - [c57]Nicolas Tarrisson, Michèle Sebag, Olivier Teytaud, Julien Lefèvre, Sylvain Baillet:
Multi-objective Multi-modal Optimization for Mining Spatio-temporal Patterns. CAP 2005: 217-230 - [c56]Elena Marchiori, Michèle Sebag:
Bayesian Learning with Local Support Vector Machines for Cancer Classification with Gene Expression Data. EvoWorkshops 2005: 74-83 - [c55]Sylvain Gelly, Michèle Sebag, Nicolas Bredèche:
Inférence dans les HMM hiérarchiques et factorisés : changement de représentation vers le formalisme des Réseaux Bayésiens. EGC (Ateliers) 2005: 57-60 - [c54]Alexandre Termier, Marie-Christine Rousset, Michèle Sebag, Kouzou Ohara, Takashi Washio, Hiroshi Motoda:
Efficient Mining of High Branching Factor Attribute Trees. ICDM 2005: 785-788 - [c53]Nicolas Pernot, Antoine Cornuéjols, Michèle Sebag:
Phase Transitions within Grammatical Inference. IJCAI 2005: 811-816 - [c52]Michèle Sebag, Nicolas Tarrisson, Olivier Teytaud, Julien Lefèvre, Sylvain Baillet:
A Multi-Objective Multi-Modal Optimization Approach for Mining Stable Spatio-Temporal Patterns. IJCAI 2005: 859-864 - [c51]Sylvain Gelly, Nicolas Bredèche, Michèle Sebag:
From Factorial and Hierarchical HMM to Bayesian Network: A Representation Change Algorithm. SARA 2005: 107-120 - [i2]Yann Semet, Sylvain Gelly, Marc Schoenauer, Michèle Sebag:
Artificial Agents and Speculative Bubbles. CoRR abs/cs/0511093 (2005) - [i1]Jérôme Azé, Mathieu Roche, Yves Kodratoff, Michèle Sebag:
Preference Learning in Terminology Extraction: A ROC-based approach. CoRR abs/cs/0512050 (2005) - 2004
- [j10]Jérôme Maloberti, Michèle Sebag:
Fast Theta-Subsumption with Constraint Satisfaction Algorithms. Mach. Learn. 55(2): 137-174 (2004) - [c50]Kees Jong, Elena Marchiori, Michèle Sebag, Aad van der Vaart:
Feature selection in proteomic pattern data with support vector machines. CIBCB 2004: 41-48 - [c49]Alexandre Termier, Marie-Christine Rousset, Michèle Sebag:
DRYADE: A New Approach for Discovering Closed Frequent Trees in Heterogeneous Tree Databases. ICDM 2004: 543-546 - [c48]Nicolas Baskiotis, Michèle Sebag:
C4.5 competence map: a phase transition-inspired approach. ICML 2004 - [c47]Jérôme Azé, Mathieu Roche, Yves Kodratoff, Michèle Sebag:
Learning to Order Terms: Supervised Interestingness Measures in Terminology Extraction. International Conference on Computational Intelligence 2004: 478-481 - [c46]Kees Jong, Jérémie Mary, Antoine Cornuéjols, Elena Marchiori, Michèle Sebag:
Ensemble Feature Ranking. PKDD 2004: 267-278 - [c45]Nicolas Godzik, Marc Schoenauer, Michèle Sebag:
Robotics and Multi-agent Systems Robustness in the Long Run: Auto-teaching vs Anticipation in Evolutionary Robotics. PPSN 2004: 932-941 - [c44]Kees Jong, Elena Marchiori, Michèle Sebag:
Ensemble Learning with Evolutionary Computation: Application to Feature Ranking. PPSN 2004: 1133-1142 - [c43]Mathieu Roche, Jérôme Azé, Yves Kodratoff, Michèle Sebag:
Learning Interestingness Measures in Terminology Extraction. A ROC-based approach. ROCAI 2004: 81-88 - 2003
- [j9]Marco Botta, Attilio Giordana, Lorenza Saitta, Michèle Sebag:
Relational Learning as Search in a Critical Region. J. Mach. Learn. Res. 4: 431-463 (2003) - [j8]Hendrik Blockeel, Michèle Sebag:
Scalability and efficiency in multi-relational data mining. SIGKDD Explor. 5(1): 17-30 (2003) - [c42]Michèle Sebag, Jérôme Azé, Noël Lucas:
ROC-Based Evolutionary Learning: Application to Medical Data Mining. Artificial Evolution 2003: 384-396 - [c41]Nicolas Godzik, Marc Schoenauer, Michèle Sebag:
Evolving Symbolic Controllers. EvoWorkshops 2003: 638-650 - [c40]Jérôme Azé, Noël Lucas, Michèle Sebag:
Fouille de données visuelle et analyse de facteurs de risque médical. EGC 2003: 183-188 - [c39]Sébastien Jouteau, Antoine Cornuéjols, Michèle Sebag, Philippe Tarroux, Jean-Sylvain Liénard:
Nouveaux résultats en classification à l'aide d'un codage par motifs fréquents. EGC 2003: 521-532 - [c38]Michèle Sebag, Jérôme Azé, Noël Lucas:
Impact Studies and Sensitivity Analysis in Medical Data Mining with ROC-based Genetic Learning. ICDM 2003: 637-640 - 2002
- [j7]Hatem Hamda, François Jouve
, Evelyne Lutton
, Marc Schoenauer
, Michèle Sebag:
Compact Unstructured Representations for Evolutionary Design. Appl. Intell. 16(2): 139-155 (2002) - [c37]Alexandre Termier, Marie-Christine Rousset, Michèle Sebag:
TreeFinder: a First Step towards XML Data Mining. ICDM 2002: 450-457 - [c36]Jacques Ales Bianchetti, Céline Rouveirol, Michèle Sebag:
Constraint-based Learning of Long Relational Concepts. ICML 2002: 35-42 - [c35]Alain Ratle, Michèle Sebag:
A Novel Approach to Machine Discovery: Genetic Programming and Stochastic Grammars. ILP 2002: 207-222 - 2001
- [j6]Alain Ratle, Michèle Sebag:
Grammar-guided genetic programming and dimensional consistency: application to non-parametric identification in mechanics. Appl. Soft Comput. 1(1): 105-118 (2001) - [c34]Alain Ratle, Michèle Sebag:
Avoiding the Bloat with Stochastic Grammar-Based Genetic Programming. Artificial Evolution 2001: 255-266 - [c33]Alexandre Termier, Michèle Sebag, Marie-Christine Rousset:
Combining Statistics and Semantics for Word and Document Clustering. Workshop on Ontology Learning 2001 - [c32]Jérôme Maloberti, Michèle Sebag:
Theta-Subsumption in a Constraint Satisfaction Perspective. ILP 2001: 164-178 - [e1]Céline Rouveirol, Michèle Sebag:
Inductive Logic Programming, 11th International Conference, ILP 2001, Strasbourg, France, September 9-11, 2001, Proceedings. Lecture Notes in Computer Science 2157, Springer 2001, ISBN 3-540-42538-1 [contents] - 2000
- [j5]Michèle Sebag, Céline Rouveirol:
Any-time Relational Reasoning: Resource-bounded Induction and Deduction Through Stochastic Matching. Mach. Learn. 38(1-2): 41-62 (2000) - [c31]Ben Paechter, Thomas Bäck, Marc Schoenauer, Michèle Sebag, Ágoston E. Eiben, Juan Julián Merelo, Terence C. Fogarty:
A Distributed Resource Evolutionary Algorithm Machine (DREAM). CEC 2000: 951-958 - [c30]Attilio Giordana, Lorenza Saitta, Michèle Sebag, Marco Botta:
Analyzing Relational Learning in the Phase Transition Framework. ICML 2000: 311-318 - [c29]Attilio Giordana, Lorenza Saitta, Michèle Sebag, Marco Botta:
Can Relational Learning Scale Up? ISMIS 2000: 31-39 - [c28]Alain Ratle, Michèle Sebag:
Genetic Programming and Domain Knowledge: Beyond the Limitations of Grammar-Guided Machine Discovery. PPSN 2000: 211-220
1990 – 1999
- 1999
- [j4]Alejandro Rosete-Suárez, Alberto Nogueira-Keeling, Alberto Ochoa-Rodríguez, Michèle Sebag:
Hacia un Enfoque General del Trazado de Grafos. Inteligencia Artif. 3(8): 18-26 (1999) - [c27]Marco Botta, Attilio Giordana, Lorenza Saitta, Michèle Sebag:
Relational Learning: Hard Problems and Phase Transitions. AI*IA 1999: 178-189 - [c26]Michèle Sebag:
From first order logic to Nd: a data driven reformulation. ESANN 1999: 231-236 - [c25]Michèle Sebag:
Constructive Induction: A Version Space-based Approach. IJCAI 1999: 708-713 - 1998
- [j3]Michèle Sebag, Marc Schoenauer, Mathieu Peyral:
Revisiting the Memory of Evolution. Fundam. Informaticae 35(1-4): 125-162 (1998) - [j2]Olivier Gascuel, Bernadette Bouchon-Meunier, Gilles Caraux, Patrick Gallinari, Alain Guénoche, Yann Guermeur, Yves Lechevallier, Christophe Marsala
, Laurent Miclet, Jacques Nicolas, Richard Nock, Mohammed Ramdani, Michèle Sebag, Basavanneppa Tallur, Gilles Venturini, Patrick Vitte:
Twelve Numerical, Symbolic and Hybrid Supervised Classification Methods. Int. J. Pattern Recognit. Artif. Intell. 12(4): 517-571 (1998) - [c24]Antoine Ducoulombier, Michèle Sebag:
Continuous Mimetic Evolution. ECML 1998: 334-345 - [c23]Michèle Sebag:
A Stochastic Simple Similarity. ILP 1998: 95-105 - [c22]Michèle Sebag, Antoine Ducoulombier:
Extending Population-Based Incremental Learning to Continuous Search Spaces. PPSN 1998: 418-427 - 1997
- [c21]Mathieu Peyral, Antoine Ducoulombier, Caroline Ravise, Marc Schoenauer, Michèle Sebag:
Mimetic Evolution. Artificial Evolution 1997: 81-94 - [c20]Michèle Sebag, Marc Schoenauer, Caroline Ravise:
Inductive Learning of Mutation Step-Size in Evolutionary Parameter Optimization. Evolutionary Programming 1997: 247-261 - [c19]Michèle Sebag, Marc Schoenauer:
A society of hill-climbers. ICEC 1997: 319-324 - [c18]Michèle Sebag, Marc Schoenauer, Caroline Ravise:
Toward Civilized Evolution: Developing Inhibitions. ICGA 1997: 291-298 - [c17]Michèle Sebag, Céline Rouveirol:
Tractable Induction and Classification in First Order Logic Via Stochastic Matching. IJCAI (2) 1997: 888-893 - [c16]Michèle Sebag:
Distance Induction in First Order Logic. ILP 1997: 264-272 - 1996
- [c15]Michèle Sebag, Caroline Ravise, Marc Schoenauer:
Controlling Evolution by Means of Machine Learning. Evolutionary Programming 1996: 57-66 - [c14]Caroline Ravise, Michèle Sebag:
An Advanced Evolution Should Not Repeat its Past Errors. ICML 1996: 400-408 - [c13]Michèle Sebag:
Delaying the Choice of Bias: A Disjunctive Version Space Approach. ICML 1996: 444-452 - [c12]Michèle Sebag, Céline Rouveirol:
Polynomial-Time Learning in Logic Programming and Constraint Logic Programming. Inductive Logic Programming Workshop 1996: 105-126 - [c11]Michèle Sebag, Marc Schoenauer
:
Mutation by Imitation in Boolean Evolution Strategies. PPSN 1996: 356-365 - [c10]Michèle Sebag, Céline Rouveirol, Jean-Francois Puget:
Induction of Constraint Logic Programs. PRICAI Workshops 1996: 148-167 - 1995
- [j1]Michèle Sebag, Marc Schoenauer
:
A numerical strategy to defectuous knowledge using. Ann. Oper. Res. 55(2): 379-401 (1995) - [c9]Caroline Ravise, Michèle Sebag, Marc Schoenauer:
Induction-Based Control of Genetic Algorithms. Artificial Evolution 1995: 100-119 - [c8]Michèle Sebag, Marc Schoenauer, Caroline Ravise:
An Induction-based Control for Genetic Algorithms (Extended Abstract). ECML 1995: 351-355 - 1994
- [c7]Michèle Sebag:
Using Constraints to Building Version Spaces. ECML 1994: 257-271 - [c6]Michèle Sebag:
A Constraint-based Induction Algorithm in FOL. ICML 1994: 275-283 - [c5]Michèle Sebag, Marc Schoenauer:
Controlling Crossover through Inductive Learning. PPSN 1994: 209-218 - 1993
- [c4]Michèle Sebag, Marc Schoenauer:
A Rule-Based Similarity Measure. EWCBR 1993: 119-131 - 1992
- [c3]Michèle Sebag, Marc Schoenauer:
Learning to Control Inconsistent Knowledge. ECAI 1992: 479-483 - 1991
- [c2]Michèle Sebag, Marc Schoenauer:
Using Examples to Refine a Redundant Knowledge Base. EUROVAV 1991: 227-236 - 1990
- [c1]Marc Schoenauer, Michèle Sebag:
Incremental Learning of Rules and Meta-rules. ML 1990: 49-57
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-02-27 23:47 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint