default search action
Vlado Menkovski
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c48]Bram Van Bolderik, Souradip Sarkar, Vlado Menkovski, Sonia Heemstra, Manil Dev Gomony:
Agile Design-Space Exploration of Dynamic Layer-Skipping in Neural Receivers. DSD 2024: 122-128 - [c47]Wouter W. L. Nuijten, Vlado Menkovski:
Node Classification in Random Trees. IDA (1) 2024: 105-116 - [c46]Marko Petkovic, Pablo Romero-Marimon, Vlado Menkovski, Sofía Calero:
Equivariant Parameter Sharing for Porous Crystalline Materials. IDA (1) 2024: 129-140 - [c45]Simon Martinus Koop, Mark A. Peletier, Jacobus Willem Portegies, Vlado Menkovski:
Neural Langevin Dynamics: Towards Interpretable Neural Stochastic Differential Equations. NLDL 2024: 130-137 - [i50]Marko Petkovic, José Manuel Vicent-Luna, Vlado Menkovski, Sofía Calero:
Graph Neural Networks for Carbon Dioxide Adsorption Prediction in Aluminium-Exchanged Zeolites. CoRR abs/2403.12659 (2024) - [i49]Jonas Niederle, Simon M. Koop, Marc Pagès-Gallego, Vlado Menkovski:
VADA: a Data-Driven Simulator for Nanopore Sequencing. CoRR abs/2404.08722 (2024) - [i48]Fleur Hendriks, Vlado Menkovski, Martin Doskár, Marc G. D. Geers, Ondrej Rokos:
Similarity Equivariant Graph Neural Networks for Homogenization of Metamaterials. CoRR abs/2404.17365 (2024) - [i47]Pol Timmer, Koen Minartz, Vlado Menkovski:
Efficient Probabilistic Modeling of Crystallization at Mesoscopic Scale. CoRR abs/2405.16608 (2024) - [i46]Yoeri Poels, Koen Minartz, Harshit Bansal, Vlado Menkovski:
Accelerating Simulation of Two-Phase Flows with Neural PDE Surrogates. CoRR abs/2405.17260 (2024) - [i45]Mahefa Ratsisetraina Ravelonanosy, Vlado Menkovski, Jacobus W. Portegies:
Topological degree as a discrete diagnostic for disentanglement, with applications to the ΔVAE. CoRR abs/2409.01303 (2024) - 2023
- [j9]Hugo Melchers, Daan Crommelin, Barry Koren, Vlado Menkovski, Benjamin Sanderse:
Comparison of neural closure models for discretised PDEs. Comput. Math. Appl. 143: 94-107 (2023) - [j8]Dominique Sommers, Vlado Menkovski, Dirk Fahland:
Supervised learning of process discovery techniques using graph neural networks. Inf. Syst. 115: 102209 (2023) - [c44]Lu Yin, Shiwei Liu, Meng Fang, Tianjin Huang, Vlado Menkovski, Mykola Pechenizkiy:
Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost. AAAI 2023: 10945-10953 - [c43]Iftitahu Ni'mah, Meng Fang, Vlado Menkovski, Mykola Pechenizkiy:
NLG Evaluation Metrics Beyond Correlation Analysis: An Empirical Metric Preference Checklist. ACL (1) 2023: 1240-1266 - [c42]Loek Tonnaer, Mike Holenderski, Vlado Menkovski:
Out-of-Distribution Generalisation with Symmetry-Based Disentangled Representations. IDA 2023: 433-445 - [c41]Lu Yin, Gen Li, Meng Fang, Li Shen, Tianjin Huang, Zhangyang Wang, Vlado Menkovski, Xiaolong Ma, Mykola Pechenizkiy, Shiwei Liu:
Dynamic Sparsity Is Channel-Level Sparsity Learner. NeurIPS 2023 - [c40]Koen Minartz, Yoeri Poels, Simon M. Koop, Vlado Menkovski:
Equivariant Neural Simulators for Stochastic Spatiotemporal Dynamics. NeurIPS 2023 - [c39]Tianjin Huang, Shiwei Liu, Tianlong Chen, Meng Fang, Li Shen, Vlado Menkovski, Lu Yin, Yulong Pei, Mykola Pechenizkiy:
Enhancing Adversarial Training via Reweighting Optimization Trajectory. ECML/PKDD (1) 2023: 113-130 - [i44]Marko Petkovic, Pablo Romero-Marimon, Vlado Menkovski, Sofía Calero:
Equivariant Networks for Porous Crystalline Materials. CoRR abs/2304.01628 (2023) - [i43]Iftitahu Ni'mah, Meng Fang, Vlado Menkovski, Mykola Pechenizkiy:
NLG Evaluation Metrics Beyond Correlation Analysis: An Empirical Metric Preference Checklist. CoRR abs/2305.08566 (2023) - [i42]Koen Minartz, Yoeri Poels, Simon M. Koop, Vlado Menkovski:
Equivariant Neural Simulators for Stochastic Spatiotemporal Dynamics. CoRR abs/2305.14286 (2023) - [i41]Yoeri Poels, Gijs Derks, Egbert Westerhof, Koen Minartz, Sven Wiesen, Vlado Menkovski:
Fast Dynamic 1D Simulation of Divertor Plasmas with Neural PDE Surrogates. CoRR abs/2305.18944 (2023) - [i40]Lu Yin, Gen Li, Meng Fang, Li Shen, Tianjin Huang, Zhangyang Wang, Vlado Menkovski, Xiaolong Ma, Mykola Pechenizkiy, Shiwei Liu:
Dynamic Sparsity Is Channel-Level Sparsity Learner. CoRR abs/2305.19454 (2023) - [i39]Tianjin Huang, Shiwei Liu, Tianlong Chen, Meng Fang, Li Shen, Vlado Menkovski, Lu Yin, Yulong Pei, Mykola Pechenizkiy:
Enhancing Adversarial Training via Reweighting Optimization Trajectory. CoRR abs/2306.14275 (2023) - [i38]Iftitahu Ni'mah, Samaneh Khoshrou, Vlado Menkovski, Mykola Pechenizkiy:
KeyGen2Vec: Learning Document Embedding via Multi-label Keyword Generation in Question-Answering. CoRR abs/2310.19650 (2023) - [i37]Wouter W. L. Nuijten, Vlado Menkovski:
Node classification in random trees. CoRR abs/2311.12167 (2023) - [i36]Marko Petkovic, Vlado Menkovski:
Description Generation using Variational Auto-Encoders for precursor microRNA. CoRR abs/2311.17970 (2023) - 2022
- [j7]Tianjin Huang, Vlado Menkovski, Yulong Pei, Yuhao Wang, Mykola Pechenizkiy:
Direction-aggregated Attack for Transferable Adversarial Examples. ACM J. Emerg. Technol. Comput. Syst. 18(3): 60:1-60:22 (2022) - [c38]Loek Tonnaer, Luis Armando Pérez Rey, Vlado Menkovski, Mike Holenderski, Jim Portegies:
Quantifying and Learning Linear Symmetry-Based Disentanglement. ICML 2022: 21584-21608 - [c37]Yoeri Poels, Vlado Menkovski:
VAE-CE: Visual Contrastive Explanation Using Disentangled VAEs. IDA 2022: 237-250 - [c36]Stepan Veretennikov, Koen Minartz, Vlado Menkovski, Burcu Gumuscu, Jan de Boer:
Simulation of Scientific Experiments with Generative Models. IDA 2022: 341-353 - [c35]Lu Yin, Vlado Menkovski, Yulong Pei, Mykola Pechenizkiy:
Semantic-Based Few-Shot Classification by Psychometric Learning. IDA 2022: 392-403 - [c34]Tianjin Huang, Tianlong Chen, Meng Fang, Vlado Menkovski, Jiaxu Zhao, Lu Yin, Yulong Pei, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, Shiwei Liu:
You Can Have Better Graph Neural Networks by Not Training Weights at All: Finding Untrained GNNs Tickets. LoG 2022: 8 - [c33]Tianjin Huang, Yulong Pei, Vlado Menkovski, Mykola Pechenizkiy:
Hop-Count Based Self-supervised Anomaly Detection on Attributed Networks. ECML/PKDD (1) 2022: 225-241 - [c32]Lu Yin, Vlado Menkovski, Meng Fang, Tianjin Huang, Yulong Pei, Mykola Pechenizkiy:
Superposing many tickets into one: A performance booster for sparse neural network training. UAI 2022: 2267-2277 - [i35]Lu Yin, Vlado Menkovski, Meng Fang, Tianjin Huang, Yulong Pei, Mykola Pechenizkiy, Decebal Constantin Mocanu, Shiwei Liu:
Superposing Many Tickets into One: A Performance Booster for Sparse Neural Network Training. CoRR abs/2205.15322 (2022) - [i34]Lu Yin, Shiwei Liu, Meng Fang, Tianjin Huang, Vlado Menkovski, Mykola Pechenizkiy:
Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost. CoRR abs/2208.10842 (2022) - [i33]Koen Minartz, Yoeri Poels, Vlado Menkovski:
Towards Learned Simulators for Cell Migration. CoRR abs/2210.01123 (2022) - [i32]Hugo Melchers, Daan Crommelin, Barry Koren, Vlado Menkovski, Benjamin Sanderse:
Comparison of neural closure models for discretised PDEs. CoRR abs/2210.14675 (2022) - [i31]Simon M. Koop, Mark A. Peletier, Jacobus W. Portegies, Vlado Menkovski:
Neural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations. CoRR abs/2211.09537 (2022) - [i30]Tianjin Huang, Tianlong Chen, Meng Fang, Vlado Menkovski, Jiaxu Zhao, Lu Yin, Yulong Pei, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, Shiwei Liu:
You Can Have Better Graph Neural Networks by Not Training Weights at All: Finding Untrained GNNs Tickets. CoRR abs/2211.15335 (2022) - 2021
- [j6]Shiwei Liu, Iftitahu Ni'mah, Vlado Menkovski, Decebal Constantin Mocanu, Mykola Pechenizkiy:
Efficient and effective training of sparse recurrent neural networks. Neural Comput. Appl. 33(15): 9625-9636 (2021) - [c31]Tianjin Huang, Vlado Menkovski, Yulong Pei, Mykola Pechenizkiy:
calibrated adversarial training. ACML 2021: 626-641 - [c30]Lu Yin, Vlado Menkovski, Shiwei Liu, Mykola Pechenizkiy:
Hierarchical Semantic Segmentation using Psychometric Learning. ACML 2021: 798-813 - [c29]Marijn van Knippenberg, Mike Holenderski, Vlado Menkovski:
Time-Constrained Multi-Agent Path Finding in Non-Lattice Graphs with Deep Reinforcement Learning. ACML 2021: 1317-1332 - [c28]Iftitahu Ni'mah, Meng Fang, Vlado Menkovski, Mykola Pechenizkiy:
ProtoInfoMax: Prototypical Networks with Mutual Information Maximization for Out-of-Domain Detection. EMNLP (Findings) 2021: 1606-1617 - [c27]Dominique Sommers, Vlado Menkovski, Dirk Fahland:
Process Discovery Using Graph Neural Networks. ICPM 2021: 40-47 - [c26]Tianjin Huang, Yulong Pei, Vlado Menkovski, Mykola Pechenizkiy:
On Generalization of Graph Autoencoders with Adversarial Training. ECML/PKDD (2) 2021: 367-382 - [i29]Tianjin Huang, Yulong Pei, Vlado Menkovski, Mykola Pechenizkiy:
Hop-Count Based Self-Supervised Anomaly Detection on Attributed Networks. CoRR abs/2104.07917 (2021) - [i28]Tianjin Huang, Vlado Menkovski, Yulong Pei, Yuhao Wang, Mykola Pechenizkiy:
Direction-Aggregated Attack for Transferable Adversarial Examples. CoRR abs/2104.09172 (2021) - [i27]Tianjin Huang, Yulong Pei, Vlado Menkovski, Mykola Pechenizkiy:
On Generalization of Graph Autoencoders with Adversarial Training. CoRR abs/2107.02658 (2021) - [i26]Lu Yin, Vlado Menkovski, Shiwei Liu, Mykola Pechenizkiy:
Hierarchical Semantic Segmentation using Psychometric Learning. CoRR abs/2107.03212 (2021) - [i25]Yoeri Poels, Vlado Menkovski:
VAE-CE: Visual Contrastive Explanation using Disentangled VAEs. CoRR abs/2108.09159 (2021) - [i24]Iftitahu Ni'mah, Meng Fang, Vlado Menkovski, Mykola Pechenizkiy:
ProtoInfoMax: Prototypical Networks with Mutual Information Maximization for Out-of-Domain Detection. CoRR abs/2108.12229 (2021) - [i23]Dominique Sommers, Vlado Menkovski, Dirk Fahland:
Process Discovery Using Graph Neural Networks. CoRR abs/2109.05835 (2021) - [i22]Tianjin Huang, Vlado Menkovski, Yulong Pei, Mykola Pechenizkiy:
Calibrated Adversarial Training. CoRR abs/2110.00623 (2021) - [i21]Lu Yin, Vlado Menkovski, Yulong Pei, Mykola Pechenizkiy:
Semantic-Based Few-Shot Learning by Interactive Psychometric Testing. CoRR abs/2112.09201 (2021) - 2020
- [c25]Sander M. Boelders, Venkata Srikanth Nallanthighal, Vlado Menkovski, Aki Härmä:
Detection of Mild Dyspnea from Pairs of Speech Recordings. ICASSP 2020: 4102-4106 - [c24]Marijn van Knippenberg, Mike Holenderski, Vlado Menkovski:
Complex Vehicle Routing with Memory Augmented Neural Networks. ICPS 2020: 303-308 - [c23]Jeroen van Doorenmalen, Vlado Menkovski:
Evaluation of CNN Performance in Semantically Relevant Latent Spaces. IDA 2020: 145-157 - [c22]Luis A. Pérez Rey, Vlado Menkovski, Jim Portegies:
Diffusion Variational Autoencoders. IJCAI 2020: 2704-2710 - [c21]Lu Yin, Vlado Menkovski, Mykola Pechenizkiy:
Knowledge Elicitation Using Deep Metric Learning and Psychometric Testing. ECML/PKDD (2) 2020: 154-169 - [i20]Joris Willems, Alessandro Corbetta, Vlado Menkovski, Federico Toschi:
Pedestrian orientation dynamics from high-fidelity measurements. CoRR abs/2001.04646 (2020) - [i19]Yuhao Wang, Vlado Menkovski, Hao Wang, Xin Du, Mykola Pechenizkiy:
Causal Discovery from Incomplete Data: A Deep Learning Approach. CoRR abs/2001.05343 (2020) - [i18]Lu Yin, Vlado Menkovski, Mykola Pechenizkiy:
Knowledge Elicitation using Deep Metric Learning and Psychometric Testing. CoRR abs/2004.06353 (2020) - [i17]Georgios Vlassopoulos, Tim van Erven, Henry Brighton, Vlado Menkovski:
Explaining Predictions by Approximating the Local Decision Boundary. CoRR abs/2006.07985 (2020) - [i16]Marijn van Knippenberg, Mike Holenderski, Vlado Menkovski:
Complex Vehicle Routing with Memory Augmented Neural Networks. CoRR abs/2009.10520 (2020) - [i15]Tianjin Huang, Vlado Menkovski, Yulong Pei, Mykola Pechenizkiy:
Bridging the Performance Gap between FGSM and PGD Adversarial Training. CoRR abs/2011.05157 (2020) - [i14]Loek Tonnaer, Luis A. Pérez Rey, Vlado Menkovski, Mike Holenderski, Jacobus W. Portegies:
Quantifying and Learning Disentangled Representations with Limited Supervision. CoRR abs/2011.06070 (2020) - [i13]Luis A. Pérez Rey, Loek Tonnaer, Vlado Menkovski, Mike Holenderski, Jacobus W. Portegies:
A Metric for Linear Symmetry-Based Disentanglement. CoRR abs/2011.13306 (2020)
2010 – 2019
- 2019
- [c20]Hameed Abdul-Rashid, Juefei Yuan, Bo Li, Yijuan Lu, Tobias Schreck, Ngoc-Minh Bui, Trong-Le Do, Mike Holenderski, Dmitri Jarnikov, Tu-Khiem Le, Vlado Menkovski, Khac-Tuan Nguyen, Thanh-An Nguyen, Vinh-Tiep Nguyen, Van-Tu Ninh, Luis A. Pérez Rey, Minh-Triet Tran, Tianyang Wang:
Extended 2D Scene Image-Based 3D Scene Retrieval. 3DOR@Eurographics 2019: 41-48 - [c19]Michiel Verburg, Vlado Menkovski:
Micro-expression detection in long videos using optical flow and recurrent neural networks. FG 2019: 1-6 - [c18]Joost Visser, Alessandro Corbetta, Vlado Menkovski, Federico Toschi:
Stampnet: Unsupervised Multi-Class Object Discovery. ICIP 2019: 2951-2955 - [c17]Loek Tonnaer, Jiapeng Li, Vladimir Osin, Mike Holenderski, Vlado Menkovski:
Anomaly Detection for Visual Quality Control of 3D-Printed Products. IJCNN 2019: 1-8 - [c16]Yuhao Wang, Vlado Menkovski, Ivan Wang Hei Ho, Mykola Pechenizkiy:
VANET Meets Deep Learning: The Effect of Packet Loss on the Object Detection Performance. VTC Spring 2019: 1-5 - [p1]Stefan Thaler, Vlado Menkovski:
The Role of Deep Learning in Improving Healthcare. Data Science for Healthcare 2019: 75-116 - [i12]Luis A. Pérez Rey, Vlado Menkovski, Jacobus W. Portegies:
Diffusion Variational Autoencoders. CoRR abs/1901.08991 (2019) - [i11]Joost Visser, Alessandro Corbetta, Vlado Menkovski, Federico Toschi:
StampNet: unsupervised multi-class object discovery. CoRR abs/1902.02693 (2019) - [i10]Marijn van Knippenberg, Vlado Menkovski, Sergio Consoli:
Evolutionary Construction of Convolutional Neural Networks. CoRR abs/1903.01895 (2019) - [i9]Michiel Verburg, Vlado Menkovski:
Micro-expression detection in long videos using optical flow and recurrent neural networks. CoRR abs/1903.10765 (2019) - [i8]Niels Hellinga, Vlado Menkovski:
Hierarchical Annotation of Images with Two-Alternative-Forced-Choice Metric Learning. CoRR abs/1905.09523 (2019) - [i7]Iftitahu Ni'mah, Vlado Menkovski, Mykola Pechenizkiy:
BSDAR: Beam Search Decoding with Attention Reward in Neural Keyphrase Generation. CoRR abs/1909.09485 (2019) - [i6]Alessandro Corbetta, Vlado Menkovski, Roberto Benzi, Federico Toschi:
Deep learning velocity signals allows to quantify turbulence intensity. CoRR abs/1911.05718 (2019) - 2018
- [c15]Devinder Kumar, Vlado Menkovski, Graham W. Taylor, Alexander Wong:
Understanding anatomy classification through attentive response maps. ISBI 2018: 1130-1133 - [c14]Stefan Thaler, Vlado Menkovski, Milan Petkovic:
Deep Metric Learning for Sequential Data Using Approximate Information. MLDM (1) 2018: 269-282 - [c13]Marijn van Knippenberg, Vlado Menkovski, Sergio Consoli:
Evolutionary Construction of Convolutional Neural Networks. LOD 2018: 293-304 - [c12]Evertjan Peer, Vlado Menkovski, Yingqian Zhang, Wan-Jui Lee:
Shunting Trains with Deep Reinforcement Learning. SMC 2018: 3063-3068 - [i5]Stefan Thaler, Vlado Menkovski, Milan Petkovic:
Deep Learning in Information Security. CoRR abs/1809.04332 (2018) - [i4]Nazly Rocio Santos Buitrago, Loek Tonnaer, Vlado Menkovski, Dimitrios Mavroeidis:
Anomaly Detection for imbalanced datasets with Deep Generative Models. CoRR abs/1811.00986 (2018) - 2017
- [c11]Alessandro Corbetta, Vlado Menkovski, Federico Toschi:
Weakly supervised training of deep convolutional neural networks for overhead pedestrian localization in depth fields. AVSS 2017: 1-6 - [c10]Stefan Thaler, Vlado Menkovski, Milan Petkovic:
Unsupervised Signature Extraction from Forensic Logs. ECML/PKDD (3) 2017: 305-316 - [i3]Alessandro Corbetta, Vlado Menkovski, Federico Toschi:
Weakly supervised training of deep convolutional neural networks for overhead pedestrian localization in depth fields. CoRR abs/1706.02850 (2017) - 2016
- [i2]Devinder Kumar, Vlado Menkovski:
Understanding Anatomy Classification Through Visualization. CoRR abs/1611.06284 (2016) - 2015
- [b1]Vlado Menkovski:
Computational Inference and Control of Quality in Multimedia Services. Springer 2015, ISBN 978-3-319-24790-8, pp. 1-135 - [j5]George Exarchakos, Luca Druda, Vlado Menkovski, Antonio Liotta:
Network analysis on Skype end-to-end video quality. Int. J. Pervasive Comput. Commun. 11(1): 17-42 (2015) - [i1]Vlado Menkovski, Zharko Aleksovski, Axel Saalbach, Hannes Nickisch:
Can Pretrained Neural Networks Detect Anatomy? CoRR abs/1512.05986 (2015) - 2013
- [j4]George Exarchakos, Luca Druda, Vlado Menkovski, Paolo Bellavista, Antonio Liotta:
Skype Resilience to High Motion Videos. Int. J. Wavelets Multiresolution Inf. Process. 11(3) (2013) - [c9]Vlado Menkovski, Antonio Liotta:
Intelligent control for adaptive video streaming. ICCE 2013: 127-128 - [c8]Antonio Liotta, Decebal Constantin Mocanu, Vlado Menkovski, Luciana Cagnetta, Georgios Exarchakos:
Instantaneous Video Quality Assessment for lightweight devices. MoMM 2013: 525 - 2012
- [j3]Vlado Menkovski, Antonio Liotta:
Adaptive psychometric scaling for video quality assessment. Signal Process. Image Commun. 27(8): 788-799 (2012) - [c7]Jewel Okyere-Benya, Mamoon Aldiabat, Vlado Menkovski, George Exarchakos, Antonio Liotta:
Video quality degradation on IPTV networks. ICNC 2012: 702-707 - [c6]Antonio Liotta, Luca Druda, Vlado Menkovski, Georgios Exarchakos:
Quality of experience management for video streams: the case of Skype. MoMM 2012: 84-92 - 2011
- [j2]Vlado Menkovski, Georgios Exarchakos, Antonio Liotta:
The Value of Relative Quality in Video Delivery. J. Mobile Multimedia 7(3): 151-162 (2011) - [c5]Vlado Menkovski, Georgios Exarchakos, Antonio Liotta:
Tackling the Sheer Scale of Subjective QoE. MobiMedia 2011: 1-15 - [c4]Georgios Exarchakos, Vlado Menkovski, Antonio Liotta:
Can Skype be used beyond video calling? MoMM 2011: 155-161 - 2010
- [j1]Vlado Menkovski, Georgios Exarchakos, Antonio Liotta, Antonio Cuadra Sánchez:
Quality of Experience Models for Multimedia Streaming. Int. J. Mob. Comput. Multim. Commun. 2(4): 1-20 (2010) - [c3]Vlado Menkovski, Georgios Exarchakos, Antonio Liotta:
Machine Learning Approach for Quality of Experience Aware Networks. INCoS 2010: 461-466
2000 – 2009
- 2009
- [c2]Vlado Menkovski, Adetola Oredope, Antonio Liotta, Antonio Cuadra Sánchez:
Predicting quality of experience in multimedia streaming. MoMM 2009: 52-59 - 2008
- [c1]Vlado Menkovski, Dimitrios Metafas:
AI Model for Computer games based on Case Based Reasoning and AI Planning. DIMEA 2008: 295-302
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-20 21:59 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint