


default search action
Machine Learning, Volume 93
Volume 93, Number 1, October 2013
- Hendrik Blockeel
, Kristian Kersting, Siegfried Nijssen
, Filip Zelezný
:
Guest editor's introduction: special issue of the ECML PKDD 2013 journal track. 1-3 - Nicola Barbieri, Giuseppe Manco
, Ettore Ritacco
, Marco Carnuccio, Antonio Bevacqua:
Probabilistic topic models for sequence data. 5-29 - Mathieu Blondel, Kazuhiro Seki, Kuniaki Uehara:
Block coordinate descent algorithms for large-scale sparse multiclass classification. 31-52 - Kai Brügge, Asja Fischer
, Christian Igel:
The flip-the-state transition operator for restricted Boltzmann machines. 53-69 - José Hernández-Orallo, Peter A. Flach
, César Ferri
:
ROC curves in cost space. 71-91 - Maurizio Filippone
, Mingjun Zhong, Mark A. Girolami
:
A comparative evaluation of stochastic-based inference methods for Gaussian process models. 93-114 - Nico Piatkowski
, Sangkyun Lee
, Katharina Morik:
Spatio-temporal random fields: compressible representation and distributed estimation. 115-139 - Quan Sun, Bernhard Pfahringer:
Pairwise meta-rules for better meta-learning-based algorithm ranking. 141-161 - Zhanglong Ji, Charles Elkan:
Differential privacy based on importance weighting. 163-183
Volume 93, Numbers 2-3, November 2013
- Eyke Hüllermeier, Johannes Fürnkranz
:
Editorial: Preference learning and ranking. 185-189 - Mihajlo Grbovic, Nemanja Djuric, Shengbo Guo, Slobodan Vucetic:
Supervised clustering of label ranking data using label preference information. 191-225 - Clément Calauzènes, Nicolas Usunier, Patrick Gallinari:
Calibration and regret bounds for order-preserving surrogate losses in learning to rank. 227-260 - Róbert Busa-Fekete, Balázs Kégl, Tamás Éltetö, György Szarvas:
Tune and mix: learning to rank using ensembles of calibrated multi-class classifiers. 261-292 - Levente Kocsis, András György
, Andrea N. Bán:
BoostingTree: parallel selection of weak learners in boosting, with application to ranking. 293-320 - Tapio Pahikkala
, Antti Airola
, Michiel Stock, Bernard De Baets
, Willem Waegeman:
Efficient regularized least-squares algorithms for conditional ranking on relational data. 321-356 - Benjamin Letham, Cynthia Rudin, David Madigan:
Sequential event prediction. 357-380 - Salvatore Corrente, Salvatore Greco, Milosz Kadzinski
, Roman Slowinski
:
Robust ordinal regression in preference learning and ranking. 381-422

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.