default search action
Filip Zelezný
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j29]Petr Rysavý, Filip Zelezný:
Reference-free phylogeny from sequencing data. BioData Min. 16(1) (2023) - [p1]Gustav Sír, Filip Zelezný, Ondrej Kuzelka:
Lifted Relational Neural Networks: From Graphs to Deep Relational Learning. Compendium of Neurosymbolic Artificial Intelligence 2023: 308-336 - 2021
- [j28]Gustav Sourek, Filip Zelezný, Ondrej Kuzelka:
Beyond graph neural networks with lifted relational neural networks. Mach. Learn. 110(7): 1695-1738 (2021) - [c55]Gustav Sourek, Filip Zelezný, Ondrej Kuzelka:
Lossless Compression of Structured Convolutional Models via Lifting. ICLR 2021 - [c54]Jáchym Barvínek, Timothy van Bremen, Yuyi Wang, Filip Zelezný, Ondrej Kuzelka:
Automatic Conjecturing of P-Recursions Using Lifted Inference. ILP 2021: 17-25 - [i8]Matej Uhrín, Gustav Sourek, Ondrej Hubácek, Filip Zelezný:
Optimal sports betting strategies in practice: an experimental review. CoRR abs/2107.08827 (2021) - 2020
- [j27]Frantisek Malinka, Filip Zelezný, Jirí Kléma:
Finding semantic patterns in omics data using concept rule learning with an ontology-based refinement operator. BioData Min. 13(1): 13 (2020) - [j26]Dimitar Kazakov, Filip Zelezný:
Guest editors' introduction: special issue on Inductive Logic Programming (ILP 2019). Mach. Learn. 109(7): 1287-1288 (2020) - [i7]Gustav Sourek, Filip Zelezný, Ondrej Kuzelka:
Beyond Graph Neural Networks with Lifted Relational Neural Networks. CoRR abs/2007.06286 (2020) - [i6]Gustav Sourek, Filip Zelezný:
Lossless Compression of Structured Convolutional Models via Lifting. CoRR abs/2007.06567 (2020) - [i5]Gustav Sourek, Filip Zelezný, Ondrej Kuzelka:
Learning with Molecules beyond Graph Neural Networks. CoRR abs/2011.03488 (2020)
2010 – 2019
- 2019
- [j25]Petr Rysavý, Filip Zelezný:
Estimating sequence similarity from read sets for clustering next-generation sequencing data. Data Min. Knowl. Discov. 33(1): 1-23 (2019) - [j24]Ondrej Hubácek, Gustav Sourek, Filip Zelezný:
Learning to predict soccer results from relational data with gradient boosted trees. Mach. Learn. 108(1): 29-47 (2019) - [j23]Gustav Sourek, Filip Zelezný:
Efficient Extraction of Network Event Types from NetFlows. Secur. Commun. Networks 2019: 8954914:1-8954914:18 (2019) - [c53]Eliska Dvoráková, Sajal Kumar, Jirí Kléma, Filip Zelezný, Karel Drbal, Mingzhou Song:
Evaluating Model-free Directional Dependency Methods on Single-cell RNA Sequencing Data with Severe Dropout. ICBRA 2019: 55-62 - [c52]Gustav Sourek, Filip Zelezný, Ondrej Kuzelka:
Scaling up relational templated neural models. NeSy@IJCAI 2019 - [c51]Martin Svatos, Gustav Sourek, Filip Zelezný:
Revisiting Neural-Symbolic Learning Cycle. NeSy@IJCAI 2019 - 2018
- [j22]Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezný, Steven Schockaert, Ondrej Kuzelka:
Lifted Relational Neural Networks: Efficient Learning of Latent Relational Structures. J. Artif. Intell. Res. 62: 69-100 (2018) - [c50]Ondrej Hubácek, Gustav Sourek, Filip Zelezný:
Lifted Relational Team Embeddings for Predictive Sports Analytics. ILP Up-and-Coming / Short Papers 2018: 84-91 - [c49]Ondrej Hubácek, Gustav Sourek, Filip Zelezný:
Deep Learning from Spatial Relations for Soccer Pass Prediction. MLSA@PKDD/ECML 2018: 159-166 - 2017
- [c48]Petr Rysavý, Filip Zelezný:
Estimating Sequence Similarity from Contig Sets. IDA 2017: 272-283 - [c47]Jáchym Barvínek, Filip Zelezný:
A First-Order Axiomatization for Transition Learning with Rich Constraints. ILP (Late Breaking Papers) 2017: 1-5 - [c46]Gustav Sourek, Martin Svatos, Filip Zelezný, Steven Schockaert, Ondrej Kuzelka:
Stacked Structure Learning for Lifted Relational Neural Networks. ILP 2017: 140-151 - [c45]Martin Svatos, Gustav Sourek, Filip Zelezný, Steven Schockaert, Ondrej Kuzelka:
Pruning Hypothesis Spaces Using Learned Domain Theories. ILP 2017: 152-168 - [i4]Petr Rysavý, Filip Zelezný:
Estimating Sequence Similarity from Read Sets for Clustering Next-Generation Sequencing data. CoRR abs/1705.06125 (2017) - [i3]Gustav Sourek, Martin Svatos, Filip Zelezný, Steven Schockaert, Ondrej Kuzelka:
Stacked Structure Learning for Lifted Relational Neural Networks. CoRR abs/1710.02221 (2017) - 2016
- [j21]Radomír Cernoch, Ondrej Kuzelka, Filip Zelezný:
Polynomial and Extensible Solutions in Lock-Chart Solving. Appl. Artif. Intell. 30(10): 923-941 (2016) - [c44]Petr Rysavý, Filip Zelezný:
Estimating Sequence Similarity from Read Sets for Clustering Sequencing Data. IDA 2016: 204-214 - [c43]Gustav Sourek, Suresh Manandhar, Filip Zelezný, Steven Schockaert, Ondrej Kuzelka:
Learning Predictive Categories Using Lifted Relational Neural Networks. ILP 2016: 108-119 - 2015
- [j20]Matej Holec, Ondrej Kuzelka, Filip Zelezný:
Novel gene sets improve set-level classification of prokaryotic gene expression data. BMC Bioinform. 16: 348:1-348:8 (2015) - [j19]David A. Monge, Matej Holec, Filip Zelezný, Carlos García Garino:
Ensemble learning of runtime prediction models for gene-expression analysis workflows. Clust. Comput. 18(4): 1317-1329 (2015) - [c42]Gustav Sourek, Ondrej Kuzelka, Filip Zelezný:
Learning to Detect Network Intrusion from a Few Labeled Events and Background Traffic. AIMS 2015: 73-86 - [c41]Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezný, Ondrej Kuzelka:
Lifted Relational Neural Networks. CoCo@NIPS 2015 - [i2]Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezný, Ondrej Kuzelka:
Lifted Relational Neural Networks. CoRR abs/1508.05128 (2015) - 2014
- [j18]Ondrej Kuzelka, Andrea Szabóová, Filip Zelezný:
A method for reduction of examples in relational learning. J. Intell. Inf. Syst. 42(2): 255-281 (2014) - [j17]Fabrizio Riguzzi, Filip Zelezný:
Guest editors introduction: special issue on Inductive Logic Programming (ILP 2012). Mach. Learn. 94(1): 1-2 (2014) - [c40]David A. Monge, Matej Holec, Filip Zelezný, Carlos García Garino:
Ensemble Learning of Run-Time Prediction Models for Data-Intensive Scientific Workflows. CARLA 2014: 83-97 - 2013
- [j16]Roman Barták, Radomír Cernoch, Ondrej Kuzelka, Filip Zelezný:
Formulating the template ILP consistency problem as a constraint satisfaction problem. Constraints An Int. J. 18(2): 144-165 (2013) - [j15]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Guest editor's introduction: special issue of the ECML PKDD 2013 journal track. Data Min. Knowl. Discov. 27(3): 291-293 (2013) - [j14]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Guest editor's introduction: special issue of the ECML PKDD 2013 journal track. Mach. Learn. 93(1): 1-3 (2013) - [c39]Gustav Sourek, Ondrej Kuzelka, Filip Zelezný:
Predicting Top-k Trends on Twitter using Graphlets and Time Features. ILP (Late Breaking Papers) 2013: 52-57 - [e7]Fabrizio Riguzzi, Filip Zelezný:
Late Breaking Papers of the 22nd International Conference on Inductive Logic Programming, Dubrovnik, Croatia, September 17-19, 2012. CEUR Workshop Proceedings 975, CEUR-WS.org 2013 [contents] - [e6]Fabrizio Riguzzi, Filip Zelezný:
Inductive Logic Programming - 22nd International Conference, ILP 2012, Dubrovnik, Croatia, September 17-19, 2012, Revised Selected Papers. Lecture Notes in Computer Science 7842, Springer 2013, ISBN 978-3-642-38811-8 [contents] - [e5]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part I. Lecture Notes in Computer Science 8188, Springer 2013, ISBN 978-3-642-40987-5 [contents] - [e4]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part II. Lecture Notes in Computer Science 8189, Springer 2013, ISBN 978-3-642-40990-5 [contents] - [e3]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III. Lecture Notes in Computer Science 8190, Springer 2013, ISBN 978-3-642-40993-6 [contents] - 2012
- [j13]Matej Holec, Jirí Kléma, Filip Zelezný, Jakub Tolar:
Comparative evaluation of set-level techniques in predictive classification of gene expression samples. BMC Bioinform. 13(S-10): S15 (2012) - [j12]Andrea Szabóová, Ondrej Kuzelka, Filip Zelezný, Jakub Tolar:
Prediction of DNA-binding propensity of proteins by the ball-histogram method using automatic template search. BMC Bioinform. 13(S-10): S3 (2012) - [c38]Ondrej Kuzelka, Andrea Szabóová, Filip Zelezný:
Extending the ball-histogram method with continuous distributions and an application to prediction of DNA-binding proteins. BIBM 2012: 1-4 - [c37]Andrea Szabóová, Ondrej Kuzelka, Filip Zelezný:
Prediction of antimicrobial activity of peptides using relational machine learning. BIBM Workshops 2012: 575-580 - [c36]Ondrej Kuzelka, Andrea Szabóová, Filip Zelezný:
Relational Learning with Polynomials. ICTAI 2012: 1145-1150 - [c35]Ondrej Kuzelka, Andrea Szabóová, Filip Zelezný:
Bounded Least General Generalization. ILP 2012: 116-129 - [c34]Ondrej Kuzelka, Andrea Szabóová, Filip Zelezný:
Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses. NFMCP 2012: 17-32 - [i1]Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezný:
A Revised Publication Model for ECML PKDD. CoRR abs/1207.6324 (2012) - 2011
- [j11]Jan Zahálka, Filip Zelezný:
An experimental test of Occam's razor in classification. Mach. Learn. 82(3): 475-481 (2011) - [j10]Ondrej Kuzelka, Filip Zelezný:
Block-wise construction of tree-like relational features with monotone reducibility and redundancy. Mach. Learn. 83(2): 163-192 (2011) - [j9]Monika Záková, Petr Kremen, Filip Zelezný, Nada Lavrac:
Automating Knowledge Discovery Workflow Composition Through Ontology-Based Planning. IEEE Trans Autom. Sci. Eng. 8(2): 253-264 (2011) - [c33]Ondrej Kuzelka, Andrea Szabóová, Filip Zelezný:
Gaussian logic and its applications in bioinformatics. BCB 2011: 496-498 - [c32]Jiri Belohradsky, David A. Monge, Filip Zelezný, Matej Holec, Carlos García Garino:
Template-based semi-automatic workflow construction for gene expression data analysis. CBMS 2011: 1-6 - [c31]Radomír Cernoch, Filip Zelezný:
Subgroup Discovery Using Bump Hunting on Multi-relational Histograms. ILP 2011: 76-90 - [c30]Filip Zelezný:
Satisfiability Machines. ILP (Late Breaking Papers) 2011: 113-120 - [c29]Jirí Kléma, Matej Holec, Filip Zelezný, Jakub Tolar:
Comparative Evaluation of Set-Level Techniques in Microarray Classification. ISBRA 2011: 274-285 - [c28]Andrea Szabóová, Ondrej Kuzelka, Sergio Morales E., Filip Zelezný, Jakub Tolar:
Prediction of DNA-Binding Propensity of Proteins by the Ball-Histogram Method. ISBRA 2011: 358-367 - [c27]Ondrej Kuzelka, Andrea Szabóová, Matej Holec, Filip Zelezný:
Gaussian Logic for Predictive Classification. ECML/PKDD (2) 2011: 277-292 - 2010
- [c26]Roman Barták, Ondrej Kuzelka, Filip Zelezný:
Formulating Template Consistency in Inductive Logic Programming as a Constraint Satisfaction Problem. Abstraction, Reformulation, and Approximation 2010 - [c25]Roman Barták, Ondrej Kuzelka, Filip Zelezný:
Using Constraint Satisfaction for Learning Hypotheses in Inductive Logic Programming. FLAIRS 2010 - [c24]Ondrej Kuzelka, Filip Zelezný:
Seeing the World through Homomorphism: An Experimental Study on Reducibility of Examples. ILP 2010: 138-145 - [c23]Radomír Cernoch, Filip Zelezný:
Speeding Up Planning through Minimal Generalizations of Partially Ordered Plans. ILP 2010: 269-276 - [c22]Filip Zelezný, Ondrej Kuzelka:
Taming the Complexity of Inductive Logic Programming. SOFSEM 2010: 132-140
2000 – 2009
- 2009
- [j8]Filip Zelezný, Nada Lavrac:
Guest editors' introduction: Special issue on Inductive Logic Programming (ILP-2008). Mach. Learn. 76(1): 1-2 (2009) - [c21]Ondrej Kuzelka, Filip Zelezný:
Block-wise construction of acyclic relational features with monotone irreducibility and relevancy properties. ICML 2009: 569-576 - [c20]Matej Holec, Filip Zelezný, Jirí Kléma, Jakub Tolar:
Integrating Multiple-Platform Expression Data through Gene Set Features. ISBRA 2009: 5-17 - [e2]Bettina Berendt, Dunja Mladenic, Marco de Gemmis, Giovanni Semeraro, Myra Spiliopoulou, Gerd Stumme, Vojtech Svátek, Filip Zelezný:
Knowledge Discovery Enhanced with Semantic and Social Information. Studies in Computational Intelligence 220, 2009, ISBN 978-3-642-01890-9 [contents] - 2008
- [j7]Ondrej Kuzelka, Filip Zelezný:
A Restarted Strategy for Efficient Subsumption Testing. Fundam. Informaticae 89(1): 95-109 (2008) - [j6]Jirí Kléma, Lenka Nováková, Filip Karel, Olga Stepánková, Filip Zelezný:
Sequential Data Mining: A Comparative Case Study in Development of Atherosclerosis Risk Factors. IEEE Trans. Syst. Man Cybern. Part C 38(1): 3-15 (2008) - [j5]Igor Trajkovski, Filip Zelezný, Nada Lavrac, Jakub Tolar:
Learning Relational Descriptions of Differentially Expressed Gene Groups. IEEE Trans. Syst. Man Cybern. Part C 38(1): 16-25 (2008) - [c19]Ondrej Kuzelka, Filip Zelezný:
Fast estimation of first-order clause coverage through randomization and maximum likelihood. ICML 2008: 504-511 - [c18]Pavel Smrz, Jana Silhavá, Jirí Kléma, Filip Zelezný:
Gene expression data mining guided by genomic background knowledge. SOFSEM (2) 2008: 101-111 - [e1]Filip Zelezný, Nada Lavrac:
Inductive Logic Programming, 18th International Conference, ILP 2008, Prague, Czech Republic, September 10-12, 2008, Proceedings. Lecture Notes in Computer Science 5194, Springer 2008, ISBN 978-3-540-85927-7 [contents] - 2007
- [c17]Monika Záková, Filip Zelezný:
Exploiting Term, Predicate, and Feature Taxonomies in Propositionalization and Propositional Rule Learning. ECML 2007: 798-805 - 2006
- [j4]Filip Zelezný, Nada Lavrac:
Propositionalization-based relational subgroup discovery with RSD. Mach. Learn. 62(1-2): 33-63 (2006) - [j3]Filip Zelezný, Ashwin Srinivasan, C. David Page Jr.:
Randomised restarted search in ILP. Mach. Learn. 64(1-3): 183-208 (2006) - [c16]Igor Trajkovski, Filip Zelezný, Jakub Tolar, Nada Lavrac:
Relational Subgroup Discovery for Descriptive Analysis of Microarray Data. CompLife 2006: 86-96 - [c15]Aline Paes, Filip Zelezný, Gerson Zaverucha, C. David Page Jr., Ashwin Srinivasan:
ILP Through Propositionalization and Stochastic k-Term DNF Learning. ILP 2006: 379-393 - [c14]Monika Záková, Filip Zelezný, Javier A. García-Sedano, Cyril Masia Tissot, Nada Lavrac, Petr Kremen, Javier Molina:
Relational Data Mining Applied to Virtual Engineering of Product Designs. ILP 2006: 439-453 - [c13]Igor Trajkovski, Filip Zelezný, Nada Lavrac, Jakub Tolar:
Relational Descriptive Analysis of Gene Expression Data. STAIRS 2006: 184-195 - 2005
- [c12]Jan Tozicka, Filip Zelezný, Michal Pechoucek:
Modelling of Agents' Behavior with Semi-collaborative Meta-agents. CEEMAS 2005: 572-575 - [c11]Martin Rehák, Jan Tozicka, Michal Pechoucek, Filip Zelezný, Milan Rollo:
An Abstract Architecture for Computational Reflection in Multi-Agent Systems. IAT 2005: 128-131 - [c10]Filip Zelezný:
Efficient construction of relational features. ICMLA 2005 - [c9]Filip Zelezný:
Efficient Sampling in Relational Feature Spaces. ILP 2005: 397-413 - 2004
- [j2]Dragan Gamberger, Nada Lavrac, Filip Zelezný, Jakub Tolar:
Induction of comprehensible models for gene expression datasets by subgroup discovery methodology. J. Biomed. Informatics 37(4): 269-284 (2004) - [j1]Filip Zelezný:
Efficiency-conscious propositionalization for relational learning. Kybernetika 40(3): 275-292 (2004) - [c8]Nada Lavrac, Filip Zelezný, Saso Dzeroski:
Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery. Local Pattern Detection 2004: 71-88 - [c7]Filip Zelezný, Ashwin Srinivasan, David Page:
A Monte Carlo Study of Randomised Restarted Search in ILP. ILP 2004: 341-358 - 2003
- [c6]Mark-A. Krogel, Simon Alan Rawles, Filip Zelezný, Peter A. Flach, Nada Lavrac, Stefan Wrobel:
Comparative Evaluation of Approaches to Propositionalization. ILP 2003: 197-214 - 2002
- [c5]Nada Lavrac, Filip Zelezný, Peter A. Flach:
RSD: Relational Subgroup Discovery through First-Order Feature Construction. ILP 2002: 149-165 - [c4]Filip Zelezný, Ashwin Srinivasan, David Page:
Lattice-Search Runtime Distributions May Be Heavy-Tailed. ILP 2002: 333-345 - [c3]Filip Zelezný, Jirí Zídgek, Olga Stepánková:
A Learning System for Decision Support in Telecommunications. Soft-Ware 2002: 88-101 - 2001
- [c2]Filip Zelezný:
Learning Functions from Imperfect Positive Data. ILP 2001: 248-260 - 2000
- [c1]Filip Zelezný, Petr Miksovský, Olga Stepánková, Jirí Zídek:
ILP for Automated Telephony. ILP Work-in-progress reports 2000
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-05-08 21:48 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint