


default search action
PKDD/ECML 2023: Turin, Italy - Workshops
- Rosa Meo
, Fabrizio Silvestri
:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2023, Turin, Italy, September 18-22, 2023, Revised Selected Papers, Part III. Communications in Computer and Information Science 2135, Springer 2025, ISBN 978-3-031-74632-1
XAI-TS: Explainable AI for Time Series: Advances and Applications
- Udo Schlegel
, Daniel A. Keim
:
Introducing the Attribution Stability Indicator: A Measure for Time Series XAI Attributions. 3-18 - Guus Toussaint, Arno J. Knobbe
:
LMFD: Latent Monotonic Feature Discovery. 19-36 - Simiao Lin
, Aras Yurtman
, Jonas Soenen
, Hendrik Blockeel
:
LinC: Explaining Time Series Clusterings with User-Provided Constraints. 37-52 - Matthias Bittner, Andreas P. Hinterreiter
, Klaus Eckelt
, Marc Streit
:
Explainable Long and Short-Term Pattern Detection in Projected Sequential Data. 53-68
XKDD 2023: 5th International Workshop on eXplainable Knowledge Discovery in Data Mining
- Antonio Luca Alfeo, Mario G. C. A. Cimino, Guido Gagliardi:
Matching the Expert's Knowledge via a Counterfactual-Based Feature Importance Measure. 71-86 - Bahavathy Kathirgamanathan, Thu Trang Nguyen, Brian Caulfield, Georgiana Ifrim, Pádraig Cunningham:
Explaining Fatigue in Runners Using Time Series Analysis on Wearable Sensor Data. 87-103 - Etienne Lehembre
, Bruno Crémilleux, Bertrand Cuissart, Abdelkader Ouali, Albrecht Zimmermann:
Wave Top-k Random-d Family Search: How to Guide an Expert in a Structured Pattern Space. 104-119 - Philipp Väth
, Alexander M. Frühwald, Benjamin Paassen
, Magda Gregorova
:
Diffusion-Based Visual Counterfactual Explanations - Towards Systematic Quantitative Evaluation. 120-135 - Aurora Ramírez:
Exploring Gender Bias in Misclassification with Clustering and Local Explanations. 136-151 - Mario Alfonso Prado-Romero
, Bardh Prenkaj
, Giovanni Stilo
:
Are Generative-Based Graph Counterfactual Explainers Worth It? 152-170 - Eleonora Cappuccio
, Daniele Fadda
, Rosa Lanzilotti
, Salvatore Rinzivillo
:
FIPER: A Visual-Based Explanation Combining Rules and Feature Importance. 171-184 - Sofie Goethals
, David Martens, Theodoros Evgeniou:
Manipulation Risks in Explainable AI: The Implications of the Disagreement Problem. 185-200 - Ahmed Rafik El-Mehdi Baahmed, Giuseppina Andresini, Céline Robardet, Annalisa Appice:
Using Graph Neural Networks for the Detection and Explanation of Network Intrusions. 201-216 - Ataollah Kamal, Céline Robardet, Marc Plantevit:
Game Theoretic Explanations for Graph Neural Networks. 217-232 - Myriam Schaschek, Fabian Gwinner, Benedikt Hein, Axel Winkelmann:
From Black Box to Glass Box: Evaluating the Faithfulness of Process Predictions with GCNNs. 233-249 - Kodjo Mawuena Amekoe, Hanane Azzag, Mustapha Lebbah, Zaineb Chelly Dagdia, Gregoire Jaffre:
A New Class of Intelligible Models for Tabular Learning. 250-268
Deep Learning for Sustainable Precision Agriculture
- Gianni Fenu
, Francesca Maridina Malloci
, Marcello Onorato, Marco Secondo Gerardi, Angela Scano:
Plant Disease Detection Using Deep Learning: A Proof of Concept on Pear Leaf Disease Detection. 271-279 - Iias Faiud, Karl Mason, Michael Schukat:
Modelling Solar PV Adoption in Irish Dairy Farms Using Agent-Based Modelling. 292-300 - Tejasri N
, Sam Mathew Betson, Pachamuthu Rajalakshmi
, Balram Marathi, Uday B. Desai
:
Deep Networks Based Approach for Automatic Counting Panicles on UAV Captured Paddy RGB Imagery. 301-311 - Riccardo Bertoglio
, Eli Spizzichino, Anne Kalouguine, Giuliano Vitali
, Matteo Matteucci
:
The ACRE Crop-Weed Dataset for Benchmarking Weed Detection Models on Maize and Beans Fields. 312-323 - Abdul Wahid, Iias Faiud, Karl Mason:
Integrating Renewable Energy in Agriculture: A Deep Reinforcement Learning-Based Approach. 324-336
Knowledge Guided Machine Learning
- Filip Cornell
, Yifei Jin
, Jussi Karlgren
, Sarunas Girdzijauskas
:
Unsupervised Ontology- and Taxonomy Construction Through Hyperbolic Relational Domains and Ranges. 339-348 - C. Coelho, M. Fernanda P. Costa
, Luís L. Ferrás:
A Filter-Based Neural ODE Approach for Modelling Natural Systems with Prior Knowledge Constraints. 349-360 - Pawel Bielski, Sönke Jendral, Lena Witterauf, Jakob Bach:
Towards Automatically Refining Low-Quality Domain Knowledge: A Case Study in Healthcare. 361-367 - Simone Monaco
, Sebastiano Barresi, Daniele Apiletti
:
Lorentz-Invariant Augmentation for High-Energy Physics Deep Learning Models. 368-376 - Luca Cagliero
, Andrea Avignone
, Silvia Chiusano
:
Discovering SpatioTemporal Warning Contexts from Non-emergency Call Reports. 377-389 - Vittorio Haardt, Lorenzo Malandri
, Fabio Mercorio
, Luca Porcelli:
SEEDOT: Tool for Enhancing Sentiment Lexicon with Machine Learning. 390-402
MACLEAN: MAChine Learning for EArth ObservatioN
- Daniela F. Milon-Flores
, Camille Bernard
, Jérôme Gensel, Gregory Giuliani
:
Detection and Semantic Description of Changes in Earth Observation Time Series Data. 405-411 - Gaetano Settembre
, Nicolò Taggio, Nicoletta Del Buono
, Antonello Aiello
, Flavia Esposito
:
Low-Rank Hierarchical Clustering of PRISMA Hyperspectral Images to Identify Burned Areas. 412-423 - Konstantinos Alexis, Stella Girtsou, Alexis Apostolakis, Giorgos Giannopoulos, Charalampos Kontoes:
Next Day Fire Prediction via Semantic Segmentation. 424-435 - Edoardo Arnaudo
, Luca Barco
, Matteo Merlo, Claudio Rossi
:
Robust Burned Area Delineation Through Multitask Learning. 436-447 - Oscar David Rafael Narvaez Luces, Minh-Tan Pham
, Quentin Poterek
, Rémi Braun:
Burnt Area Extraction from High-Resolution Satellite Images Based on Anomaly Detection. 448-457 - Diego Kiedanski, Pablo Rodríguez-Bocca, Gerardo Rubino:
Seasonal Average Temperature Forecast with the AutoGluonTS Modern AutoML Tool. 458-468
MLG: Mining and Learning with Graphs
- Cedric Sanders, Andreas Roth
, Thomas Liebig
:
Curvature-Based Pooling Within Graph Neural Networks. 471-485 - Iiro Kumpulainen, Nikolaj Tatti:
Finding Coherent Node Groups in Directed Graphs. 486-497
Neuro Explicit AI and Expert Informed ML for Engineering and Physical Sciences
- Frank Ehebrecht, Toni Scharle, Martin Atzmueller
:
Constructing Neural Forms for Hard-Constraint PINNs with Complex Dirichlet Boundaries. 501-510 - Samira Rezaei, Mitra Baratchi:
AutoML to Generalize Strong Gravitational Lens Modeling Problem. 511-518 - Arash Heidari, Sebastian Rojas-Gonzalez, Tom Dhaene, Ivo Couckuyt:
Data-Efficient Interactive Multi-objective Optimization Using ParEGO. 519-526
New Frontiers in Mining Complex Patterns
- Malik Al-Essa
, Giuseppina Andresini
, Annalisa Appice
, Donato Malerba
:
Striving for Simplicity in Deep Neural Models Trained for Malware Detection. 529-540 - Angelo Impedovo
, Giuseppe Rizzo
:
On the Effectiveness of Non-negative Matrix Factorization for Text Open-Set Recognition. 541-552 - Antonio Pellicani, Gianvito Pio, Sao Deroski, Michelangelo Ceci:
Real-Time Anomaly Prediction from Cryptocurrency Time Series. 553-561 - Simona Fioretto, Elio Masciari
, Enea Vincenzo Napolitano
:
A Joint Analysis of Trajectory Mining and Process Mining for Smartphone User Behaviour. 562-569 - Elzbieta Kubera
, Alicja Wieczorkowska
, Krystyna Piotrowska-Weryszko
, Agata Konarska
, Agnieszka Kubik-Komar
:
Towards Automation of Pollen Monitoring - Dealing with the Background in Pollen Monitoring Images. 570-581

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.