default search action
Hendrik Blockeel
Person information
- affiliation: Catholic University of Leuven, Belgium
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j51]Daan Van Wesenbeeck, Aras Yurtman, Wannes Meert, Hendrik Blockeel:
LoCoMotif: discovering time-warped motifs in time series. Data Min. Knowl. Discov. 38(4): 2276-2305 (2024) - [c120]Kshitij Goyal, Sebastijan Dumancic, Hendrik Blockeel:
DeepSaDe: Learning Neural Networks That Guarantee Domain Constraint Satisfaction. AAAI 2024: 12199-12207 - 2023
- [j50]Hendrik Blockeel, Laurens Devos, Benoît Frénay, Géraldin Nanfack, Siegfried Nijssen:
Decision trees: from efficient prediction to responsible AI. Frontiers Artif. Intell. 6 (2023) - [j49]Lola Botman, Jonas Soenen, Konstantinos Theodorakos, Aras Yurtman, Jessa Bekker, Koen Vanthournout, Hendrik Blockeel, Bart De Moor, Jesus Lago:
A Scalable Ensemble Approach to Forecast the Electricity Consumption of Households. IEEE Trans. Smart Grid 14(1): 757-768 (2023) - [c119]Aras Yurtman, Jonas Soenen, Wannes Meert, Hendrik Blockeel:
Estimating Dynamic Time Warping Distance Between Time Series with Missing Data. ECML/PKDD (5) 2023: 221-237 - [c118]Youmna Ismaeil, Daria Stepanova, Trung-Kien Tran, Hendrik Blockeel:
FeaBI: A Feature Selection-Based Framework for Interpreting KG Embeddings. ISWC 2023: 599-617 - [c117]Huu Tan Mai, Youmna Ismaeil, Daria Stepanova, Trung-Kien Tran, Hendrik Blockeel:
Look beyond the Surface: A Demo for Explaining Knowledge Graph Embeddings and Entity Similarity. ISWC (Posters/Demos/Industry) 2023 - [i28]Kshitij Goyal, Sebastijan Dumancic, Hendrik Blockeel:
DeepSaDe: Learning Neural Networks that Guarantee Domain Constraint Satisfaction. CoRR abs/2303.01141 (2023) - [i27]Jonas Soenen, Elia Van Wolputte, Vincent Vercruyssen, Wannes Meert, Hendrik Blockeel:
AD-MERCS: Modeling Normality and Abnormality in Unsupervised Anomaly Detection. CoRR abs/2305.12958 (2023) - [i26]Daan Van Wesenbeeck, Aras Yurtman, Wannes Meert, Hendrik Blockeel:
LoCoMotif: Discovering time-warped motifs in time series. CoRR abs/2311.17582 (2023) - 2022
- [c116]Jonas Schouterden, Jessa Bekker, Jesse Davis, Hendrik Blockeel:
Unifying Knowledge Base Completion with PU Learning to Mitigate the Observation Bias. AAAI 2022: 4137-4145 - [c115]Kshitij Goyal, Wannes Meert, Hendrik Blockeel, Elia Van Wolputte, Koen Vanderstraeten, Wouter Pijpops, Kurt Jaspers:
Automatic Generation of Product Concepts from Positive Examples, with an Application to Music Streaming. BNAIC/BENELEARN 2022: 47-64 - [c114]Kshitij Goyal, Sebastijan Dumancic, Hendrik Blockeel:
SaDe: Learning Models that Provably Satisfy Domain Constraints. ECML/PKDD (5) 2022: 410-425 - [c113]Youmna Ismaeil, Daria Stepanova, Trung-Kien Tran, Piyapat Saranrittichai, Csaba Domokos, Hendrik Blockeel:
Towards Neural Network Interpretability Using Commonsense Knowledge Graphs. ISWC 2022: 74-90 - [i25]Florian Busch, Moritz Kulessa, Eneldo Loza Mencía, Hendrik Blockeel:
Combining Predictions under Uncertainty: The Case of Random Decision Trees. CoRR abs/2208.07403 (2022) - [i24]Kshitij Goyal, Wannes Meert, Hendrik Blockeel, Elia Van Wolputte, Koen Vanderstraeten, Wouter Pijpops, Kurt Jaspers:
Automatic Generation of Product Concepts from Positive Examples, with an Application to Music Streaming. CoRR abs/2210.01515 (2022) - 2021
- [c112]Florian Busch, Moritz Kulessa, Eneldo Loza Mencía, Hendrik Blockeel:
Combining Predictions Under Uncertainty: The Case of Random Decision Trees. DS 2021: 78-93 - [i23]Kshitij Goyal, Sebastijan Dumancic, Hendrik Blockeel:
SaDe: Learning Models that Provably Satisfy Domain Constraints. CoRR abs/2112.00552 (2021) - 2020
- [c111]Elia Van Wolputte, Hendrik Blockeel:
Missing Value Imputation with MERCS: A Faster Alternative to MissForest. DS 2020: 502-516 - [c110]Jonas Schouterden, Jesse Davis, Hendrik Blockeel:
Multi-directional Rule Set Learning. DS 2020: 517-532 - [c109]Jonas Soenen, Sebastijan Dumancic, Toon van Craenendonck, Hendrik Blockeel:
Tackling Noise in Active Semi-supervised Clustering. ECML/PKDD (2) 2020: 121-136 - [c108]Evgeniya Korneva, Hendrik Blockeel:
Towards Better Evaluation of Multi-target Regression Models. PKDD/ECML Workshops 2020: 353-362 - [d1]Wannes Meert, Kilian Hendrickx, Toon van Craenendonck, Pieter Robberechts, Hendrik Blockeel, Jesse Davis:
DTAIDistance. Zenodo, 2020 - [i22]Kshitij Goyal, Sebastijan Dumancic, Hendrik Blockeel:
Feature Interactions in XGBoost. CoRR abs/2007.05758 (2020)
2010 – 2019
- 2019
- [c107]Sebastijan Dumancic, Tias Guns, Wannes Meert, Hendrik Blockeel:
Learning Relational Representations with Auto-encoding Logic Programs. IJCAI 2019: 6081-6087 - [c106]Jonas Schouterden, Jesse Davis, Hendrik Blockeel:
LazyBum: Decision Tree Learning Using Lazy Propositionalization. ILP 2019: 98-113 - [i21]Sebastijan Dumancic, Tias Guns, Wannes Meert, Hendrik Blockeel:
Learning Relational Representations with Auto-encoding Logic Programs. CoRR abs/1903.12577 (2019) - [i20]Jonas Schouterden, Jesse Davis, Hendrik Blockeel:
LazyBum: Decision tree learning using lazy propositionalization. CoRR abs/1909.05044 (2019) - 2018
- [j48]Hendrik Blockeel:
Declarative data analysis. Int. J. Data Sci. Anal. 6(3): 217-223 (2018) - [j47]Leander Schietgat, Celine Vens, Ricardo Cerri, Carlos N. Fischer, Eduardo P. Costa, Jan Ramon, Claudia M. A. Carareto, Hendrik Blockeel:
A machine learning based framework to identify and classify long terminal repeat retrotransposons. PLoS Comput. Biol. 14(4) (2018) - [c105]Elia Van Wolputte, Evgeniya Korneva, Hendrik Blockeel:
MERCS: Multi-Directional Ensembles of Regression and Classification Trees. AAAI 2018: 4276-4283 - [c104]Evgeniya Korneva, Hendrik Blockeel:
Model Selection for Multi-directional Ensemble of Regression and Classification Trees. BNCAI 2018: 52-64 - [c103]Toon van Craenendonck, Wannes Meert, Sebastijan Dumancic, Hendrik Blockeel:
COBRASTS: A New Approach to Semi-supervised Clustering of Time Series. DS 2018: 179-193 - [c102]Luc De Raedt, Hendrik Blockeel, Samuel Kolb, Stefano Teso, Gust Verbruggen:
Elements of an Automatic Data Scientist. IDA 2018: 3-14 - [c101]Toon van Craenendonck, Sebastijan Dumancic, Elia Van Wolputte, Hendrik Blockeel:
COBRAS: Interactive Clustering with Pairwise Queries. IDA 2018: 353-366 - [c100]Toon van Craenendonck, Wannes Meert, Sebastijan Dumancic, Hendrik Blockeel:
Interactive Time Series Clustering with COBRASTS. ECML/PKDD (3) 2018: 654-657 - [i19]Toon van Craenendonck, Sebastijan Dumancic, Hendrik Blockeel:
COBRA: A Fast and Simple Method for Active Clustering with Pairwise Constraints. CoRR abs/1801.09955 (2018) - [i18]Toon van Craenendonck, Sebastijan Dumancic, Elia Van Wolputte, Hendrik Blockeel:
COBRAS: Fast, Iterative, Active Clustering with Pairwise Constraints. CoRR abs/1803.11060 (2018) - [i17]Toon van Craenendonck, Wannes Meert, Sebastijan Dumancic, Hendrik Blockeel:
COBRAS-TS: A new approach to Semi-Supervised Clustering of Time Series. CoRR abs/1805.00779 (2018) - 2017
- [j46]Toon van Craenendonck, Hendrik Blockeel:
Constraint-based clustering selection. Mach. Learn. 106(9-10): 1497-1521 (2017) - [j45]Sebastijan Dumancic, Hendrik Blockeel:
An expressive dissimilarity measure for relational clustering using neighbourhood trees. Mach. Learn. 106(9-10): 1523-1545 (2017) - [c99]Sebastijan Dumancic, Hendrik Blockeel:
Clustering-Based Relational Unsupervised Representation Learning with an Explicit Distributed Representation. IJCAI 2017: 1631-1637 - [c98]Toon van Craenendonck, Sebastijan Dumancic, Hendrik Blockeel:
COBRA: A Fast and Simple Method for Active Clustering with Pairwise Constraints. IJCAI 2017: 2871-2877 - [c97]Hendrik Blockeel:
PU-learning Disjunctive Concepts in ILP. ILP (Late Breaking Papers) 2017: 6-10 - [c96]Sebastijan Dumancic, Hendrik Blockeel:
Demystifying Relational Latent Representations. ILP 2017: 63-77 - [r13]Hendrik Blockeel:
Bias Specification Language. Encyclopedia of Machine Learning and Data Mining 2017: 125-128 - [r12]Hendrik Blockeel:
Hypothesis Language. Encyclopedia of Machine Learning and Data Mining 2017: 625-629 - [r11]Hendrik Blockeel:
Hypothesis Space. Encyclopedia of Machine Learning and Data Mining 2017: 629-632 - [r10]Soumya Ray, Stephen Scott, Hendrik Blockeel:
Multi-Instance Learning. Encyclopedia of Machine Learning and Data Mining 2017: 864-875 - [r9]Soumya Ray, Stephen Scott, Hendrik Blockeel:
Multiple-Instance Learning. Encyclopedia of Machine Learning and Data Mining 2017: 882-892 - [r8]Hendrik Blockeel:
Observation Language. Encyclopedia of Machine Learning and Data Mining 2017: 917-920 - [r7]Jan Struyf, Hendrik Blockeel:
Relational Learning. Encyclopedia of Machine Learning and Data Mining 2017: 1090-1096 - [i16]Sebastijan Dumancic, Hendrik Blockeel:
Demystifying Relational Latent Representations. CoRR abs/1705.05785 (2017) - 2016
- [j44]Gitte Vanwinckelen, Vinicius Tragante do Ó, Daan Fierens, Hendrik Blockeel:
Instance-level accuracy versus bag-level accuracy in multi-instance learning. Data Min. Knowl. Discov. 30(2): 313-341 (2016) - [j43]Hossein Rahmani, Hendrik Blockeel, Andreas Bender:
Using a Human Drug Network for generating novel hypotheses about drugs. Intell. Data Anal. 20(1): 183-197 (2016) - [c95]Sebastijan Dumancic, Hendrik Blockeel:
An Efficient and Expressive Similarity Measure for Relational Clustering Using Neighbourhood Trees. ECAI 2016: 1674-1675 - [c94]Leonor Becerra-Bonache, Hendrik Blockeel, María Galván, François Jacquenet:
Relational Grounded Language Learning. ECAI 2016: 1764-1765 - [c93]Aäron Verachtert, Hendrik Blockeel, Jesse Davis:
Dynamic Early Stopping for Naive Bayes. IJCAI 2016: 2082-2088 - [c92]Hendrik Blockeel:
Identifying Non-Redundant Literals in Clauses with Uniqueness Propagation. ILP (Short Papers) 2016: 8-13 - [c91]Hendrik Blockeel, Svetlana Valevich:
A Simple Framework for Theta-Subsumption Testing in Prolog. ILP (Short Papers) 2016: 14-19 - [c90]Leonor Becerra-Bonache, Hendrik Blockeel, María Galván, François Jacquenet:
Learning Language Models from Images with ReGLL. ECML/PKDD (3) 2016: 55-58 - [i15]Sebastijan Dumancic, Hendrik Blockeel:
An expressive dissimilarity measure for relational clustering using neighbourhood trees. CoRR abs/1604.08934 (2016) - [i14]Sebastijan Dumancic, Hendrik Blockeel:
Unsupervised Relational Representation Learning via Clustering: Preliminary Results. CoRR abs/1606.08658 (2016) - [i13]Sebastijan Dumancic, Wannes Meert, Hendrik Blockeel:
Theory reconstruction: a representation learning view on predicate invention. CoRR abs/1606.08660 (2016) - [i12]Toon van Craenendonck, Hendrik Blockeel:
Constraint-Based Clustering Selection. CoRR abs/1609.07272 (2016) - 2015
- [j42]Hossein Rahmani, Hendrik Blockeel, Andreas Bender:
Using a Human Disease Network for augmenting prior knowledge about diseases. Intell. Data Anal. 19(4): 897-916 (2015) - [j41]Hendrik Blockeel:
Data Mining: From Procedural to Declarative Approaches. New Gener. Comput. 33(2): 115-135 (2015) - [j40]Maurice Bruynooghe, Hendrik Blockeel, Bart Bogaerts, Broes De Cat, Stef De Pooter, Joachim Jansen, Anthony Labarre, Jan Ramon, Marc Denecker, Sicco Verwer:
Predicate logic as a modeling language: modeling and solving some machine learning and data mining problems with IDP3. Theory Pract. Log. Program. 15(6): 783-817 (2015) - [c89]Leonor Becerra-Bonache, Hendrik Blockeel, María Galván, François Jacquenet:
A First-Order-Logic Based Model for Grounded Language Learning. IDA 2015: 49-60 - [c88]Denny Verbeeck, Hendrik Blockeel:
Slower Can Be Faster: The iRetis Incremental Model Tree Learner. IDA 2015: 322-333 - [c87]Toon van Craenendonck, Hendrik Blockeel:
Limitations of Using Constraint Set Utility in Semi-Supervised Clustering. MetaSel@PKDD/ECML 2015: 27-42 - [c86]Antoine Adam, Hendrik Blockeel:
Dealing with Overlapping Clustering: A Constraint-based Approach to Algorithm Selection. MetaSel@PKDD/ECML 2015: 43-54 - 2014
- [c85]Gitte Vanwinckelen, Hendrik Blockeel:
Look before you leap: Some insights into learner evaluation with cross-validation. SSDM@ECML/PKDD 2014: 3-20 - [e7]Hendrik Blockeel, Matthijs van Leeuwen, Veronica Vinciotti:
Advances in Intelligent Data Analysis XIII - 13th International Symposium, IDA 2014, Leuven, Belgium, October 30 - November 1, 2014. Proceedings. Lecture Notes in Computer Science 8819, Springer 2014, ISBN 978-3-319-12570-1 [contents] - [i11]Nima Taghipour, Daan Fierens, Jesse Davis, Hendrik Blockeel:
Lifted Variable Elimination: Decoupling the Operators from the Constraint Language. CoRR abs/1402.0565 (2014) - 2013
- [j39]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Guest editor's introduction: special issue of the ECML PKDD 2013 journal track. Data Min. Knowl. Discov. 27(3): 291-293 (2013) - [j38]Pirooz Shamsinejadbabaki, Mohamad Saraee, Hendrik Blockeel:
Causality-based cost-effective action mining. Intell. Data Anal. 17(6): 1075-1091 (2013) - [j37]Nima Taghipour, Daan Fierens, Jesse Davis, Hendrik Blockeel:
Lifted Variable Elimination: Decoupling the Operators from the Constraint Language. J. Artif. Intell. Res. 47: 393-439 (2013) - [j36]Robert Brijder, Hendrik Blockeel:
On the inference of non-confluent NLC graph grammars. J. Log. Comput. 23(4): 799-814 (2013) - [j35]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Guest editor's introduction: special issue of the ECML PKDD 2013 journal track. Mach. Learn. 93(1): 1-3 (2013) - [c84]Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, Hendrik Blockeel:
On the Completeness of Lifted Variable Elimination. StarAI@AAAI 2013 - [c83]Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, Hendrik Blockeel:
Completeness Results for Lifted Variable Elimination. AISTATS 2013: 572-580 - [c82]Pan Hu, Celine Vens, Bart Verstrynge, Hendrik Blockeel:
Generalizing from Example Clusters. Discovery Science 2013: 64-78 - [c81]Denny Verbeeck, Francis Maes, Kurt De Grave, Hendrik Blockeel:
Multi-objective optimization with surrogate trees. GECCO 2013: 679-686 - [c80]Celine Vens, Bart Verstrynge, Hendrik Blockeel:
Semi-supervised Clustering with Example Clusters. KDIR/KMIS 2013: 45-51 - [c79]Eduardo P. Costa, Sicco Verwer, Hendrik Blockeel:
Estimating Prediction Certainty in Decision Trees. IDA 2013: 138-149 - [c78]Nima Taghipour, Jesse Davis, Hendrik Blockeel:
Generalized Counting for Lifted Variable Elimination. ILP 2013: 107-122 - [c77]Nima Taghipour, Jesse Davis, Hendrik Blockeel:
First-order Decomposition Trees. NIPS 2013: 1052-1060 - [c76]Antoine Adam, Hendrik Blockeel, Sander Govers, Abram Aertsen:
SCCQL : A Constraint-Based Clustering System. ECML/PKDD (3) 2013: 681-684 - [p5]Hendrik Blockeel:
Statistical Relational Learning. Handbook on Neural Information Processing 2013: 241-281 - [e6]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part I. Lecture Notes in Computer Science 8188, Springer 2013, ISBN 978-3-642-40987-5 [contents] - [e5]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part II. Lecture Notes in Computer Science 8189, Springer 2013, ISBN 978-3-642-40990-5 [contents] - [e4]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III. Lecture Notes in Computer Science 8190, Springer 2013, ISBN 978-3-642-40993-6 [contents] - [i10]Nima Taghipour, Jesse Davis, Hendrik Blockeel:
First-Order Decomposition Trees. CoRR abs/1306.0751 (2013) - [i9]Maurice Bruynooghe, Hendrik Blockeel, Bart Bogaerts, Broes De Cat, Stef De Pooter, Joachim Jansen, Anthony Labarre, Jan Ramon, Marc Denecker, Sicco Verwer:
Predicate Logic as a Modeling Language: Modeling and Solving some Machine Learning and Data Mining Problems with IDP3. CoRR abs/1309.6883 (2013) - 2012
- [j34]Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana Prado, Céline Robardet:
An inductive database system based on virtual mining views. Data Min. Knowl. Discov. 24(1): 247-287 (2012) - [j33]Joris Maervoet, Celine Vens, Greet Vanden Berghe, Hendrik Blockeel, Patrick De Causmaecker:
Outlier detection in relational data: A case study in geographical information systems. Expert Syst. Appl. 39(5): 4718-4728 (2012) - [j32]Hossein Rahmani, Hendrik Blockeel, Andreas Bender:
Predicting Genes Involved in Human Cancer Using Network Contextual Information. J. Integr. Bioinform. 9(1) (2012) - [j31]Joaquin Vanschoren, Hendrik Blockeel, Bernhard Pfahringer, Geoffrey Holmes:
Experiment databases - A new way to share, organize and learn from experiments. Mach. Learn. 87(2): 127-158 (2012) - [c75]Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe, Broes De Cat, Stef De Pooter, Marc Denecker, Anthony Labarre, Jan Ramon, Sicco Verwer:
Modeling Machine Learning and Data Mining Problems with FO(·). ICLP (Technical Communications) 2012: 14-25 - [c74]Nima Taghipour, Daan Fierens, Jesse Davis, Hendrik Blockeel:
Lifted Variable Elimination with Arbitrary Constraints. AISTATS 2012: 1194-1202 - [i8]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
A Revised Publication Model for ECML PKDD. CoRR abs/1207.6324 (2012) - [i7]Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, Hendrik Blockeel:
Lifted Variable Elimination: A Novel Operator and Completeness Results. CoRR abs/1208.3809 (2012) - 2011
- [j30]Werner Uwents, Gabriele Monfardini, Hendrik Blockeel, Marco Gori, Franco Scarselli:
Neural networks for relational learning: an experimental comparison. Mach. Learn. 82(3): 315-349 (2011) - [j29]Hendrik Blockeel, Karsten M. Borgwardt, Luc De Raedt, Pedro M. Domingos, Kristian Kersting, Xifeng Yan:
Guest editorial to the special issue on inductive logic programming, mining and learning in graphs and statistical relational learning. Mach. Learn. 83(2): 133-135 (2011) - [c73]Hossein Rahmani, Hendrik Blockeel, Andreas Bender:
Collaboration-Based Function Prediction in Protein-Protein Interaction Networks. IDA 2011: 318-327 - [c72]Beau Piccart, Andy Georges, Hendrik Blockeel, Lieven Eeckhout:
Ranking commercial machines through data transposition. IISWC 2011: 3-14 - [c71]Beau Piccart, Hendrik Blockeel, Andy Georges, Lieven Eeckhout:
Predictive Learning in Two-Way Datasets. ILP (Late Breaking Papers) 2011: 61-68 - [c70]Tijn Witsenburg, Hendrik Blockeel:
K-Means Based Approaches to Clustering Nodes in Annotated Graphs. ISMIS 2011: 346-357 - [c69]Tijn Witsenburg, Hendrik Blockeel:
Improving the Accuracy of Similarity Measures by Using Link Information. ISMIS 2011: 501-512 - [c68]Robert Brijder, Hendrik Blockeel:
Characterizing Compressibility of Disjoint Subgraphs with NLC Grammars. LATA 2011: 167-178 - [i6]Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda Janssens, Jan Ramon, Henk Vandecasteele:
Improving the Efficiency of Inductive Logic Programming Through the Use of Query Packs. CoRR abs/1106.1803 (2011) - 2010
- [j28]Leander Schietgat, Celine Vens, Jan Struyf, Hendrik Blockeel, Dragi Kocev, Saso Dzeroski:
Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinform. 11: 2 (2010) - [j27]Kristien Van Loon, Fabian Güiza Grandas, Geert Meyfroidt, Jean-Marie Aerts, Jan Ramon, Hendrik Blockeel, Maurice Bruynooghe, Greta Van den Berghe, Daniel Berckmans:
Prediction of Clinical Conditions after Coronary Bypass Surgery using Dynamic Data Analysis. J. Medical Syst. 34(3): 229-239 (2010) - [j26]Daan Fierens, Jan Ramon, Hendrik Blockeel, Maurice Bruynooghe:
A comparison of pruning criteria for probability trees. Mach. Learn. 78(1-2): 251-285 (2010) - [c67]Celine Vens, Eduardo P. Costa, Hendrik Blockeel:
Top-Down Induction of Phylogenetic Trees. EvoBIO 2010: 62-73 - [c66]Arno J. Knobbe, Hendrik Blockeel, Arne Koopman, Toon Calders, Bas Obladen, Carlos Bosma, Hessel Galenkamp, Eddy Koenders, Joost N. Kok:
InfraWatch: Data Management of Large Systems for Monitoring Infrastructural Performance. IDA 2010: 91-102 - [c65]Wannes Meert, Nima Taghipour, Hendrik Blockeel:
First-Order Bayes-Ball. ECML/PKDD (2) 2010: 369-384 - [c64]Hossein Rahmani, Behrooz Nobakht, Hendrik Blockeel:
Collaboration-based Social Tag Prediction in the Graph of Annotated Web Pages. NyNaK 2010 - [c63]Beau Piccart, Jan Struyf, Hendrik Blockeel:
Alleviating the Sparsity Problem in Collaborative Filtering by Using an Adapted Distance and a Graph-Based Method. SDM 2010: 189-198 - [c62]Hossein Rahmani, Hendrik Blockeel, Andreas Bender:
Predicting the functions of proteins in Protein-Protein Interaction networks from global information. MLSB 2010: 82-97 - [p4]Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana Prado, Céline Robardet:
A Practical Comparative Study Of Data Mining Query Languages. Inductive Databases and Constraint-Based Data Mining 2010: 59-77 - [p3]Hendrik Blockeel, Toon Calders, Élisa Fromont, Adriana Prado, Bart Goethals, Céline Robardet:
Inductive Querying with Virtual Mining Views. Inductive Databases and Constraint-Based Data Mining 2010: 265-287 - [p2]Joaquin Vanschoren, Hendrik Blockeel:
Experiment Databases. Inductive Databases and Constraint-Based Data Mining 2010: 335-361 - [p1]Celine Vens, Leander Schietgat, Jan Struyf, Hendrik Blockeel, Dragi Kocev, Saso Dzeroski:
Predicting Gene Function using Predictive Clustering Trees. Inductive Databases and Constraint-Based Data Mining 2010: 365-387 - [r6]Hendrik Blockeel:
Bias Specification Language. Encyclopedia of Machine Learning 2010: 98-100 - [r5]Hendrik Blockeel:
Hypothesis Language. Encyclopedia of Machine Learning 2010: 507-511 - [r4]Hendrik Blockeel:
Hypothesis Space. Encyclopedia of Machine Learning 2010: 511-513 - [r3]Soumya Ray, Stephen Scott, Hendrik Blockeel:
Multi-Instance Learning. Encyclopedia of Machine Learning 2010: 701-710 - [r2]Hendrik Blockeel:
Observation Language. Encyclopedia of Machine Learning 2010: 733-735 - [r1]Jan Struyf, Hendrik Blockeel:
Relational Learning. Encyclopedia of Machine Learning 2010: 851-857
2000 – 2009
- 2009
- [c61]Wannes Meert, Jan Struyf, Hendrik Blockeel:
CP-Logic Theory Inference with Contextual Variable Elimination and Comparison to BDD Based Inference Methods. ILP 2009: 96-109 - [c60]Kristien Van Loon, Fabian Güiza Grandas, Geert Meyfroidt, Jean-Marie Aerts, Jan Ramon, Hendrik Blockeel, Maurice Bruynooghe, Greta Van den Berghe, Daniel Berckmans:
Dynamic Data Analysis and Data Mining for Prediction of Clinical Stability. MIE 2009: 590-594 - [c59]Joaquin Vanschoren, Hendrik Blockeel:
A Community-Based Platform for Machine Learning Experimentation. ECML/PKDD (2) 2009: 750-754 - [i5]Hendrik Blockeel, Robert Brijder:
Non-Confluent NLC Graph Grammar Inference by Compressing Disjoint Subgraphs. CoRR abs/0901.4876 (2009) - 2008
- [j25]Daan Fierens, Jan Ramon, Maurice Bruynooghe, Hendrik Blockeel:
Learning directed probabilistic logical models: ordering-search versus structure-search. Ann. Math. Artif. Intell. 54(1-3): 99-133 (2008) - [j24]Wannes Meert, Jan Struyf, Hendrik Blockeel:
Learning Ground CP-Logic Theories by Leveraging Bayesian Network Learning Techniques. Fundam. Informaticae 89(1): 131-160 (2008) - [j23]Jan Ramon, Tom Croonenborghs, Daan Fierens, Hendrik Blockeel, Maurice Bruynooghe:
Generalized ordering-search for learning directed probabilistic logical models. Mach. Learn. 70(2-3): 169-188 (2008) - [j22]Hendrik Blockeel, Jude W. Shavlik, Prasad Tadepalli:
Guest editors' introduction: special issue on inductive logic programming (ILP-2007). Mach. Learn. 73(1): 1-2 (2008) - [j21]Celine Vens, Jan Struyf, Leander Schietgat, Saso Dzeroski, Hendrik Blockeel:
Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2): 185-214 (2008) - [c58]Beau Piccart, Jan Struyf, Hendrik Blockeel:
Empirical Asymmetric Selective Transfer in Multi-objective Decision Trees. Discovery Science 2008: 64-75 - [c57]Werner Uwents, Hendrik Blockeel:
A Comparison between Neural Network Methods for Learning Aggregate Functions. Discovery Science 2008: 88-99 - [c56]Leander Schietgat, Jan Ramon, Maurice Bruynooghe, Hendrik Blockeel:
An Efficiently Computable Graph-Based Metric for the Classification of Small Molecules. Discovery Science 2008: 197-209 - [c55]Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana Prado:
Mining Views: Database Views for Data Mining. ICDE 2008: 1608-1611 - [c54]Werner Uwents, Hendrik Blockeel:
Learning Aggregate Functions with Neural Networks Using a Cascade-Correlation Approach. ILP 2008: 315-329 - [c53]Joaquin Vanschoren, Hendrik Blockeel, Bernhard Pfahringer, Geoffrey Holmes:
Organizing the World's Machine Learning Information. ISoLA 2008: 693-708 - [c52]Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana Prado, Céline Robardet:
An inductive database prototype based on virtual mining views. KDD 2008: 1061-1064 - [c51]Hendrik Blockeel:
Exposing the Causal Structure of Processes by Learning CP-Logic Programs. PRICAI 2008: 2 - [e3]Hendrik Blockeel, Jan Ramon, Jude W. Shavlik, Prasad Tadepalli:
Inductive Logic Programming, 17th International Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selected Papers. Lecture Notes in Computer Science 4894, Springer 2008, ISBN 978-3-540-78468-5 [contents] - 2007
- [j20]Jan Ramon, Daan Fierens, Fabian Güiza Grandas, Geert Meyfroidt, Hendrik Blockeel, Maurice Bruynooghe, Greta Van den Berghe:
Mining data from intensive care patients. Adv. Eng. Informatics 21(3): 243-256 (2007) - [c50]Anneleen Van Assche, Hendrik Blockeel:
Seeing the Forest Through the Trees: Learning a Comprehensible Model from an Ensemble. ECML 2007: 418-429 - [c49]Daan Fierens, Jan Ramon, Maurice Bruynooghe, Hendrik Blockeel:
Learning Directed Probabilistic Logical Models: Ordering-Search Versus Structure-Search. ECML 2007: 567-574 - [c48]Joaquin Vanschoren, Hendrik Blockeel:
Investigating Classifier Learning Behavior with Experiment Databases. GfKl 2007: 421-428 - [c47]Tom Croonenborghs, Jan Ramon, Hendrik Blockeel, Maurice Bruynooghe:
Online Learning and Exploiting Relational Models in Reinforcement Learning. IJCAI 2007: 726-731 - [c46]Daan Fierens, Jan Ramon, Maurice Bruynooghe, Hendrik Blockeel:
Learning Directed Probabilistic Logical Models Using Ordering-Search. ILP 2007: 24 - [c45]Anneleen Van Assche, Hendrik Blockeel:
Seeing the Forest Through the Trees. ILP 2007: 269-279 - [c44]Hendrik Blockeel, Tijn Witsenburg, Joost N. Kok:
Graphs, Hypergraphs, and Inductive Logic Programming. MLG 2007 - [c43]Hendrik Blockeel, Joaquin Vanschoren:
Experiment Databases: Towards an Improved Experimental Methodology in Machine Learning. PKDD 2007: 6-17 - [c42]Kenneth Hoste, Lieven Eeckhout, Hendrik Blockeel:
Analyzing commercial processor performance numbers for predicting performance of applications of interest. SIGMETRICS 2007: 375-376 - 2006
- [j19]Raymond Kosala, Hendrik Blockeel, Maurice Bruynooghe, Jan Van den Bussche:
Information extraction from structured documents using k-testable tree automaton inference. Data Knowl. Eng. 58(2): 129-158 (2006) - [j18]Celine Vens, Hendrik Blockeel:
A simple regression based heuristic for learning model trees. Intell. Data Anal. 10(3): 215-236 (2006) - [j17]Hendrik Blockeel, David D. Jensen, Stefan Kramer:
Introduction to the special issue on multi-relational data mining and statistical relational learning. Mach. Learn. 62(1-2): 3-5 (2006) - [j16]Anneleen Van Assche, Celine Vens, Hendrik Blockeel, Saso Dzeroski:
First order random forests: Learning relational classifiers with complex aggregates. Mach. Learn. 64(1-3): 149-182 (2006) - [c41]Anneleen Van Assche, Hendrik Blockeel:
Bagging Using Statistical Queries. ECML 2006: 809-816 - [c40]Jan Ramon, Tom Croonenborghs, Daan Fierens, Hendrik Blockeel, Maurice Bruynooghe:
Generalized Ordering-Search for Learning Directed Probabilistic Logical Models. ILP 2006: 40-42 - [c39]Hendrik Blockeel, Wannes Meert:
Towards Learning Non-recursive LPADs by Transforming Them into Bayesian Networks. ILP 2006: 94-108 - [c38]Celine Vens, Jan Ramon, Hendrik Blockeel:
ReMauve: A Relational Model Tree Learner. ILP 2006: 424-438 - [c37]Élisa Fromont, Hendrik Blockeel, Jan Struyf:
Integrating Decision Tree Learning into Inductive Databases. KDID 2006: 81-96 - [c36]Hendrik Blockeel, Leander Schietgat, Jan Struyf, Saso Dzeroski, Amanda Clare:
Decision Trees for Hierarchical Multilabel Classification: A Case Study in Functional Genomics. PKDD 2006: 18-29 - [c35]Celine Vens, Jan Ramon, Hendrik Blockeel:
Refining Aggregate Conditions in Relational Learning. PKDD 2006: 383-394 - 2005
- [j15]Hendrik Blockeel, Saso Dzeroski:
Multi-Relational Data Mining 2005: workshop report. SIGKDD Explor. 7(2): 126-128 (2005) - [c34]Daan Fierens, Hendrik Blockeel, Maurice Bruynooghe, Jan Ramon:
Logical Bayesian Networks and Their Relation to Other Probabilistic Logical Models. BNAIC 2005: 343-344 - [c33]Daan Fierens, Jan Ramon, Hendrik Blockeel, Maurice Bruynooghe:
A Comparison of Approaches for Learning Probability Trees. ECML 2005: 556-563 - [c32]Jan Struyf, Saso Dzeroski, Hendrik Blockeel, Amanda Clare:
Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics. EPIA 2005: 272-283 - [c31]Hendrik Blockeel, David Page, Ashwin Srinivasan:
Multi-instance tree learning. ICML 2005: 57-64 - [c30]Daan Fierens, Hendrik Blockeel, Maurice Bruynooghe, Jan Ramon:
Logical Bayesian Networks and Their Relation to Other Probabilistic Logical Models. ILP 2005: 121-135 - [c29]Werner Uwents, Hendrik Blockeel:
Classifying Relational Data with Neural Networks. ILP 2005: 384-396 - [c28]Hendrik Blockeel:
Experiment Databases: A Novel Methodology for Experimental Research. KDID 2005: 72-85 - 2004
- [j14]Hendrik Blockeel, Saso Dzeroski, Boris Kompare, Stefan Kramer, Bernhard Pfahringer, Wim Van Laer:
Experiments In Predicting Biodegradability. Appl. Artif. Intell. 18(2): 157-181 (2004) - [j13]Jan Struyf, Jan Ramon, Maurice Bruynooghe, Sofie Verbaeten, Hendrik Blockeel:
Compact Representation of Knowledge Bases in Inductive Logic Programming. Mach. Learn. 57(3): 305-333 (2004) - [j12]Saso Dzeroski, Hendrik Blockeel:
Multi-relational data mining 2004: workshop report. SIGKDD Explor. 6(2): 140-141 (2004) - [c27]Celine Vens, Anneleen Van Assche, Hendrik Blockeel, Saso Dzeroski:
First Order Random Forests with Complex Aggregates. ILP 2004: 323-340 - 2003
- [j11]Vítor Santos Costa, Ashwin Srinivasan, Rui Camacho, Hendrik Blockeel, Bart Demoen, Gerda Janssens, Jan Struyf, Henk Vandecasteele, Wim Van Laer:
Query Transformations for Improving the Efficiency of ILP Systems. J. Mach. Learn. Res. 4: 465-491 (2003) - [j10]Hendrik Blockeel, Michèle Sebag:
Scalability and efficiency in multi-relational data mining. SIGKDD Explor. 5(1): 17-30 (2003) - [c26]Nico Jacobs, Hendrik Blockeel:
User Modeling with Sequential Data. HCI (4) 2003: 557-561 - [c25]Raymond Kosala, Maurice Bruynooghe, Jan Van den Bussche, Hendrik Blockeel:
Information Extraction from Web Documents Based on Local Unranked Tree Automaton Inference. IJCAI 2003: 403-408 - [c24]Jan Struyf, Hendrik Blockeel:
Query Optimization in Inductive Logic Programming by Reordering Literals. ILP 2003: 329-346 - [e2]Nada Lavrac, Dragan Gamberger, Ljupco Todorovski, Hendrik Blockeel:
Machine Learning: ECML 2003, 14th European Conference on Machine Learning, Cavtat-Dubrovnik, Croatia, September 22-26, 2003, Proceedings. Lecture Notes in Computer Science 2837, Springer 2003, ISBN 3-540-20121-1 [contents] - [e1]Nada Lavrac, Dragan Gamberger, Hendrik Blockeel, Ljupco Todorovski:
Knowledge Discovery in Databases: PKDD 2003, 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia, September 22-26, 2003, Proceedings. Lecture Notes in Computer Science 2838, Springer 2003, ISBN 3-540-20085-1 [contents] - 2002
- [j9]Hendrik Blockeel, Jan Struyf:
Deriving biased classifiers for better ROC performance. Informatica (Slovenia) 26(1) (2002) - [j8]Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda Janssens, Jan Ramon, Henk Vandecasteele:
Improving the Efficiency of Inductive Logic Programming Through the Use of Query Packs. J. Artif. Intell. Res. 16: 135-166 (2002) - [j7]Hendrik Blockeel, Jan Struyf:
Efficient Algorithms for Decision Tree Cross-validation. J. Mach. Learn. Res. 3: 621-650 (2002) - [c23]Ljupco Todorovski, Hendrik Blockeel, Saso Dzeroski:
Ranking with Predictive Clustering Trees. ECML 2002: 444-455 - [c22]Jan Struyf, Jan Ramon, Hendrik Blockeel:
Compact Representation of Knowledge Bases in ILP. ILP 2002: 254-269 - [c21]Raymond Kosala, Jan Van den Bussche, Maurice Bruynooghe, Hendrik Blockeel:
Information Extraction in Structured Documents Using Tree Automata Induction. PKDD 2002: 299-310 - 2001
- [c20]Kurt Driessens, Jan Ramon, Hendrik Blockeel:
Speeding Up Relational Reinforcement Learning through the Use of an Incremental First Order Decision Tree Learner. ECML 2001: 97-108 - [c19]Hendrik Blockeel, Jan Struyf:
Efficient algorithms for decision tree cross-validation. ICML 2001: 11-18 - [c18]Nico Jacobs, Hendrik Blockeel:
From Shell Logs to Shell Scripts. ILP 2001: 80-90 - [c17]Jan Struyf, Hendrik Blockeel:
Efficient Cross-Validation in ILP. ILP 2001: 228-239 - [c16]Hendrik Blockeel, Johannes Fürnkranz, Alexia Prskawetz, Francesco C. Billari:
Detecting Temporal Change in Event Sequences: An Application to Demographic Data. PKDD 2001: 29-41 - [c15]Nico Jacobs, Hendrik Blockeel:
The Learning Shell: Automated Macro Construction. User Modeling 2001: 34-43 - [i4]Hendrik Blockeel, Jan Struyf:
Efficient algorithms for decision tree cross-validation. CoRR cs.LG/0110036 (2001) - 2000
- [j6]Raymond Kosala, Hendrik Blockeel:
Web Mining Research: A Survey. SIGKDD Explor. 2(1): 1-15 (2000) - [c14]Jan Ramon, Tom Francis, Hendrik Blockeel:
Learning a Go Heuristic with TILDE. Computers and Games 2000: 151-169 - [c13]Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda Janssens, Jan Ramon, Henk Vandecasteele:
Executing Query Packs in ILP. ILP 2000: 60-77 - [c12]Hendrik Blockeel, Bart Demoen, Gerda Janssens, Henk Vandecasteele, Wim Van Laer:
Two Advanced Transormations for Improving the Efficiency of an ILP system. ILP Work-in-progress reports 2000 - [c11]Arno J. Knobbe, Arno Siebes, Hendrik Blockeel, Danïel van der Wallen:
Multi-Relational Data Mining, Using UML for ILP. PKDD 2000: 1-12 - [i3]Hendrik Blockeel, Luc De Raedt, Jan Ramon:
Top-down induction of clustering trees. CoRR cs.LG/0011032 (2000) - [i2]Raymond Kosala, Hendrik Blockeel:
Web Mining Research: A Survey. CoRR cs.LG/0011033 (2000) - [i1]Hendrik Blockeel, Luc De Raedt, Nico Jacobs, Bart Demoen:
Scaling Up Inductive Logic Programming by Learning from Interpretations. CoRR cs.LG/0011044 (2000)
1990 – 1999
- 1999
- [j5]Hendrik Blockeel:
Top-Down Induction of First Order Logical Decision Trees. AI Commun. 12(1-2): 119-120 (1999) - [j4]Hendrik Blockeel, Luc De Raedt, Nico Jacobs, Bart Demoen:
Scaling Up Inductive Logic Programming by Learning from Interpretations. Data Min. Knowl. Discov. 3(1): 59-93 (1999) - [c10]Saso Dzeroski, Hendrik Blockeel, Boris Kompare, Stefan Kramer, Bernhard Pfahringer, Wim Van Laer:
Experiments in Predicting Biodegradability. ILP 1999: 80-91 - [c9]Hendrik Blockeel, Saso Dzeroski, Jasna Grbovic:
Simultaneous Prediction of Mulriple Chemical Parameters of River Water Quality with TILDE. PKDD 1999: 32-40 - [c8]Luc De Raedt, Hendrik Blockeel:
Relational Learning and Inductive Logic Programming Made Easy Abstract of Tutorial. PKDD 1999: 590 - 1998
- [j3]Saso Dzeroski, Steffen Schulze-Kremer, Karsten R. Heidtke, Karsten Siems, Dietrich Wettschereck, Hendrik Blockeel:
Diterpene Structure Elucidation from 13CNMR Spectra with Inductive Logic Programming. Appl. Artif. Intell. 12(5): 363-383 (1998) - [j2]Hendrik Blockeel, Luc De Raedt:
Isidd: An Interactive System for Inductive Database Design. Appl. Artif. Intell. 12(5): 385-420 (1998) - [j1]Hendrik Blockeel, Luc De Raedt:
Top-Down Induction of First-Order Logical Decision Trees. Artif. Intell. 101(1-2): 285-297 (1998) - [c7]Hendrik Blockeel, Luc De Raedt, Jan Ramon:
Top-Down Induction of Clustering Trees. ICML 1998: 55-63 - [c6]Saso Dzeroski, Luc De Raedt, Hendrik Blockeel:
Relational Reinforcement Learning. ICML 1998: 136-143 - [c5]Saso Dzeroski, Luc De Raedt, Hendrik Blockeel:
Relational Reinforcement Learning. ILP 1998: 11-22 - 1997
- [c4]Hendrik Blockeel, Luc De Raedt:
Lookahead and Discretization in ILP. ILP 1997: 77-84 - [c3]Luc De Raedt, Hendrik Blockeel:
Using Logical Decision Trees for Clustering. ILP 1997: 133-140 - 1996
- [c2]Hendrik Blockeel, Luc De Raedt:
Relational Knowledge Discovery in Databases. Inductive Logic Programming Workshop 1996: 199-211 - [c1]Hendrik Blockeel, Luc De Raedt:
Inductive Database Design. ISMIS 1996: 376-385
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-30 21:36 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint