


default search action
PKDD / ECML 2020: Ghent, Belgium
- Frank Hutter
, Kristian Kersting
, Jefrey Lijffijt
, Isabel Valera
:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part II. Lecture Notes in Computer Science 12458, Springer 2021, ISBN 978-3-030-67660-5
Deep Learning Optimization and Theory
- Yu Tang, Zhigang Kan, Dequan Sun, Linbo Qiao, Jingjing Xiao, Zhiquan Lai, Dongsheng Li:
ADMMiRNN: Training RNN with Stable Convergence via an Efficient ADMM Approach. 3-18 - Amit Kadan
, Hu Fu:
Exponential Convergence of Gradient Methods in Concave Network Zero-Sum Games. 19-34 - Zana Rashidi, Kasra Ahmadi K. A., Aijun An, Xiaogang Wang:
Adaptive Momentum Coefficient for Neural Network Optimization. 35-51 - Elbruz Ozen
, Alex Orailoglu:
Squeezing Correlated Neurons for Resource-Efficient Deep Neural Networks. 52-68 - Philip Sperl
, Jan-Philipp Schulze
, Konstantin Böttinger
:
Activation Anomaly Analysis. 69-84 - Jiayu Liu, Ioannis Chiotellis, Rudolph Triebel, Daniel Cremers
:
Effective Version Space Reduction for Convolutional Neural Networks. 85-100 - Skander Karkar, Ibrahim Ayed, Emmanuel de Bézenac, Patrick Gallinari:
A Principle of Least Action for the Training of Neural Networks. 101-117
Active Learning
- Jonas Soenen
, Sebastijan Dumancic
, Toon van Craenendonck
, Hendrik Blockeel
:
Tackling Noise in Active Semi-supervised Clustering. 121-136 - Agnes Tegen, Paul Davidsson
, Jan A. Persson:
A Taxonomy of Interactive Online Machine Learning Strategies. 137-153 - Lu Yin, Vlado Menkovski, Mykola Pechenizkiy:
Knowledge Elicitation Using Deep Metric Learning and Psychometric Testing. 154-169
Adversarial Learning
- Sebastian Pölsterl
, Christian Wachinger
:
Adversarial Learned Molecular Graph Inference and Generation. 173-189 - Antonio Barbalau, Adrian Cosma, Radu Tudor Ionescu, Marius Popescu
:
A Generic and Model-Agnostic Exemplar Synthetization Framework for Explainable AI. 190-205 - Benedikt Böing, Rajarshi Roy, Emmanuel Müller, Daniel Neider
:
Quality Guarantees for Autoencoders via Unsupervised Adversarial Attacks. 206-222 - Xiaochen Yang
, Mingzhi Dong, Yiwen Guo
, Jing-Hao Xue
:
Metric Learning for Categorical and Ambiguous Features: An Adversarial Method. 223-238 - Kun Xu, Chao Du, Chongxuan Li, Jun Zhu, Bo Zhang:
Learning Implicit Generative Models by Teaching Density Estimators. 239-255 - Kangwook Lee, Changho Suh, Kannan Ramchandran:
Reprogramming GANs via Input Noise Design. 256-271 - Puneet Mangla, Vedant Singh, Vineeth N. Balasubramanian:
On Saliency Maps and Adversarial Robustness. 272-288 - Haripriya Harikumar, Vuong Le, Santu Rana
, Sourangshu Bhattacharya, Sunil Gupta, Svetha Venkatesh:
Scalable Backdoor Detection in Neural Networks. 289-304
Federated Learning
- Erika Duriakova, Weipéng Huáng
, Elias Z. Tragos, Aonghus Lawlor
, Barry Smyth, James Geraci, Neil Hurley:
An Algorithmic Framework for Decentralised Matrix Factorisation. 307-323 - Adrian Flanagan, Were Oyomno, Alexander Grigorievskiy, Kuan Eeik Tan, Suleiman A. Khan, Muhammad Ammad-ud-din:
Federated Multi-view Matrix Factorization for Personalized Recommendations. 324-347 - Wei Chen
, Kartikeya Bhardwaj
, Radu Marculescu
:
FedMAX: Mitigating Activation Divergence for Accurate and Communication-Efficient Federated Learning. 348-363 - Michael Strobl, Jörg Sander, Ricardo J. G. B. Campello, Osmar R. Zaïane:
Model-Based Clustering with HDBSCAN. 364-379
Kernel Methods and Online Learning
- Hadar Sivan, Moshe Gabel, Assaf Schuster:
Incremental Sensitivity Analysis for Kernelized Models. 383-398 - Bruno Ordozgoiti, Lluís A. Belanche Muñoz:
Off-the-Grid: Fast and Effective Hyperparameter Search for Kernel Clustering. 399-415 - Jason Rhuggenaath, Paulo Roberto de Oliveira da Costa, Yingqian Zhang
, Alp Akcay
, Uzay Kaymak
:
Low-Regret Algorithms for Strategic Buyers with Unknown Valuations in Repeated Posted-Price Auctions. 416-436
Partial Label Learning
- Yue Sun, Gengyu Lyu, Songhe Feng:
Partial Label Learning via Subspace Representation and Global Disambiguation. 439-454 - Haobo Wang, Yuzhou Qiang, Chen Chen, Weiwei Liu, Tianlei Hu, Zhao Li
, Gang Chen:
Online Partial Label Learning. 455-470 - Yao Yao, Chen Gong, Jiehui Deng, Jian Yang:
Network Cooperation with Progressive Disambiguation for Partial Label Learning. 471-488 - Gengyu Lyu, Songhe Feng, Yi Jin, Yidong Li:
Partial Label Learning via Self-Paced Curriculum Strategy. 489-505
Reinforcement Learning
- Arjun Manoharan, Rahul Ramesh, Balaraman Ravindran
:
Option Encoder: A Framework for Discovering a Policy Basis in Reinforcement Learning. 509-524 - Edward Beeching
, Jilles Dibangoye
, Olivier Simonin
, Christian Wolf
:
EgoMap: Projective Mapping and Structured Egocentric Memory for Deep RL. 525-540 - Arthur Aubret, Laëtitia Matignon, Salima Hassas:
ELSIM: End-to-End Learning of Reusable Skills Through Intrinsic Motivation. 541-556 - Tai Hoang, Ngo Anh Vien:
Graph-Based Motion Planning Networks. 557-573
Transfer and Multi-task Learning
- Amélie Barbe, Marc Sebban, Paulo Gonçalves, Pierre Borgnat, Rémi Gribonval:
Graph Diffusion Wasserstein Distances. 577-592 - Francesco Alesiani
, Shujian Yu, Ammar Shaker, Wenzhe Yin:
Towards Interpretable Multi-task Learning Using Bilevel Programming. 593-608 - Kaixuan Zhang, Qinglong Wang, C. Lee Giles:
Deep Learning, Grammar Transfer, and Transportation Theory. 609-623 - Xin Cong, Bowen Yu, Tingwen Liu, Shiyao Cui, Hengzhu Tang, Bin Wang:
Inductive Unsupervised Domain Adaptation for Few-Shot Classification via Clustering. 624-639 - Qian Chen, Yuntao Du
, Zhiwen Tan, Yi Zhang, Chongjun Wang:
Unsupervised Domain Adaptation with Joint Domain-Adversarial Reconstruction Networks. 640-656 - Jitin Krishnan, Hemant Purohit
, Huzefa Rangwala:
Diversity-Based Generalization for Unsupervised Text Classification Under Domain Shift. 657-672
Bayesian Optimization and Few-Shot Learning
- Jungtaek Kim, Seungjin Choi:
On Local Optimizers of Acquisition Functions in Bayesian Optimization. 675-690 - Phuc Luong
, Dang Nguyen, Sunil Gupta, Santu Rana
, Svetha Venkatesh:
Bayesian Optimization with Missing Inputs. 691-706 - Bingcong Li, Bo Han, Zhuowei Wang, Jing Jiang, Guodong Long:
Confusable Learning for Large-Class Few-Shot Classification. 707-723 - Guanyu Yang, Kaizhu Huang
, Rui Zhang, John Yannis Goulermas, Amir Hussain
:
Inductive Generalized Zero-Shot Learning with Adversarial Relation Network. 724-739

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.