default search action
Taghi M. Khoshgoftaar
Person information
- affiliation: Florida Atlantic University, Boca Raton, Florida, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j211]Preston Billion Polak, Joseph D. Prusa, Taghi M. Khoshgoftaar:
Low-shot learning and class imbalance: a survey. J. Big Data 11(1): 1 (2024) - [j210]John T. Hancock, Huanjing Wang, Taghi M. Khoshgoftaar, Qianxin Liang:
Data reduction techniques for highly imbalanced medicare Big Data. J. Big Data 11(1): 8 (2024) - [j209]Safak Kayikci, Taghi M. Khoshgoftaar:
Blockchain meets machine learning: a survey. J. Big Data 11(1): 9 (2024) - [j208]Robert K. L. Kennedy, Flavio Villanustre, Taghi M. Khoshgoftaar, Zahra Salekshahrezaee:
Synthesizing class labels for highly imbalanced credit card fraud detection data. J. Big Data 11(1): 38 (2024) - [j207]Huanjing Wang, Qianxin Liang, John T. Hancock, Taghi M. Khoshgoftaar:
Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods. J. Big Data 11(1): 44 (2024) - [j206]Michael Lowe, Joseph D. Prusa, Joffrey L. Leevy, Taghi M. Khoshgoftaar:
Advancing machine learning with OCR2SEQ: an innovative approach to multi-modal data augmentation. J. Big Data 11(1): 86 (2024) - 2023
- [j205]Debarshi Datta, Safiya George Dalmida, Laurie Martinez, David Newman, Javad Hashemi, Taghi M. Khoshgoftaar, Connor Shorten, Candice Sareli, Paula Eckardt:
Using machine learning to identify patient characteristics to predict mortality of in-patients with COVID-19 in South Florida. Frontiers Digit. Health 5 (2023) - [j204]Justin M. Johnson, Robert K. L. Kennedy, Taghi M. Khoshgoftaar:
Learning from Highly Imbalanced Big Data with Label Noise. Int. J. Artif. Intell. Tools 32(5): 2360003:1-2360003:20 (2023) - [j203]Zahra Salekshahrezaee, Joffrey L. Leevy, Taghi M. Khoshgoftaar:
The effect of feature extraction and data sampling on credit card fraud detection. J. Big Data 10(1): 6 (2023) - [j202]Clifford Kemp, Chad Calvert, Taghi M. Khoshgoftaar, Joffrey L. Leevy:
An approach to application-layer DoS detection. J. Big Data 10(1): 22 (2023) - [j201]John T. Hancock, Taghi M. Khoshgoftaar, Justin M. Johnson:
Evaluating classifier performance with highly imbalanced Big Data. J. Big Data 10(1): 42 (2023) - [j200]Joffrey L. Leevy, Justin M. Johnson, John T. Hancock, Taghi M. Khoshgoftaar:
Threshold optimization and random undersampling for imbalanced credit card data. J. Big Data 10(1): 58 (2023) - [j199]Safak Kayikci, Taghi M. Khoshgoftaar:
Breast cancer prediction using gated attentive multimodal deep learning. J. Big Data 10(1): 62 (2023) - [j198]Robert K. L. Kennedy, Zahra Salekshahrezaee, Flavio Villanustre, Taghi M. Khoshgoftaar:
Iterative cleaning and learning of big highly-imbalanced fraud data using unsupervised learning. J. Big Data 10(1): 106 (2023) - [j197]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar:
Comparative analysis of binary and one-class classification techniques for credit card fraud data. J. Big Data 10(1): 118 (2023) - [j196]John T. Hancock, Richard A. Bauder, Huanjing Wang, Taghi M. Khoshgoftaar:
Explainable machine learning models for Medicare fraud detection. J. Big Data 10(1): 154 (2023) - [j195]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Azadeh Abdollah Zadeh:
Investigating the effectiveness of one-class and binary classification for fraud detection. J. Big Data 10(1): 157 (2023) - [j194]Justin M. Johnson, Taghi M. Khoshgoftaar:
Data-Centric AI for Healthcare Fraud Detection. SN Comput. Sci. 4(4): 389 (2023) - [j193]John T. Hancock, Taghi M. Khoshgoftaar:
Exploring Maximum Tree Depth and Random Undersampling in Ensemble Trees to Optimize the Classification of Imbalanced Big Data. SN Comput. Sci. 4(5): 462 (2023) - 2022
- [j192]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Jared M. Peterson:
IoT information theft prediction using ensemble feature selection. J. Big Data 9(1): 6 (2022) - [j191]Rick Sauber-Cole, Taghi M. Khoshgoftaar:
The use of generative adversarial networks to alleviate class imbalance in tabular data: a survey. J. Big Data 9(1): 98 (2022) - [j190]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
A new feature popularity framework for detecting cyberattacks using popular features. J. Big Data 9(1): 119 (2022) - [j189]Justin M. Johnson, Taghi M. Khoshgoftaar:
A Survey on Classifying Big Data with Label Noise. ACM J. Data Inf. Qual. 14(4): 23:1-23:43 (2022) - [j188]Justin M. Johnson, Taghi M. Khoshgoftaar:
Encoding High-Dimensional Procedure Codes for Healthcare Fraud Detection. SN Comput. Sci. 3(5): 362 (2022) - [j187]John T. Hancock, Taghi M. Khoshgoftaar:
Hyperparameter Tuning for Medicare Fraud Detection in Big Data. SN Comput. Sci. 3(6): 440 (2022) - 2021
- [j186]Joffrey L. Leevy, John T. Hancock, Richard Zuech, Taghi M. Khoshgoftaar:
Detecting cybersecurity attacks across different network features and learners. J. Big Data 8(1): 1-29 (2021) - [j185]Zahra Salekshahrezaee, Joffrey L. Leevy, Taghi M. Khoshgoftaar:
A reconstruction error-based framework for label noise detection. J. Big Data 8(1): 1-16 (2021) - [j184]Connor Shorten, Taghi M. Khoshgoftaar, Borko Furht:
Deep Learning applications for COVID-19. J. Big Data 8(1): 1-54 (2021) - [j183]Flavio Villanustre, Arjuna Chala, Roger Dev, Lili Xu, Jesse Shaw, Borko Furht, Taghi M. Khoshgoftaar:
Modeling and tracking Covid-19 cases using Big Data analytics on HPCC system platformm. J. Big Data 8(1): 33 (2021) - [j182]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Detecting web attacks using random undersampling and ensemble learners. J. Big Data 8(1): 75 (2021) - [j181]Connor Shorten, Taghi M. Khoshgoftaar, Borko Furht:
Text Data Augmentation for Deep Learning. J. Big Data 8(1): 101 (2021) - [j180]Naeem Seliya, Azadeh Abdollah Zadeh, Taghi M. Khoshgoftaar:
A literature review on one-class classification and its potential applications in big data. J. Big Data 8(1): 122 (2021) - [j179]John T. Hancock, Taghi M. Khoshgoftaar:
Gradient Boosted Decision Tree Algorithms for Medicare Fraud Detection. SN Comput. Sci. 2(4): 268 (2021) - [j178]Justin M. Johnson, Taghi M. Khoshgoftaar:
Medical Provider Embeddings for Healthcare Fraud Detection. SN Comput. Sci. 2(4): 276 (2021) - 2020
- [j177]Richard A. Bauder, Taghi M. Khoshgoftaar:
A study on rare fraud predictions with big Medicare claims fraud data. Intell. Data Anal. 24(1): 141-161 (2020) - [j176]Justin M. Johnson, Taghi M. Khoshgoftaar:
The Effects of Data Sampling with Deep Learning and Highly Imbalanced Big Data. Inf. Syst. Frontiers 22(5): 1113-1131 (2020) - [j175]Tawfiq Hasanin, Taghi M. Khoshgoftaar, Joffrey L. Leevy, Richard A. Bauder:
Investigating class rarity in big data. J. Big Data 7(1): 23 (2020) - [j174]John T. Hancock, Taghi M. Khoshgoftaar:
Survey on categorical data for neural networks. J. Big Data 7(1): 28 (2020) - [j173]Joffrey L. Leevy, Taghi M. Khoshgoftaar, Richard A. Bauder, Naeem Seliya:
Investigating the relationship between time and predictive model maintenance. J. Big Data 7(1): 36 (2020) - [j172]Joffrey L. Leevy, Taghi M. Khoshgoftaar, Flavio Villanustre:
Survey on RNN and CRF models for de-identification of medical free text. J. Big Data 7(1): 73 (2020) - [j171]John T. Hancock, Taghi M. Khoshgoftaar:
CatBoost for big data: an interdisciplinary review. J. Big Data 7(1): 94 (2020) - [j170]Joffrey L. Leevy, Taghi M. Khoshgoftaar:
A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data. J. Big Data 7(1): 104 (2020) - [j169]Aaron N. Richter, Taghi M. Khoshgoftaar:
Sample size determination for biomedical big data with limited labels. Netw. Model. Anal. Health Informatics Bioinform. 9(1): 12 (2020) - 2019
- [j168]Aaron N. Richter, Taghi M. Khoshgoftaar:
Efficient learning from big data for cancer risk modeling: A case study with melanoma. Comput. Biol. Medicine 110: 29-39 (2019) - [j167]Gabriel Castaneda, Paul Morris, Taghi M. Khoshgoftaar:
Maxout Networks for Visual Recognition. Int. J. Multim. Data Eng. Manag. 10(4): 1-25 (2019) - [j166]Joseph D. Prusa, Ryan Sagul, Taghi M. Khoshgoftaar:
Extracting Knowledge from Technical Reports for the Valuation of West Texas Intermediate Crude Oil Futures. Inf. Syst. Frontiers 21(1): 109-123 (2019) - [j165]Robert K. L. Kennedy, Taghi M. Khoshgoftaar, Flavio Villanustre, Timothy Humphrey:
A parallel and distributed stochastic gradient descent implementation using commodity clusters. J. Big Data 6: 16 (2019) - [j164]Matthew Herland, Richard A. Bauder, Taghi M. Khoshgoftaar:
The effects of class rarity on the evaluation of supervised healthcare fraud detection models. J. Big Data 6: 21 (2019) - [j163]Justin M. Johnson, Taghi M. Khoshgoftaar:
Survey on deep learning with class imbalance. J. Big Data 6: 27 (2019) - [j162]Connor Shorten, Taghi M. Khoshgoftaar:
A survey on Image Data Augmentation for Deep Learning. J. Big Data 6: 60 (2019) - [j161]Justin M. Johnson, Taghi M. Khoshgoftaar:
Medicare fraud detection using neural networks. J. Big Data 6: 63 (2019) - [j160]Chad Calvert, Taghi M. Khoshgoftaar:
Impact of class distribution on the detection of slow HTTP DoS attacks using Big Data. J. Big Data 6: 67 (2019) - [j159]Victor M. Herrera, Taghi M. Khoshgoftaar, Flavio Villanustre, Borko Furht:
Random forest implementation and optimization for Big Data analytics on LexisNexis's high performance computing cluster platform. J. Big Data 6: 68 (2019) - [j158]Tawfiq Hasanin, Taghi M. Khoshgoftaar, Joffrey L. Leevy, Naeem Seliya:
Examining characteristics of predictive models with imbalanced big data. J. Big Data 6: 69 (2019) - [j157]Gabriel Castaneda, Paul Morris, Taghi M. Khoshgoftaar:
Evaluation of maxout activations in deep learning across several big data domains. J. Big Data 6: 72 (2019) - [j156]Tawfiq Hasanin, Taghi M. Khoshgoftaar, Joffrey L. Leevy, Richard A. Bauder:
Severely imbalanced Big Data challenges: investigating data sampling approaches. J. Big Data 6: 107 (2019) - [j155]Aaron N. Richter, Taghi M. Khoshgoftaar:
Melanoma risk modeling from limited positive samples. Netw. Model. Anal. Health Informatics Bioinform. 8(1): 7 (2019) - 2018
- [j154]Aaron N. Richter, Taghi M. Khoshgoftaar:
A review of statistical and machine learning methods for modeling cancer risk using structured clinical data. Artif. Intell. Medicine 90: 1-14 (2018) - [j153]Richard A. Bauder, Taghi M. Khoshgoftaar:
The effects of varying class distribution on learner behavior for medicare fraud detection with imbalanced big data. Health Inf. Sci. Syst. 6(1): 9 (2018) - [j152]Karl R. Weiss, Taghi M. Khoshgoftaar:
A Study of the Impact of Base Traditional Learners on Transfer Learning Algorithms. Int. J. Artif. Intell. Tools 27(6): 1850022:1-1850022:33 (2018) - [j151]Sahar Sohangir, Dingding Wang, Anna Pomeranets, Taghi M. Khoshgoftaar:
Big Data: Deep Learning for financial sentiment analysis. J. Big Data 5: 3 (2018) - [j150]Matthew Herland, Taghi M. Khoshgoftaar, Richard A. Bauder:
Big Data fraud detection using multiple medicare data sources. J. Big Data 5: 29 (2018) - [j149]Joffrey L. Leevy, Taghi M. Khoshgoftaar, Richard A. Bauder, Naeem Seliya:
A survey on addressing high-class imbalance in big data. J. Big Data 5: 42 (2018) - [j148]Brian Heredia, Joseph D. Prusa, Taghi M. Khoshgoftaar:
Social media for polling and predicting United States election outcome. Soc. Netw. Anal. Min. 8(1): 48:1-48:16 (2018) - 2017
- [j147]Joseph D. Prusa, Taghi M. Khoshgoftaar:
Improving deep neural network design with new text data representations. J. Big Data 4: 7 (2017) - [j146]Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Flavio Villanustre, John Holt:
Large-scale distributed L-BFGS. J. Big Data 4: 22 (2017) - [j145]Oscar Day, Taghi M. Khoshgoftaar:
A survey on heterogeneous transfer learning. J. Big Data 4: 29 (2017) - [j144]Kewen Li, Lu Liu, Jiannan Zhai, Taghi M. Khoshgoftaar, Mingwen Shao, Wenying Liu:
Reliability Evaluation Model of Component-Based Software Based on Complex Network Theory. Qual. Reliab. Eng. Int. 33(3): 543-550 (2017) - [j143]Brian Heredia, Taghi M. Khoshgoftaar, Joseph D. Prusa, Michael Crawford:
Improving detection of untrustworthy online reviews using ensemble learners combined with feature selection. Soc. Netw. Anal. Min. 7(1): 37:1-37:18 (2017) - 2016
- [j142]Kewen Li, Lu Liu, Jiannan Zhai, Taghi M. Khoshgoftaar, Timing Li:
The improved grey model based on particle swarm optimization algorithm for time series prediction. Eng. Appl. Artif. Intell. 55: 285-291 (2016) - [j141]Karl R. Weiss, Taghi M. Khoshgoftaar, Dingding Wang:
A survey of transfer learning. J. Big Data 3: 9 (2016) - 2015
- [j140]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Investigation on Wrapper-Based Feature Selection for Predicting Software Quality. Int. J. Softw. Eng. Knowl. Eng. 25(1): 93-114 (2015) - [j139]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Investigating Two Approaches for Adding Feature Ranking to Sampled Ensemble Learning for Software Quality Estimation. Int. J. Softw. Eng. Knowl. Eng. 25(1): 115-146 (2015) - [j138]Huanjing Wang, Taghi M. Khoshgoftaar, Naeem Seliya:
On the Stability of Feature Selection Methods in Software Quality Prediction: An Empirical Investigation. Int. J. Softw. Eng. Knowl. Eng. 25(9-10): 1467-1490 (2015) - [j137]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Aggregating Data Sampling with Feature Subset Selection to Address Skewed Software Defect Data. Int. J. Softw. Eng. Knowl. Eng. 25(9-10): 1531-1550 (2015) - [j136]Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya, Randall Wald, Edin Muharemagic:
Deep learning applications and challenges in big data analytics. J. Big Data 2: 1 (2015) - [j135]Richard Zuech, Taghi M. Khoshgoftaar, Randall Wald:
Intrusion detection and Big Heterogeneous Data: a Survey. J. Big Data 2: 3 (2015) - [j134]Michael Crawford, Taghi M. Khoshgoftaar, Joseph D. Prusa, Aaron N. Richter, Hamzah Al Najada:
Survey of review spam detection using machine learning techniques. J. Big Data 2: 23 (2015) - [j133]Sara Landset, Taghi M. Khoshgoftaar, Aaron N. Richter, Tawfiq Hasanin:
A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J. Big Data 2: 24 (2015) - 2014
- [j132]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
The Use of Ensemble-Based Data Preprocessing Techniques for Software Defect Prediction. Int. J. Softw. Eng. Knowl. Eng. 24(9): 1229-1254 (2014) - [j131]Zhiwei Xu, Kehan Gao, Taghi M. Khoshgoftaar, Naeem Seliya:
System regression test planning with a fuzzy expert system. Inf. Sci. 259: 532-543 (2014) - [j130]Taghi M. Khoshgoftaar, Yudong Xiao, Kehan Gao:
Software quality assessment using a multi-strategy classifier. Inf. Sci. 259: 555-570 (2014) - [j129]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Andres Folleco:
An empirical study of the classification performance of learners on imbalanced and noisy software quality data. Inf. Sci. 259: 571-595 (2014) - [j128]Jason Van Hulse, Taghi M. Khoshgoftaar:
Incomplete-case nearest neighbor imputation in software measurement data. Inf. Sci. 259: 596-610 (2014) - [j127]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano, Randall Wald:
A comparative study of iterative and non-iterative feature selection techniques for software defect prediction. Inf. Syst. Frontiers 16(5): 801-822 (2014) - [j126]Matthew Herland, Taghi M. Khoshgoftaar, Randall Wald:
A review of data mining using big data in health informatics. J. Big Data 1: 2 (2014) - 2013
- [j125]Randall Wald, Taghi M. Khoshgoftaar, John C. Sloan:
Feature Selection for Optimization of Wavelet Packet Decomposition in Reliability Analysis of Systems. Int. J. Artif. Intell. Tools 22(5) (2013) - [j124]Huanjing Wang, Taghi M. Khoshgoftaar, Qianhui Althea Liang:
A Study of Software Metric Selection Techniques: stability Analysis and Defect Prediction Model Performance. Int. J. Artif. Intell. Tools 22(5) (2013) - [j123]Xingquan Zhu, Taghi M. Khoshgoftaar:
Editorial. Int. J. Artif. Intell. Tools 22(5) (2013) - [j122]Victor L. Winter, Bojan Cukic, Taghi M. Khoshgoftaar, Kinji Mori, Raymond A. Paul, Carlos Pérez Leguízamo, Sahra Sedigh Sarvestani, John C. Sloan, Mladen A. Vouk, I-Ling Yen:
High Consequence Systems and Semantic Computing. Int. J. Semantic Comput. 7(3): 291-324 (2013) - 2012
- [j121]Wilker Altidor, Taghi M. Khoshgoftaar, Amri Napolitano:
Measuring stability of feature ranking techniques: a noise-based approach. Int. J. Bus. Intell. Data Min. 7(1/2): 80-115 (2012) - [j120]Ahmad Abu Shanab, Taghi M. Khoshgoftaar, Randall Wald, Jason Van Hulse:
Evaluation of the importance of data pre-processing order when combining feature selection and data sampling. Int. J. Bus. Intell. Data Min. 7(1/2): 116-134 (2012) - [j119]Kehan Gao, Taghi M. Khoshgoftaar, Huanjing Wang:
Exploring filter-based feature selection techniques for software quality classification. Int. J. Inf. Decis. Sci. 4(2/3): 217-250 (2012) - [j118]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
Software measurement data reduction using ensemble techniques. Neurocomputing 92: 124-132 (2012) - [j117]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano:
An Empirical Study of Feature Ranking Techniques for Software Quality Prediction. Int. J. Softw. Eng. Knowl. Eng. 22(2): 161-183 (2012) - [j116]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano, Randall Wald:
Threshold-based feature selection techniques for high-dimensional bioinformatics data. Netw. Model. Anal. Health Informatics Bioinform. 1(1-2): 47-61 (2012) - [j115]Ankur Agarwal, Georgiana L. Hamza-Lup, Taghi M. Khoshgoftaar:
A System-Level Modeling Methodology for Performance-Driven Component Selection in Multicore Architectures. IEEE Syst. J. 6(2): 317-328 (2012) - [j114]Kehan Gao, Taghi M. Khoshgoftaar, Naeem Seliya:
Predicting high-risk program modules by selecting the right software measurements. Softw. Qual. J. 20(1): 3-42 (2012) - 2011
- [j113]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
An exploration of learning when data is noisy and imbalanced. Intell. Data Anal. 15(2): 215-236 (2011) - [j112]Huanjing Wang, Taghi M. Khoshgoftaar, Jason Van Hulse, Kehan Gao:
Metric Selection for Software Defect Prediction. Int. J. Softw. Eng. Knowl. Eng. 21(2): 237-257 (2011) - [j111]Alex Kotlarchyk, Taghi M. Khoshgoftaar, Mirjana Pavlovic, Hanqi Zhuang, Abhijit S. Pandya:
Identification of microRNA biomarkers for cancer by combining multiple feature selection techniques. J. Comput. Methods Sci. Eng. 11(5-6): 283-298 (2011) - [j110]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
Evaluating the Impact of Data Quality on Sampling. J. Inf. Knowl. Manag. 10(3): 225-245 (2011) - [j109]Kehan Gao, Taghi M. Khoshgoftaar, Huanjing Wang, Naeem Seliya:
Choosing software metrics for defect prediction: an investigation on feature selection techniques. Softw. Pract. Exp. 41(5): 579-606 (2011) - [j108]Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Comparing Boosting and Bagging Techniques With Noisy and Imbalanced Data. IEEE Trans. Syst. Man Cybern. Part A 41(3): 552-568 (2011) - [j107]Qianhui Liang, Xindong Wu, E. K. Park, Taghi M. Khoshgoftaar, Chi-Hung Chi:
Ontology-Based Business Process Customization for Composite Web Services. IEEE Trans. Syst. Man Cybern. Part A 41(4): 717-729 (2011) - [j106]Naeem Seliya, Taghi M. Khoshgoftaar:
The use of decision trees for cost-sensitive classification: an empirical study in software quality prediction. WIREs Data Mining Knowl. Discov. 1(5): 448-459 (2011) - 2010
- [j105]Taghi M. Khoshgoftaar, Naeem Seliya, Dennis J. Drown:
Evolutionary data analysis for the class imbalance problem. Intell. Data Anal. 14(1): 69-88 (2010) - [j104]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Evaluation of Repetitive Undersampling Techniques. Int. J. Softw. Eng. Knowl. Eng. 20(2): 173-195 (2010) - [j103]Lianfen Qian, Qingchuan Yao, Taghi M. Khoshgoftaar:
Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software. J. Softw. Eng. Appl. 3(6): 603-609 (2010) - [j102]Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors. IEEE Trans. Neural Networks 21(5): 813-830 (2010) - [j101]Yi Liu, Taghi M. Khoshgoftaar, Naeem Seliya:
Evolutionary Optimization of Software Quality Modeling with Multiple Repositories. IEEE Trans. Software Eng. 36(6): 852-864 (2010) - [j100]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Trans. Syst. Man Cybern. Part A 40(1): 185-197 (2010) - 2009
- [j99]Xiaoyuan Su, Taghi M. Khoshgoftaar:
A Survey of Collaborative Filtering Techniques. Adv. Artif. Intell. 2009: 421425:1-421425:19 (2009) - [j98]Jason Van Hulse, Taghi M. Khoshgoftaar:
Knowledge discovery from imbalanced and noisy data. Data Knowl. Eng. 68(12): 1513-1542 (2009) - [j97]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse:
Hybrid sampling for imbalanced data. Integr. Comput. Aided Eng. 16(3): 193-210 (2009) - [j96]Xiaoyuan Su, Taghi M. Khoshgoftaar, Russell Greiner:
Making an accurate classifier ensemble by voting on classifications from imputed learning sets. Int. J. Inf. Decis. Sci. 1(3): 301-322 (2009) - [j95]Andres Folleco, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Identifying Learners Robust to Low Quality Data. Informatica (Slovenia) 33(3): 245-259 (2009) - [j94]Taghi M. Khoshgoftaar, Pierre Rebours, Naeem Seliya:
Software quality analysis by combining multiple projects and learners. Softw. Qual. J. 17(1): 25-49 (2009) - [j93]John C. Sloan, Taghi M. Khoshgoftaar:
From Web Service Artifact to a Readable and Verifiable Model. IEEE Trans. Serv. Comput. 2(4): 277-288 (2009) - [j92]Taghi M. Khoshgoftaar, Jason Van Hulse:
Empirical Case Studies in Attribute Noise Detection. IEEE Trans. Syst. Man Cybern. Part C 39(4): 379-388 (2009) - [j91]Dennis J. Drown, Taghi M. Khoshgoftaar, Naeem Seliya:
Evolutionary Sampling and Software Quality Modeling of High-Assurance Systems. IEEE Trans. Syst. Man Cybern. Part A 39(5): 1097-1107 (2009) - [j90]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse:
Improving Software-Quality Predictions With Data Sampling and Boosting. IEEE Trans. Syst. Man Cybern. Part A 39(6): 1283-1294 (2009) - 2008
- [j89]John C. Sloan, Taghi M. Khoshgoftaar, Venkat Raghav:
Assuring Timeliness in an e-Science Service-Oriented Architecture. Computer 41(8): 56-62 (2008) - [j88]Xiaoyuan Su, Taghi M. Khoshgoftaar:
Collaborative Filtering for Multi-Class Data Using Bayesian Networks. Int. J. Artif. Intell. Tools 17(1): 71-85 (2008) - [j87]Taghi M. Khoshgoftaar, Naeem Seliya, Chris Seiffert:
Low-Effort Labeling of Network Events for Intrusion Detection in WLANs. Int. J. Artif. Intell. Tools 17(3): 521-537 (2008) - [j86]Jason Van Hulse, Taghi M. Khoshgoftaar:
A comprehensive empirical evaluation of missing value imputation in noisy software measurement data. J. Syst. Softw. 81(5): 691-708 (2008) - [j85]Taghi M. Khoshgoftaar, Jason Van Hulse:
Imputation techniques for multivariate missingness in software measurement data. Softw. Qual. J. 16(4): 563-600 (2008) - 2007
- [j84]Taghi M. Khoshgoftaar, Jason Van Hulse, Chris Seiffert, Lili Zhao:
The multiple imputation quantitative noise corrector. Intell. Data Anal. 11(3): 245-263 (2007) - [j83]Taghi M. Khoshgoftaar, Pierre Rebours:
Improving Software Quality Prediction by Noise Filtering Techniques. J. Comput. Sci. Technol. 22(3): 387-396 (2007) - [j82]Xingquan Zhu, Taghi M. Khoshgoftaar, Ian Davidson, Shichao Zhang:
Editorial: Special issue on mining low-quality data. Knowl. Inf. Syst. 11(2): 131-136 (2007) - [j81]Jason Van Hulse, Taghi M. Khoshgoftaar, Haiying Huang:
The pairwise attribute noise detection algorithm. Knowl. Inf. Syst. 11(2): 171-190 (2007) - [j80]Naeem Seliya, Taghi M. Khoshgoftaar:
Software quality estimation with limited fault data: a semi-supervised learning perspective. Softw. Qual. J. 15(3): 327-344 (2007) - [j79]Taghi M. Khoshgoftaar, Kehan Gao:
Count Models for Software Quality Estimation. IEEE Trans. Reliab. 56(2): 212-222 (2007) - [j78]Kehan Gao, Taghi M. Khoshgoftaar:
A Comprehensive Empirical Study of Count Models for Software Fault Prediction. IEEE Trans. Reliab. 56(2): 223-236 (2007) - [j77]Taghi M. Khoshgoftaar, Yi Liu:
A Multi-Objective Software Quality Classification Model Using Genetic Programming. IEEE Trans. Reliab. 56(2): 237-245 (2007) - [j76]Naeem Seliya, Taghi M. Khoshgoftaar:
Software Quality Analysis of Unlabeled Program Modules With Semisupervised Clustering. IEEE Trans. Syst. Man Cybern. Part A 37(2): 201-211 (2007) - 2006
- [j75]Pierre Rebours, Taghi M. Khoshgoftaar:
Quality Problem in Software Measurement Data. Adv. Comput. 66: 44-79 (2006) - [j74]Taghi M. Khoshgoftaar, Jason Van Hulse:
Determining noisy instances relative to attributes of interest. Intell. Data Anal. 10(3): 251-268 (2006) - [j73]Jason Van Hulse, Taghi M. Khoshgoftaar:
Class noise detection using frequent itemsets. Intell. Data Anal. 10(6): 487-507 (2006) - [j72]Taghi M. Khoshgoftaar, Kehan Gao, Hua Lin:
Indirect classification approaches: a comparative study in network intrusion detection. Int. J. Comput. Appl. Technol. 27(4): 232-245 (2006) - [j71]Taghi M. Khoshgoftaar, Pierre Rebours:
Noise elimination with partitioning filter for software quality estimation. Int. J. Comput. Appl. Technol. 27(4): 246-258 (2006) - [j70]Taghi M. Khoshgoftaar, Vedang H. Joshi, Naeem Seliya:
Detecting Noisy Instances with the Ensemble Filter: a Study in Software Quality Estimation. Int. J. Softw. Eng. Knowl. Eng. 16(1): 53-76 (2006) - [j69]Taghi M. Khoshgoftaar, Naeem Seliya, Nandini Sundaresh:
An empirical study of predicting software faults with case-based reasoning. Softw. Qual. J. 14(2): 85-111 (2006) - [j68]Taghi M. Khoshgoftaar, Angela Herzberg, Naeem Seliya:
Resource oriented selection of rule-based classification models: An empirical case study. Softw. Qual. J. 14(4): 309-338 (2006) - [j67]Qiming Luo, Taghi M. Khoshgoftaar:
Unsupervised multiscale color image segmentation based on MDL principle. IEEE Trans. Image Process. 15(9): 2755-2761 (2006) - 2005
- [j66]Taghi M. Khoshgoftaar, Naeem Seliya, Kehan Gao:
Assessment of a New Three-Group Software Quality Classification Technique: An Empirical Case Study. Empir. Softw. Eng. 10(2): 183-218 (2005) - [j65]Taghi M. Khoshgoftaar, Shi Zhong, Vedang H. Joshi:
Enhancing software quality estimation using ensemble-classifier based noise filtering. Intell. Data Anal. 9(1): 3-27 (2005) - [j64]Taghi M. Khoshgoftaar, Kehan Gao, Nawal H. Ibrahim:
Evaluating indirect and direct classification techniques for network intrusion detection. Intell. Data Anal. 9(3): 309-326 (2005) - [j63]Taghi M. Khoshgoftaar, Naeem Seliya, Kehan Gao:
Detecting noisy instances with the rule-based classification model. Intell. Data Anal. 9(4): 347-364 (2005) - [j62]Taghi M. Khoshgoftaar, Pierre Rebours:
Evaluating noise elimination techniques for software quality estimation. Intell. Data Anal. 9(5): 487-508 (2005) - [j61]Taghi M. Khoshgoftaar, Jason Van Hulse:
Identifying noisy features with the Pairwise Attribute Noise Detection Algorithm. Intell. Data Anal. 9(6): 589-602 (2005) - [j60]Taghi M. Khoshgoftaar, Kehan Gao, Robert M. Szabo:
Comparing software fault predictions of pure and zero-inflated Poisson regression models. Int. J. Syst. Sci. 36(11): 705-715 (2005) - [j59]Taghi M. Khoshgoftaar, Naeem Seliya, Angela Herzberg:
Resource-oriented software quality classification models. J. Syst. Softw. 76(2): 111-126 (2005) - 2004
- [j58]Taghi M. Khoshgoftaar, Naeem Seliya:
Software quality estimation with case-based reasoning. Adv. Comput. 62: 249-291 (2004) - [j57]Taghi M. Khoshgoftaar, Naeem Seliya:
Comparative Assessment of Software Quality Classification Techniques: An Empirical Case Study. Empir. Softw. Eng. 9(3): 229-257 (2004) - [j56]Shi Zhong, Taghi M. Khoshgoftaar, Naeem Seliya:
Analyzing Software Measurement Data with Clustering Techniques. IEEE Intell. Syst. 19(2): 20-27 (2004) - [j55]Zhiwei Xu, Taghi M. Khoshgoftaar:
Identification of fuzzy models of software cost estimation. Fuzzy Sets Syst. 145(1): 141-163 (2004) - [j54]Taghi M. Khoshgoftaar, Yi Liu, Naeem Seliya:
A multiobjective module-order model for software quality enhancement. IEEE Trans. Evol. Comput. 8(6): 593-608 (2004) - 2003
- [j53]Taghi M. Khoshgoftaar, Naeem Seliya:
Fault Prediction Modeling for Software Quality Estimation: Comparing Commonly Used Techniques. Empir. Softw. Eng. 8(3): 255-283 (2003) - [j52]Taghi M. Khoshgoftaar, Naeem Seliya:
Analogy-Based Practical Classification Rules for Software Quality Estimation. Empir. Softw. Eng. 8(4): 325-350 (2003) - [j51]Taghi M. Khoshgoftaar, Naeem Seliya:
Software Quality Classification Modeling Using the SPRINT Decision Tree Algorithm. Int. J. Artif. Intell. Tools 12(3): 207-225 (2003) - [j50]Zhiwei Xu, Taghi M. Khoshgoftaar, Edward B. Allen:
Application of fuzzy expert systems in assessing operational risk of software. Inf. Softw. Technol. 45(7): 373-388 (2003) - [j49]Taghi M. Khoshgoftaar, Edward B. Allen:
Ordering Fault-Prone Software Modules. Softw. Qual. J. 11(1): 19-37 (2003) - [j48]Taghi M. Khoshgoftaar:
Introduction to the Special Issue on Quality Engineering with Computational Intelligence. Softw. Qual. J. 11(2): 85-86 (2003) - 2002
- [j47]Taghi M. Khoshgoftaar, Xiaojing Yuan, Edward B. Allen, Wendell D. Jones, John P. Hudepohl:
Uncertain Classification of Fault-Prone Software Modules. Empir. Softw. Eng. 7(4): 295-295 (2002) - [j46]Taghi M. Khoshgoftaar, Bojan Cukic, Naeem Seliya:
Predicting Fault-Prone Modules in Embedded Systems Using Analogy-Based Classification Models. Int. J. Softw. Eng. Knowl. Eng. 12(2): 201-221 (2002) - [j45]Taghi M. Khoshgoftaar, Edward B. Allen, Jianyu Deng:
Using regression trees to classify fault-prone software modules. IEEE Trans. Reliab. 51(4): 455-462 (2002) - 2001
- [j44]Zhiwei Xu, Taghi M. Khoshgoftaar:
Software Quality Prediction for High-Assurance Network Telecommunications Systems. Comput. J. 44(6): 557-568 (2001) - [j43]Taghi M. Khoshgoftaar, Edward B. Allen:
Controlling Overfitting in Classification-Tree Models of Software Quality. Empir. Softw. Eng. 6(1): 59-79 (2001) - [j42]Taghi M. Khoshgoftaar, Edward B. Allen, Wendell D. Jones, John P. Hudepohl:
Cost-Benefit Analysis of Software Quality Models. Softw. Qual. J. 9(1): 9-30 (2001) - [j41]Taghi M. Khoshgoftaar, Edward B. Allen:
Empirical Assessment of a Software Metric: The Information Content of Operators. Softw. Qual. J. 9(2): 99-112 (2001) - [j40]Taghi M. Khoshgoftaar, Edward B. Allen, Wendell D. Jones, John P. Hudepohl:
Data Mining of Software Development Databases. Softw. Qual. J. 9(3): 161-176 (2001) - 2000
- [j39]Taghi M. Khoshgoftaar, Edward B. Allen, Wendell D. Jones, John P. Hudepohl:
Accuracy of software quality models over multiple releases. Ann. Softw. Eng. 9: 103-116 (2000) - [j38]Taghi M. Khoshgoftaar, Xiaojing Yuan, Edward B. Allen:
Balancing Misclassification Rates in Classification-Tree Models of Software Quality. Empir. Softw. Eng. 5(4): 313-330 (2000) - [j37]K. Ganesan, Taghi M. Khoshgoftaar, Edward B. Allen:
Case-Based Software Quality Prediction. Int. J. Softw. Eng. Knowl. Eng. 10(2): 139-152 (2000) - [j36]Taghi M. Khoshgoftaar, Edward B. Allen, Wendell D. Jones, John P. Hudepohl:
Classification-tree models of software-quality over multiple releases. IEEE Trans. Reliab. 49(1): 4-11 (2000) - [j35]Taghi M. Khoshgoftaar, Edward B. Allen:
A practical classification-rule for software-quality models. IEEE Trans. Reliab. 49(2): 209-216 (2000) - 1999
- [j34]Taghi M. Khoshgoftaar, Edward B. Allen:
A Comparative Study of Ordering and Classification of Fault-Prone Software Modules. Empir. Softw. Eng. 4(2): 159-186 (1999) - [j33]Taghi M. Khoshgoftaar, Edward B. Allen, Archana Naik, Wendell D. Jones, John P. Hudepohl:
Using Classification Trees for Software Quality Models: Lessons Learned. Int. J. Softw. Eng. Knowl. Eng. 9(2): 217-231 (1999) - [j32]Taghi M. Khoshgoftaar, Edward B. Allen, Wendell D. Jones, John P. Hudepohl:
Data Mining for Predictors of Software Quality. Int. J. Softw. Eng. Knowl. Eng. 9(5): 547-563 (1999) - [j31]Taghi M. Khoshgoftaar, Edward B. Allen, Wendell D. Jones, John P. Hudepohl:
Which Software Modules have Faults which will be Discovered by Customers? J. Softw. Maintenance Res. Pract. 11(1): 1-18 (1999) - 1998
- [j30]Taghi M. Khoshgoftaar, Edward B. Allen, Robert Halstead, Gary P. Trio, Ronald M. Flass:
Using Process History to Predict Software Quality. Computer 31(4): 66-72 (1998) - [j29]Taghi M. Khoshgoftaar, Edward B. Allen:
Classification of Fault-Prone Software Modules: Prior Probabilities, Costs, and Model Evaluation. Empir. Softw. Eng. 3(3): 275-298 (1998) - 1997
- [j28]Taghi M. Khoshgoftaar, Edward B. Allen, David L. Lanning:
An Information Theory-Based Approach to Quantifying the Contribution of a Software Metric. J. Syst. Softw. 36(2): 103-113 (1997) - [j27]Taghi M. Khoshgoftaar, Edward B. Allen, John P. Hudepohl, Stephen J. Aud:
Application of neural networks to software quality modeling of a very large telecommunications system. IEEE Trans. Neural Networks 8(4): 902-909 (1997) - 1996
- [j26]Taghi M. Khoshgoftaar, Edward B. Allen, Kalai Kalaichelvan, Nishith Goel:
The impact of software evolution and reuse on software quality. Empir. Softw. Eng. 1(1): 31-44 (1996) - [j25]Taghi M. Khoshgoftaar, Edward B. Allen, Kalai Kalaichelvan, Nishith Goel:
Early Quality Prediction: A Case Study in Telecommunications. IEEE Softw. 13(1): 65-71 (1996) - [j24]John P. Hudepohl, Stephen J. Aud, Taghi M. Khoshgoftaar, Edward B. Allen, Jean Mayrand:
Emerald: Software Metrics and Models on the Desktop. IEEE Softw. 13(5): 56-60 (1996) - [j23]Taghi M. Khoshgoftaar, David L. Lanning:
Analysis and differentiation of software system environments. Softw. Qual. J. 5(2): 127-139 (1996) - [j22]Taghi M. Khoshgoftaar, Robert M. Szabo:
Using neural networks to predict software faults during testing. IEEE Trans. Reliab. 45(3): 456-462 (1996) - 1995
- [j21]Taghi M. Khoshgoftaar, Abhijit S. Pandya, David L. Lanning:
Application of Neural Networks for Predicting Program Faults. Ann. Softw. Eng. 1: 141-154 (1995) - [j20]Taghi M. Khoshgoftaar, Robert M. Szabo, Peter J. Guasti:
Exploring the behaviour of neural network software quality models. Softw. Eng. J. 10(3): 89-96 (1995) - [j19]Taghi M. Khoshgoftaar, David L. Lanning:
A neural network approach for early detection of program modules having high risk in the maintenance phase. J. Syst. Softw. 29(1): 85-91 (1995) - [j18]Khoa D. Huynh, Taghi M. Khoshgoftaar:
A Performance Analysis of an Object-Based I/O Architecture in a Video Server Environment. Multim. Syst. 3(4): 162-177 (1995) - [j17]Khoa D. Huynh, Taghi M. Khoshgoftaar:
Performance Analysis of a Peer-to-Peer I/O Architecture in Video Server Environments. Multim. Tools Appl. 1(3): 217-244 (1995) - [j16]Taghi M. Khoshgoftaar, Robert M. Szabo:
Investigating ARIMA models of software system quality. Softw. Qual. J. 4(1): 33-48 (1995) - 1994
- [j15]Taghi M. Khoshgoftaar, Paul W. Oman:
Software Metrics: Charting the Course - Guest Editors' Introduction. Computer 27(9): 13-15 (1994) - [j14]David L. Lanning, Taghi M. Khoshgoftaar:
Modeling the Relationship Between Source Code Complexity and Maintenance Difficulty. Computer 27(9): 35-40 (1994) - [j13]Khoa D. Huynh, Taghi M. Khoshgoftaar:
A performance analysis of advanced I/O architectures for PC-based network file servers. Distributed Syst. Eng. 1(6): 332- (1994) - [j12]Taghi M. Khoshgoftaar, David L. Lanning, Abhijit S. Pandya:
A comparative study of pattern recognition techniques for quality evaluation of telecommunications software. IEEE J. Sel. Areas Commun. 12(2): 279-291 (1994) - [j11]Taghi M. Khoshgoftaar, John C. Munson, David L. Lanning:
Alternative approaches for the use of metrics to order programs by complexity. J. Syst. Softw. 24(3): 211-221 (1994) - [j10]Khoa D. Huynh, Taghi M. Khoshgoftaar:
Performance Analysis of Advanced I/O Architectures for PC-Based Video Servers. Multim. Syst. 2(1): 36-50 (1994) - [j9]Khoa D. Huynh, Taghi M. Khoshgoftaar:
A Performance Analysis of Personal Computers in a Video Conferencing Environment. Multim. Syst. 2(3): 103-117 (1994) - 1993
- [j8]Khoa D. Huynh, Taghi M. Khoshgoftaar, Gerald Marazas:
A high-level performance analysis of the IBM subsystem control block (SCB) architecture. Microprocess. Microprogramming 36(3): 109-125 (1993) - [j7]John C. Munson, Taghi M. Khoshgoftaar:
Measurement of data structure complexity. J. Syst. Softw. 20(3): 217-225 (1993) - 1992
- [j6]Khoa D. Huynh, Eduardo B. Fernández, Taghi M. Khoshgoftaar:
A workload model for frame-based real-time applications on distributed systems. J. Syst. Softw. 18(3): 255-271 (1992) - [j5]John C. Munson, Taghi M. Khoshgoftaar:
Measuring Dynamic Program Complexity. IEEE Softw. 9(6): 48-55 (1992) - [j4]John C. Munson, Taghi M. Khoshgoftaar:
The Detection of Fault-Prone Programs. IEEE Trans. Software Eng. 18(5): 423-433 (1992) - [j3]Taghi M. Khoshgoftaar, John C. Munson, Bibhuti B. Bhattacharya, Gary D. Richardson:
Predictive Modeling Techniques of Software Quality from Software Measures. IEEE Trans. Software Eng. 18(11): 979-987 (1992) - 1990
- [j2]Taghi M. Khoshgoftaar, John C. Munson:
Predicting Software Development Errors Using Software Complexity Metrics. IEEE J. Sel. Areas Commun. 8(2): 253-261 (1990) - [j1]John C. Munson, Taghi M. Khoshgoftaar:
Applications of a relative complexity metric for software project management. J. Syst. Softw. 12(3): 283-291 (1990)
Conference and Workshop Papers
- 2024
- [c402]Joffrey L. Leevy, Zahra Salekshahrezaee, Taghi M. Khoshgoftaar:
A Review of Unsupervised Anomaly Detection Techniques for Health Insurance Fraud. BigDataService 2024: 141-149 - 2023
- [c401]Robert K. L. Kennedy, Taghi M. Khoshgoftaar:
A Novel Approach to Synthesize Class Labels in Highly Imbalanced Large Data. CogMI 2023: 11-17 - [c400]Huanjing Wang, Qianxin Liang, John T. Hancock, Taghi M. Khoshgoftaar:
A Comparative Study of Model-Agnostic and Importance-Based Feature Selection Approaches. CogMI 2023: 75-82 - [c399]John T. Hancock, Taghi M. Khoshgoftaar:
Data Reduction to Improve the Performance of One-Class Classifiers on Highly Imbalanced Big Data. ICMLA 2023: 465-471 - [c398]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Azadeh Abdollah Zadeh:
One-Class Classifier Performance: Comparing Majority versus Minority Class Training. ICTAI 2023: 86-91 - [c397]John T. Hancock, Richard A. Bauder, Taghi M. Khoshgoftaar:
A Model-Agnostic Feature Selection Technique to Improve the Performance of One-Class Classifiers. ICTAI 2023: 92-98 - [c396]Huanjing Wang, Qianxin Liang, John T. Hancock, Taghi M. Khoshgoftaar:
Enhancing Credit Card Fraud Detection Through a Novel Ensemble Feature Selection Technique. IRI 2023: 121-126 - [c395]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar:
Assessing One-Class and Binary Classification Approaches for Identifying Medicare Fraud. IRI 2023: 267-272 - [c394]Robert K. L. Kennedy, Zahra Salekshahrezaee, Taghi M. Khoshgoftaar:
Unsupervised Anomaly Detection of Class Imbalanced Cognition Data Using an Iterative Cleaning Method. IRI 2023: 303-308 - [c393]Huanjing Wang, John T. Hancock, Taghi M. Khoshgoftaar:
Improving Medicare Fraud Detection through Big Data Size Reduction Techniques. SOSE 2023: 208-217 - 2022
- [c392]Robert K. L. Kennedy, Zahra Salekshahrezaee, Taghi M. Khoshgoftaar:
A Novel Approach for Unsupervised Learning of Highly-Imbalanced Data. CogMI 2022: 52-58 - [c391]John T. Hancock, Justin M. Johnson, Taghi M. Khoshgoftaar:
A Comparative Approach to Threshold Optimization for Classifying Imbalanced Data. CIC 2022: 135-142 - [c390]Erika Cardenas, Connor Shorten, Taghi M. Khoshgoftaar, Borivoje Furht:
A Comparison of House Price Classification with Structured and Unstructured Text Data. FLAIRS 2022 - [c389]Connor Shorten, Taghi M. Khoshgoftaar:
An Exploration of Consistency Learning with Data Augmentation. FLAIRS 2022 - [c388]Connor Shorten, Taghi M. Khoshgoftaar, Javad Hashemi, Safiya George Dalmida, David Newman, Debarshi Datta, Laurie Martinez, Candice Sareli, Paula Eckard:
Predicting the Severity of COVID-19 Respiratory Illness with Deep Learning. FLAIRS 2022 - [c387]John T. Hancock, Taghi M. Khoshgoftaar, Justin M. Johnson:
Informative Evaluation Metrics for Highly Imbalanced Big Data Classification. ICMLA 2022: 1419-1426 - [c386]Justin M. Johnson, Taghi M. Khoshgoftaar:
Cost-Sensitive Ensemble Learning for Highly Imbalanced Classification. ICMLA 2022: 1427-1434 - [c385]Joffrey L. Leevy, Taghi M. Khoshgoftaar, John T. Hancock:
Evaluating Performance Metrics for Credit Card Fraud Classification. ICTAI 2022: 1336-1341 - [c384]Rick Sauber-Cole, Taghi M. Khoshgoftaar, Justin M. Johnson:
GANs for Class-Imbalanced Data: A Meta-Analysis of GitHub Projects. ICTAI 2022: 1419-1424 - [c383]Connor Shorten, Erika Cardenas, Taghi M. Khoshgoftaar, Javad Hashemi, Safiya George Dalmida, David Newman, Debarshi Datta, Laurie Martinez, Candice Sareli, Paula Eckard:
Exploring Language-Interfaced Fine-Tuning for COVID-19 Patient Survival Classification. ICTAI 2022: 1449-1454 - [c382]Zahra Salekshahrezaee, Joffrey L. Leevy, Taghi M. Khoshgoftaar:
A Class-Imbalanced Study with Feature Extraction via PCA and Convolutional Autoencoder. IRI 2022: 63-68 - [c381]Justin M. Johnson, Taghi M. Khoshgoftaar:
Healthcare Provider Summary Data for Fraud Classification. IRI 2022: 236-242 - [c380]John T. Hancock, Taghi M. Khoshgoftaar:
Optimizing Ensemble Trees for Big Data Healthcare Fraud Detection. IRI 2022: 243-249 - [c379]John T. Hancock, Taghi M. Khoshgoftaar, Justin M. Johnson:
The Effects of Random Undersampling for Big Data Medicare Fraud Detection. SOSE 2022: 141-146 - 2021
- [c378]Joffrey L. Leevy, Taghi M. Khoshgoftaar, Jared M. Peterson:
Mitigating Class Imbalance for IoT Network Intrusion Detection: A Survey. BigDataService 2021: 143-148 - [c377]John T. Hancock, Taghi M. Khoshgoftaar:
Leveraging LightGBM for Categorical Big Data. BigDataService 2021: 149-154 - [c376]Robert K. L. Kennedy, Taghi M. Khoshgoftaar:
An Examination of Neural Networks on Cluster Computers. BigDataService 2021: 155-160 - [c375]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Jared M. Peterson:
An Easy-to-Classify Approach for the Bot-IoT Dataset. CogMI 2021: 172-179 - [c374]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Naeem Seliya:
IoT Reconnaissance Attack Classification with Random Undersampling and Ensemble Feature Selection. CIC 2021: 41-49 - [c373]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Detecting SQL Injection Web Attacks Using Ensemble Learners and Data Sampling. CSR 2021: 27-34 - [c372]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Feature Popularity Between Different Web Attacks with Supervised Feature Selection Rankers. ICMLA 2021: 30-37 - [c371]Connor Shorten, Taghi M. Khoshgoftaar:
KerasBERT: Modeling the Keras Language. ICMLA 2021: 219-226 - [c370]John T. Hancock, Taghi M. Khoshgoftaar, Joffrey L. Leevy:
Detecting SSH and FTP Brute Force Attacks in Big Data. ICMLA 2021: 760-765 - [c369]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Jared M. Peterson:
Detecting Information Theft Attacks in the Bot-IoT Dataset. ICMLA 2021: 807-812 - [c368]Justin M. Johnson, Taghi M. Khoshgoftaar:
Robust Thresholding Strategies for Highly Imbalanced and Noisy Data. ICMLA 2021: 1182-1188 - [c367]Connor Shorten, Taghi M. Khoshgoftaar:
Investigating the Generalization of Image Classifiers with Augmented Test Sets. ICTAI 2021: 10-17 - [c366]Zahra Salekshahrezaee, Joffrey L. Leevy, Taghi M. Khoshgoftaar:
Feature Extraction for Class Imbalance Using a Convolutional Autoencoder and Data Sampling. ICTAI 2021: 217-223 - [c365]Robert K. L. Kennedy, Justin M. Johnson, Taghi M. Khoshgoftaar:
The Effects of Class Label Noise on Highly-Imbalanced Big Data. ICTAI 2021: 1427-1433 - [c364]Justin M. Johnson, Taghi M. Khoshgoftaar:
Output Thresholding for Ensemble Learners and Imbalanced Big Data. ICTAI 2021: 1449-1454 - [c363]Clifford Kemp, Chad Calvert, Taghi M. Khoshgoftaar:
Detecting Slow Application-Layer DoS Attacks With PCA. IRI 2021: 176-183 - [c362]Michael Crawford, Taghi M. Khoshgoftaar:
Using Inductive Transfer Learning to Improve Hotel Review Spam Detection. IRI 2021: 248-254 - [c361]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Detecting Web Attacks in Severely Imbalanced Network Traffic Data. IRI 2021: 267-273 - [c360]John T. Hancock, Taghi M. Khoshgoftaar:
Impact of Hyperparameter Tuning in Classifying Highly Imbalanced Big Data. IRI 2021: 348-354 - [c359]Justin M. Johnson, Taghi M. Khoshgoftaar:
Encoding Techniques for High-Cardinality Features and Ensemble Learners. IRI 2021: 355-361 - [c358]Aline Anacleto, Taghi M. Khoshgoftaar, Evangelos I. Kaisar:
Predicting Traffic Incidents in Road Networks Using Vehicle Detector Data. ITSC 2021: 1431-1436 - [c357]Jared M. Peterson, Joffrey L. Leevy, Taghi M. Khoshgoftaar:
A Review and Analysis of the Bot-IoT Dataset. SOSE 2021: 20-27 - 2020
- [c356]Joffrey L. Leevy, John T. Hancock, Richard Zuech, Taghi M. Khoshgoftaar:
Detecting Cybersecurity Attacks Using Different Network Features with LightGBM and XGBoost Learners. CogMI 2020: 190-197 - [c355]Joffrey L. Leevy, Taghi M. Khoshgoftaar:
A Short Survey of LSTM Models for De-identification of Medical Free Text. CIC 2020: 117-124 - [c354]Justin M. Johnson, Taghi M. Khoshgoftaar:
Hcpcs2Vec: Healthcare Procedure Embeddings for Medicare Fraud Prediction. CIC 2020: 145-152 - [c353]Gabriel Castaneda, Paul Morris, Taghi M. Khoshgoftaar:
Evaluating The Number of Trainable Parameters on Deep Maxout and LReLU Networks for Visual Recognition. ICMLA 2020: 415-421 - [c352]John T. Hancock, Taghi M. Khoshgoftaar:
Performance of CatBoost and XGBoost in Medicare Fraud Detection. ICMLA 2020: 572-579 - [c351]Robert K. L. Kennedy, Taghi M. Khoshgoftaar:
Accelerated Deep Learning on HPCC Systems. ICMLA 2020: 847-852 - [c350]Clifford Kemp, Chad Calvert, Taghi M. Khoshgoftaar:
Detection Methods of Slow Read DoS Using Full Packet Capture Data. IRI 2020: 9-16 - [c349]John T. Hancock, Taghi M. Khoshgoftaar:
Medicare Fraud Detection using CatBoost. IRI 2020: 97-103 - [c348]Justin M. Johnson, Taghi M. Khoshgoftaar:
Semantic Embeddings for Medical Providers and Fraud Detection. IRI 2020: 224-230 - 2019
- [c347]Tawfiq Hasanin, Taghi M. Khoshgoftaar, Joffrey L. Leevy, Naeem Seliya:
Investigating Random Undersampling and Feature Selection on Bioinformatics Big Data. BigDataService 2019: 346-356 - [c346]Gabriel Castaneda, Paul Morris, Taghi M. Khoshgoftaar:
Maxout Neural Network for Big Data Medical Fraud Detection. BigDataService 2019: 357-362 - [c345]Stevens Dormezil, Taghi M. Khoshgoftaar, Federica Robinson-Bryant:
Differentiating between Educational Data Mining and Learning Analytics: A Bibliometric Approach. EDM (Workshops) 2019: 17-22 - [c344]Gabriel Castaneda, Paul Morris, Joseph D. Prusa, Taghi M. Khoshgoftaar:
Investigation of Maxout Activations on Convolutional Neural Networks for Big Data Text Sentiment Analysis. FLAIRS 2019: 250-256 - [c343]Chad Calvert, Clifford Kemp, Taghi M. Khoshgoftaar, Maryam M. Najafabadi:
Detecting Slow HTTP POST DoS Attacks Using Netflow Features. FLAIRS 2019: 387-390 - [c342]Justin M. Johnson, Taghi M. Khoshgoftaar:
Deep Learning and Thresholding with Class-Imbalanced Big Data. ICMLA 2019: 755-762 - [c341]Aaron N. Richter, Taghi M. Khoshgoftaar:
Learning Curve Estimation with Large Imbalanced Datasets. ICMLA 2019: 763-768 - [c340]Huanjing Wang, Taghi M. Khoshgoftaar:
A Study on Software Metric Selection for Software Fault Prediction. ICMLA 2019: 1045-1050 - [c339]Joffrey L. Leevy, Taghi M. Khoshgoftaar, Richard A. Bauder, Naeem Seliya:
The Effect of Time on the Maintenance of a Predictive Model. ICMLA 2019: 1891-1896 - [c338]Aaron N. Richter, Taghi M. Khoshgoftaar:
Approximating Learning Curves for Imbalanced Big Data with Limited Labels. ICTAI 2019: 237-242 - [c337]Chad Calvert, Taghi M. Khoshgoftaar:
Threshold Based Optimization of Performance Metrics with Severely Imbalanced Big Security Data. ICTAI 2019: 1328-1334 - [c336]Richard A. Bauder, Matthew Herland, Taghi M. Khoshgoftaar:
Evaluating Model Predictive Performance: A Medicare Fraud Detection Case Study. IRI 2019: 9-14 - [c335]Tawfiq Hasanin, Taghi M. Khoshgoftaar, Joffrey L. Leevy:
A Comparison of Performance Metrics with Severely Imbalanced Network Security Big Data. IRI 2019: 83-88 - [c334]Gabriel Castaneda, Paul Morris, Taghi M. Khoshgoftaar:
Deep Learning with Maxout Activations for Visual Recognition and Verification. IRI 2019: 135-142 - [c333]Justin M. Johnson, Taghi M. Khoshgoftaar:
Deep Learning and Data Sampling with Imbalanced Big Data. IRI 2019: 175-183 - 2018
- [c332]Aaron N. Richter, Taghi M. Khoshgoftaar:
Melanoma Risk Prediction with Structured Electronic Health Records. BCB 2018: 194-199 - [c331]Brian Heredia, Joseph D. Prusa, Taghi M. Khoshgoftaar:
The Impact of Malicious Accounts on Political Tweet Sentiment. CIC 2018: 197-202 - [c330]Brian Heredia, Joseph D. Prusa, Taghi M. Khoshgoftaar:
Location-Based Twitter Sentiment Analysis for Predicting the U.S. 2016 Presidential Election. FLAIRS 2018: 265-270 - [c329]Richard A. Bauder, Taghi M. Khoshgoftaar, Amri Napolitano:
Fraud Detection with a Limited Number of Known Fraudulent Medicare Providers. FLAIRS 2018: 299-304 - [c328]Richard A. Bauder, Taghi M. Khoshgoftaar:
The Detection of Medicare Fraud Using Machine Learning Methods with Excluded Provider Labels. FLAIRS 2018: 404-409 - [c327]Richard A. Bauder, Taghi M. Khoshgoftaar, Tawfiq Hasanin:
An Empirical Study on Class Rarity in Big Data. ICMLA 2018: 785-790 - [c326]Richard A. Bauder, Taghi M. Khoshgoftaar, Tawfiq Hasanin:
Data Sampling Approaches with Severely Imbalanced Big Data for Medicare Fraud Detection. ICTAI 2018: 137-142 - [c325]Aaron N. Richter, Taghi M. Khoshgoftaar:
Building and Interpreting Risk Models from Imbalanced Clinical Data. ICTAI 2018: 143-150 - [c324]Richard A. Bauder, Taghi M. Khoshgoftaar:
A Survey of Medicare Data Processing and Integration for Fraud Detection. IRI 2018: 9-14 - [c323]Tawfiq Hasanin, Taghi M. Khoshgoftaar:
The Effects of Random Undersampling with Simulated Class Imbalance for Big Data. IRI 2018: 70-79 - [c322]Richard A. Bauder, Taghi M. Khoshgoftaar:
Medicare Fraud Detection Using Random Forest with Class Imbalanced Big Data. IRI 2018: 80-87 - [c321]Clifford Kemp, Chad Calvert, Taghi M. Khoshgoftaar:
Utilizing Netflow Data to Detect Slow Read Attacks. IRI 2018: 108-116 - [c320]Richard A. Bauder, Raquel da Rosa, Taghi M. Khoshgoftaar:
Identifying Medicare Provider Fraud with Unsupervised Machine Learning. IRI 2018: 285-292 - [c319]Ahmad Abu Shanab, Taghi M. Khoshgoftaar:
Is Gene Selection Enough for Imbalanced Bioinformatics Data? IRI 2018: 346-355 - [c318]Ahmad Abu Shanab, Taghi M. Khoshgoftaar:
Filter-Based Subset Selection for Easy, Moderate, and Hard Bioinformatics Data. IRI 2018: 372-377 - 2017
- [c317]Aaron N. Richter, Taghi M. Khoshgoftaar:
Predicting sentinel node status in melanoma from a real-world EHR dataset. BIBM 2017: 1872-1878 - [c316]Gabriel Castaneda, Taghi M. Khoshgoftaar:
A Review of Performance Evaluation on 2D Face Databases. BigDataService 2017: 218-223 - [c315]Karl R. Weiss, Taghi M. Khoshgoftaar:
Detection of Phishing Webpages Using Heterogeneous Transfer Learning. CIC 2017: 190-197 - [c314]Brian Heredia, Joseph D. Prusa, Taghi M. Khoshgoftaar:
Exploring the Effectiveness of Twitter at Polling the United States 2016 Presidential Election. CIC 2017: 283-290 - [c313]Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Chad Calvert, Clifford Kemp:
A Text Mining Approach for Anomaly Detection in Application Layer DDoS Attacks. FLAIRS 2017: 312-317 - [c312]Joseph D. Prusa, Taghi M. Khoshgoftaar:
Deep Neural Network Architecture for Character-Level Learning on Short Text. FLAIRS 2017: 353-358 - [c311]Richard A. Bauder, Taghi M. Khoshgoftaar:
Multivariate Anomaly Detection in Medicare using Model Residuals and Probabilistic Programming. FLAIRS 2017: 417-422 - [c310]Karl R. Weiss, Taghi M. Khoshgoftaar:
Comparing Transfer Learning and Traditional Learning Under Domain Class Imbalance. ICMLA 2017: 337-343 - [c309]Richard A. Bauder, Taghi M. Khoshgoftaar:
Medicare Fraud Detection Using Machine Learning Methods. ICMLA 2017: 858-865 - [c308]Karl R. Weiss, Taghi M. Khoshgoftaar:
Evaluation of Transfer Learning Algorithms Using Different Base Learners. ICTAI 2017: 187-196 - [c307]Joseph D. Prusa, Taghi M. Khoshgoftaar:
Training Convolutional Networks on Truncated Text. ICTAI 2017: 330-335 - [c306]Joseph D. Prusa, Ryan Sagul, Taghi M. Khoshgoftaar, Michael Sterling:
Extracting Knowledge from Technical Reports for the Valuation of West Texas Intermediate Crude Oil Futures. IRI 2017: 42-48 - [c305]Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Chad Calvert, Clifford Kemp:
User Behavior Anomaly Detection for Application Layer DDoS Attacks. IRI 2017: 154-161 - [c304]Karl R. Weiss, Taghi M. Khoshgoftaar:
Analysis of Transfer Learning Performance Measures. IRI 2017: 338-345 - [c303]Sara Landset, Michael F. Bergeron, Taghi M. Khoshgoftaar:
Using Weather and Playing Surface to Predict the Occurrence of Injury in Major League Soccer Games: A Case Study. IRI 2017: 366-371 - [c302]Aaron N. Richter, Taghi M. Khoshgoftaar:
Modernizing Analytics for Melanoma with a Large-Scale Research Dataset. IRI 2017: 551-558 - [c301]Richard A. Bauder, Taghi M. Khoshgoftaar:
Estimating Outlier Score Probabilities. IRI 2017: 559-568 - [c300]Matthew Herland, Richard A. Bauder, Taghi M. Khoshgoftaar:
Medical Provider Specialty Predictions for the Detection of Anomalous Medicare Insurance Claims. IRI 2017: 579-588 - 2016
- [c299]Brian Heredia, Taghi M. Khoshgoftaar, Joseph D. Prusa, Michael Crawford:
Integrating Multiple Data Sources to Enhance Sentiment Prediction. CIC 2016: 285-291 - [c298]Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Amri Napolitano, Charles Wheelus:
RUDY Attack: Detection at the Network Level and Its Important Features. FLAIRS 2016: 288-293 - [c297]Michael Crawford, Taghi M. Khoshgoftaar, Joseph D. Prusa:
Reducing Feature Set Explosion to Facilitate Real-World Review Spam Detection. FLAIRS 2016: 304-309 - [c296]Joseph D. Prusa, Taghi M. Khoshgoftaar, Naeem Seliya:
Enhancing Ensemble Learners with Data Sampling on High-Dimensional Imbalanced Tweet Sentiment Data. FLAIRS 2016: 322-328 - [c295]Joseph D. Prusa, Taghi M. Khoshgoftaar:
Comparing Approaches for Combining Data Sampling and Feature Selection to Address Key Data Quality Issues in Tweet Sentiment Analysis. FLAIRS 2016: 608-613 - [c294]Joseph D. Prusa, Taghi M. Khoshgoftaar, Amri Napolitano:
Necessity of Feature Selection when Augmenting Tweet Sentiment Feature Spaces with Emoticons. FLAIRS 2016: 614-620 - [c293]Brian Heredia, Taghi M. Khoshgoftaar, Joseph D. Prusa, Michael Crawford:
An Investigation of Ensemble Techniques for Detection of Spam Reviews. ICMLA 2016: 127-133 - [c292]Karl R. Weiss, Taghi M. Khoshgoftaar:
Investigating Transfer Learners for Robustness to Domain Class Imbalance. ICMLA 2016: 207-213 - [c291]Richard A. Bauder, Taghi M. Khoshgoftaar:
A Probabilistic Programming Approach for Outlier Detection in Healthcare Claims. ICMLA 2016: 347-354 - [c290]Karl R. Weiss, Taghi M. Khoshgoftaar:
An Investigation of Transfer Learning and Traditional Machine Learning Algorithms. ICTAI 2016: 283-290 - [c289]Richard A. Bauder, Taghi M. Khoshgoftaar, Aaron N. Richter, Matthew Herland:
Predicting Medical Provider Specialties to Detect Anomalous Insurance Claims. ICTAI 2016: 784-790 - [c288]Richard A. Bauder, Taghi M. Khoshgoftaar:
A Novel Method for Fraudulent Medicare Claims Detection from Expected Payment Deviations (Application Paper). IRI 2016: 11-19 - [c287]Karl R. Weiss, Taghi M. Khoshgoftaar, Oneeb Rehman:
Designing a Testing Framework for Transfer Learning Algorithms (Application Paper). IRI 2016: 152-159 - [c286]Brian Heredia, Taghi M. Khoshgoftaar, Joseph D. Prusa, Michael Crawford:
Cross-Domain Sentiment Analysis: An Empirical Investigation. IRI 2016: 160-165 - [c285]Aaron N. Richter, Taghi M. Khoshgoftaar:
Predicting Cancer Relapse with Clinical Data: A Survey of Current Techniques. IRI 2016: 369-376 - [c284]Alireza Fazelpour, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Investigating the Variation of Ensemble Size on Bagging-Based Classifier Performance in Imbalanced Bioinformatics Datasets. IRI 2016: 377-383 - [c283]Joseph D. Prusa, Taghi M. Khoshgoftaar:
Designing a Better Data Representation for Deep Neural Networks and Text Classification. IRI 2016: 411-416 - 2015
- [c282]Richard Zuech, Taghi M. Khoshgoftaar, Naeem Seliya, Maryam M. Najafabadi, Clifford Kemp:
A New Intrusion Detection Benchmarking System. FLAIRS 2015: 252-256 - [c281]Joseph D. Prusa, Taghi M. Khoshgoftaar, David J. Dittman:
Impact of Feature Selection Techniques for Tweet Sentiment Classification. FLAIRS 2015: 299-304 - [c280]David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano:
Selecting the Appropriate Ensemble Learning Approach for Balanced Bioinformatics Data. FLAIRS 2015: 329-334 - [c279]Joseph D. Prusa, Taghi M. Khoshgoftaar, Naeem Seliya:
The Effect of Dataset Size on Training Tweet Sentiment Classifiers. ICMLA 2015: 96-102 - [c278]Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Chad Calvert, Clifford Kemp:
Detection of SSH Brute Force Attacks Using Aggregated Netflow Data. ICMLA 2015: 283-288 - [c277]Alireza Fazelpour, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Does the Inclusion of Data Sampling Improve the Performance of Boosting Algorithms on Imbalanced Bioinformatics Data? ICMLA 2015: 527-534 - [c276]Joseph D. Prusa, Taghi M. Khoshgoftaar, Amri Napolitano:
Utilizing Ensemble, Data Sampling and Feature Selection Techniques for Improving Classification Performance on Tweet Sentiment Data. ICMLA 2015: 535-542 - [c275]Alireza Fazelpour, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Investigating New Bootstrapping Approaches of Bagging Classifiers to Account for Class Imbalance in Bioinformatics Datasets. ICMLA 2015: 987-994 - [c274]Joseph D. Prusa, Taghi M. Khoshgoftaar, Amri Napolitano:
Using Feature Selection in Combination with Ensemble Learning Techniques to Improve Tweet Sentiment Classification Performance. ICTAI 2015: 186-193 - [c273]Taghi M. Khoshgoftaar, Alireza Fazelpour, David J. Dittman, Amri Napolitano:
Ensemble vs. Data Sampling: Which Option Is Best Suited to Improve Classification Performance of Imbalanced Bioinformatics Data? ICTAI 2015: 705-712 - [c272]Aaron N. Richter, Michael Crawford, Brian Heredia, Taghi M. Khoshgoftaar:
Efficient Modeling of User-Entity Preference in Big Social Networks. ICTAI 2015: 982-988 - [c271]Aaron N. Richter, Taghi M. Khoshgoftaar, Sara Landset, Tawfiq Hasanin:
A Multi-dimensional Comparison of Toolkits for Machine Learning with Big Data. IRI 2015: 1-8 - [c270]Alireza Fazelpour, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Choosing an Appropriate Ensemble Classifier for Balanced Bioinformatics Data. IRI 2015: 17-24 - [c269]Joseph D. Prusa, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Using Random Undersampling to Alleviate Class Imbalance on Tweet Sentiment Data. IRI 2015: 197-202 - [c268]Gabriel Castaneda, Taghi M. Khoshgoftaar:
A Survey of 2D Face Databases. IRI 2015: 219-224 - [c267]Brian Heredia, Taghi M. Khoshgoftaar, Alireza Fazelpour, David J. Dittman:
Building an Effective Classification Model for Breast Cancer Patient Response Data. IRI 2015: 229-235 - [c266]Joseph D. Prusa, Taghi M. Khoshgoftaar, David J. Dittman:
Using Ensemble Learners to Improve Classifier Performance on Tweet Sentiment Data. IRI 2015: 252-257 - [c265]Taghi M. Khoshgoftaar, Alireza Fazelpour, David J. Dittman, Amri Napolitano:
Alterations to the Bootstrapping Process within Random Forest: A Case Study on Imbalanced Bioinformatics Data. IRI 2015: 342-348 - [c264]Alireza Fazelpour, Taghi M. Khoshgoftaar, David J. Dittman, Ahmad Abu Shanab:
Observing the Effect of the Choice of Classifier on Bioinformatics Data with Varying Levels of Data Quality and Class Balance. IRI 2015: 372-379 - [c263]David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano:
The Effect of Data Sampling When Using Random Forest on Imbalanced Bioinformatics Data. IRI 2015: 457-463 - [c262]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
Stability of Three Forms of Feature Selection Methods on Software Engineering Data. SEKE 2015: 385-390 - [c261]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Combining Feature Subset Selection and Data Sampling for Coping with Highly Imbalanced Software Data. SEKE 2015: 439-444 - 2014
- [c260]Ahmad Abu Shanab, Taghi M. Khoshgoftaar, Randall Wald:
Evaluation of Wrapper-Based Feature Selection Using Hard, Moderate, and Easy Bioinformatics Data. BIBE 2014: 149-155 - [c259]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Using Correlation-Based Feature Selection for a Diverse Collection of Bioinformatics Datasets. BIBE 2014: 156-162 - [c258]David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano:
Selecting the Appropriate Data Sampling Approach for Imbalanced and High-Dimensional Bioinformatics Datasets. BIBE 2014: 304-310 - [c257]Randall Wald, Taghi M. Khoshgoftaar, Richard Zuech, Amri Napolitano:
Network Traffic Prediction Models for Near- and Long-Term Predictions. BIBE 2014: 362-368 - [c256]Charles Wheelus, Taghi M. Khoshgoftaar, Richard Zuech, Maryam M. Najafabadi:
A Session Based Approach for Aggregating Network Traffic Data - The SANTA Dataset. BIBE 2014: 369-378 - [c255]Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Clifford Kemp, Naeem Seliya, Richard Zuech:
Machine Learning for Detecting Brute Force Attacks at the Network Level. BIBE 2014: 379-385 - [c254]David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano, Alireza Fazelpour:
Select-Bagging: Effectively Combining Gene Selection and Bagging for Balanced Bioinformatics Data. BIBE 2014: 413-419 - [c253]Taghi M. Khoshgoftaar, Alireza Fazelpour, David J. Dittman, Amri Napolitano:
Effects of the Use of Boosting on Classification Performance of Imbalanced Bioinformatics Datasets. BIBE 2014: 420-426 - [c252]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Comparison of Data Sampling Approaches for Imbalanced Bioinformatics Data. FLAIRS 2014 - [c251]Kehan Gao, Taghi M. Khoshgoftaar, Randall Wald:
Combining Feature Selection and Ensemble Learning for Software Quality Estimation. FLAIRS 2014 - [c250]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Optimizing Wrapper-Based Feature Selection for Use on Bioinformatics Data. FLAIRS 2014 - [c249]Ahmad Abu Shanab, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
How ranker and learner choice affects classification performance on noisy bioinformatics data. IRI 2014: 277-282 - [c248]Randall Wald, Taghi M. Khoshgoftaar, Ahmad Abu Shanab:
The effect of noise level and distribution on classification of easy gene microarray data. IRI 2014: 297-302 - [c247]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
Stability of filter- and wrapper-based software metric selection techniques. IRI 2014: 309-314 - [c246]Taghi M. Khoshgoftaar, Alireza Fazelpour, David J. Dittman, Amri Napolitano:
Classification performance of three approaches for combining data sampling and gene selection on bioinformatics data. IRI 2014: 315-321 - [c245]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano:
Improving software quality estimation by combining feature selection strategies with sampled ensemble learning. IRI 2014: 428-433 - [c244]Gabriel Castaneda Oscos, Taghi M. Khoshgoftaar, Randall Wald:
Rotation invariant face recognition survey. IRI 2014: 835-840 - [c243]Randall Wald, Flavio Villanustre, Taghi M. Khoshgoftaar, Richard Zuech, Jarvis Robinson, Edin Muharemagic:
Using feature selection and classification to build effective and efficient firewalls. IRI 2014: 850-854 - [c242]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Comparing Two Approaches for Adding Feature Ranking to Sampled Ensemble Learning for Software Quality Estimation. SEKE 2014: 280-285 - [c241]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
Choosing the Best Classification Performance Metric for Wrapper-based Software Metric Selection for Defect Prediction. SEKE 2014: 540-545 - 2013
- [c240]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Classification Performance of Rank Aggregation Techniques for Ensemble Gene Selection. FLAIRS 2013 - [c239]Randall Wald, Taghi M. Khoshgoftaar, David J. Dittman:
Ensemble Gene Selection Versus Single Gene Selection: Which Is Better? FLAIRS 2013 - [c238]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Improving Software Quality Estimation by Combining Boosting and Feature Selection. ICMLA (1) 2013: 27-33 - [c237]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Study on Wrapper-Based Feature Selection for Software Engineering Data. ICMLA (2) 2013: 84-89 - [c236]Randall Wald, Taghi M. Khoshgoftaar, David J. Dittman, Amri Napolitano:
Random Forest with 200 Selected Features: An Optimal Model for Bioinformatics Research. ICMLA (1) 2013: 154-160 - [c235]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Simplifying the Utilization of Machine Learning Techniques for Bioinformatics. ICMLA (2) 2013: 396-403 - [c234]Taghi M. Khoshgoftaar, David J. Dittman, Randall Wald, Amri Napolitano:
Contrasting Undersampled Boosting with Internal and External Feature Selection for Patient Response Datasets. ICMLA (2) 2013: 404-410 - [c233]Randall Wald, Taghi M. Khoshgoftaar, Ahmad Abu Shanab, Amri Napolitano:
Comparative Analysis on the Stability of Feature Selection Techniques Using Three Frameworks on Biological Datasets. ICMLA (1) 2013: 418-423 - [c232]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Comparison of Stability for Different Families of Filter-Based and Wrapper-Based Feature Selection. ICMLA (2) 2013: 457-464 - [c231]Matthew Herland, Taghi M. Khoshgoftaar, Randall Wald:
Survey of Clinical Data Mining Applications on Big Data in Health Informatics. ICMLA (2) 2013: 465-472 - [c230]Liz Aranguren Pachano, Taghi M. Khoshgoftaar, Randall Wald:
Survey of Data Cleansing and Monitoring for Large-Scale Battery Backup Installations. ICMLA (2) 2013: 478-484 - [c229]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano, Chris Sumner:
Which Users Reply to and Interact with Twitter Social Bots? ICTAI 2013: 135-144 - [c228]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Stability of Filter- and Wrapper-Based Feature Subset Selection. ICTAI 2013: 374-380 - [c227]Taghi M. Khoshgoftaar, David J. Dittman, Randall Wald, Wael Awada:
A Review of Ensemble Classification for DNA Microarrays Data. ICTAI 2013: 381-389 - [c226]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
How the Choice of Wrapper Learner and Performance Metric Affects Subset Evaluation. ICTAI 2013: 426-432 - [c225]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Should the Same Learners Be Used Both within Wrapper Feature Selection and for Building Classification Models? ICTAI 2013: 439-445 - [c224]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Maximizing Classification Performance for Patient Response Datasets. ICTAI 2013: 454-462 - [c223]Randall Wald, Taghi M. Khoshgoftaar, Ahmad Abu Shanab:
Comparison of Two Frameworks for Measuring the Stability of Gene-Selection Techniques on Noisy Class-Imbalanced Data. ICTAI 2013: 881-888 - [c222]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano, Chris Sumner:
Predicting susceptibility to social bots on Twitter. IRI 2013: 6-13 - [c221]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
The importance of performance metrics within wrapper feature selection. IRI 2013: 105-111 - [c220]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Comparison of rank-based vs. score-based aggregation for ensemble gene selection. IRI 2013: 225-231 - [c219]Randall Wald, Taghi M. Khoshgoftaar, Alireza Fazelpour, David J. Dittman:
Hidden dependencies between class imbalance and difficulty of learning for bioinformatics datasets. IRI 2013: 232-238 - [c218]Randall Wald, Taghi M. Khoshgoftaar:
Patient response datasets: Challenges and opportunities. IRI 2013: 254-261 - [c217]Taghi M. Khoshgoftaar, Randall Wald, David J. Dittman, Amri Napolitano:
Feature list aggregation approaches for ensemble gene selection on patient response datasets. IRI 2013: 317-324 - [c216]Randall Wald, Taghi M. Khoshgoftaar, Alireza Fazelpour:
The use of balance-aware subsampling for bioinformatics datasets. IRI 2013: 325-332 - [c215]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Gene selection stability's dependence on dataset difficulty. IRI 2013: 341-348 - [c214]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano:
Filter- and wrapper-based feature selection for predicting user interaction with Twitter bots. IRI 2013: 416-423 - [c213]Taghi M. Khoshgoftaar, Alireza Fazelpour, Huanjing Wang, Randall Wald:
A survey of stability analysis of feature subset selection techniques. IRI 2013: 424-431 - [c212]Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
A Study on First Order Statistics-Based Feature Selection Techniques on Software Metric Data. SEKE 2013: 467-472 - [c211]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Exploring Ensemble-Based Data Preprocessing Techniques for Software Quality Estimation. SEKE 2013: 612-617 - [c210]Taghi M. Khoshgoftaar:
Overcoming Big Data Challenges. SEKE 2013: xxix - 2012
- [c209]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Similarity analysis of feature ranking techniques on imbalanced DNA microarray datasets. BIBM 2012: 1-5 - [c208]Randall Wald, Taghi M. Khoshgoftaar, Ahmad Abu Shanab:
The effect of measurement approach and noise level on gene selection stability. BIBM 2012: 1-5 - [c207]Ahmad Abu Shanab, Taghi M. Khoshgoftaar, Randall Wald:
Robustness of Threshold-Based Feature Rankers with Data Sampling on Noisy and Imbalanced Data. FLAIRS 2012 - [c206]Randall Wald, Taghi M. Khoshgoftaar, David J. Dittman:
Mean Aggregation versus Robust Rank Aggregation for Ensemble Gene Selection. ICMLA (1) 2012: 63-69 - [c205]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Determining the Number of Iterations Appropriate for Ensemble Gene Selection on Microarray Data. ICMLA (1) 2012: 82-89 - [c204]Taghi M. Khoshgoftaar, David J. Dittman, Randall Wald, Alireza Fazelpour:
First Order Statistics Based Feature Selection: A Diverse and Powerful Family of Feature Seleciton Techniques. ICMLA (2) 2012: 151-157 - [c203]Randall Wald, Taghi M. Khoshgoftaar, David J. Dittman:
A New Fixed-Overlap Partitioning Algorithm for Determining Stability of Bioinformatics Gene Rankers. ICMLA (2) 2012: 170-177 - [c202]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Comparing Two New Gene Selection Ensemble Approaches with the Commonly-Used Approach. ICMLA (2) 2012: 184-191 - [c201]Wael Awada, Taghi M. Khoshgoftaar, David J. Dittman, Randall Wald:
The Effect of Number of Iterations on Ensemble Gene Selection. ICMLA (2) 2012: 198-203 - [c200]Janell Duhaney, Taghi M. Khoshgoftaar, Amri Napolitano:
Studying the Effect of Class Imbalance in Ocean Turbine Fault Data on Reliable State Detection. ICMLA (1) 2012: 268-275 - [c199]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction. ICMLA (2) 2012: 281-288 - [c198]Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
A Comparative Study on the Stability of Software Metric Selection Techniques. ICMLA (2) 2012: 301-307 - [c197]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Study on the Stability of Feature Selection for Imbalanced Software Engineering Data. ICMLA (1) 2012: 317-323 - [c196]Janell Duhaney, Taghi M. Khoshgoftaar, Randall Wald:
Applying Feature Selection to Short Time Wavelet Transformed Vibration Data for Reliability Analysis of an Ocean Turbine. ICMLA (1) 2012: 330-337 - [c195]Randall Wald, Taghi M. Khoshgoftaar, Amri Napolitano, Chris Sumner:
Using Twitter Content to Predict Psychopathy. ICMLA (2) 2012: 394-401 - [c194]Janell Duhaney, Taghi M. Khoshgoftaar:
Decision Level Fusion of Wavelet Features for Ocean Turbine State Detection. ICMLA (2) 2012: 531-537 - [c193]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
A Novel Noise-Resistant Boosting Algorithm for Class-Skewed Data. ICMLA (2) 2012: 551-557 - [c192]Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
A novel dataset-similarity-aware approach for evaluating stability of software metric selection techniques. IRI 2012: 1-8 - [c191]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano:
Exploring an iterative feature selection technique for highly imbalanced data sets. IRI 2012: 101-108 - [c190]Wael Awada, Taghi M. Khoshgoftaar, David J. Dittman, Randall Wald, Amri Napolitano:
A review of the stability of feature selection techniques for bioinformatics data. IRI 2012: 356-363 - [c189]Gordon K. Lee, Elisa Bertino, Stuart Harvey Rubin, Taghi M. Khoshgoftaar, Bhavani Thuraisingham, James D. McCaffrey:
Panel: Using information re-use and integration principles in big data. IRI 2012 - [c188]Randall Wald, Taghi M. Khoshgoftaar, Chris Sumner:
Machine prediction of personality from Facebook profiles. IRI 2012: 109-115 - [c187]Randall Wald, Taghi M. Khoshgoftaar, David J. Dittman, Wael Awada, Amri Napolitano:
An extensive comparison of feature ranking aggregation techniques in bioinformatics. IRI 2012: 377-384 - [c186]Ahmad Abu Shanab, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Impact of noise and data sampling on stability of feature ranking techniques for biological datasets. IRI 2012: 415-422 - [c185]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Stability of Filter-Based Feature Selection Methods for Imbalanced Software Measurement Data. SEKE 2012: 74-79 - [c184]Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
An Empirical Study of Software Metric Selection Techniques for Defect Prediction. SEKE 2012: 94-99 - 2011
- [c183]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Huanjing Wang:
Stability Analysis of Feature Ranking Techniques on Biological Datasets. BIBM 2011: 252-256 - [c182]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano:
Random forest: A reliable tool for patient response prediction. BIBM Workshops 2011: 289-296 - [c181]Wilker Altidor, Taghi M. Khoshgoftaar, Jason Van Hulse:
Robustness of Filter-Based Feature Ranking: A Case Study. FLAIRS 2011 - [c180]Janell Duhaney, Taghi M. Khoshgoftaar, John C. Sloan:
Feature Level Sensor Fusion for Improved Fault Detection in MCM Systems for Ocean Turbines. FLAIRS 2011 - [c179]Huanjing Wang, Taghi M. Khoshgoftaar, Naeem Seliya:
How Many Software Metrics Should be Selected for Defect Prediction? FLAIRS 2011 - [c178]John C. Sloan, Taghi M. Khoshgoftaar:
Ensemble Coordination for Discrete Event Control. HASE 2011: 227-235 - [c177]Randall Wald, Taghi M. Khoshgoftaar, John C. Sloan:
Using Feature Selection to Determine Optimal Depth for Wavelet Packet Decomposition of Vibration Signals for Ocean System Reliability. HASE 2011: 236-243 - [c176]Janell Duhaney, Taghi M. Khoshgoftaar, John C. Sloan, Bassem Alhalabi, Pierre P. Beaujean:
A Dynamometer for an Ocean Turbine Prototype: Reliability through Automated Monitoring. HASE 2011: 244-251 - [c175]Huanjing Wang, Taghi M. Khoshgoftaar, Qianhui Althea Liang:
Stability and Classification Performance of Feature Selection Techniques. ICMLA (1) 2011: 151-156 - [c174]Ahmad Abu Shanab, Taghi M. Khoshgoftaar, Randall Wald:
Impact of Noise and Data Sampling on Stability of Feature Selection. ICMLA (1) 2011: 172-177 - [c173]Randall Wald, Taghi M. Khoshgoftaar, John C. Sloan:
Feature Selection for Vibration Sensor Data Transformed by a Streaming Wavelet Packet Decomposition. ICTAI 2011: 978-985 - [c172]Huanjing Wang, Taghi M. Khoshgoftaar:
Measuring Stability of Threshold-Based Feature Selection Techniques. ICTAI 2011: 986-993 - [c171]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Impact of Data Sampling on Stability of Feature Selection for Software Measurement Data. ICTAI 2011: 1004-1011 - [c170]Janell Duhaney, Taghi M. Khoshgoftaar, John C. Sloan:
Feature Selection on Dynamometer Data for Reliability Analysis. ICTAI 2011: 1012-1019 - [c169]Ahmad Abu Shanab, Taghi M. Khoshgoftaar, Randall Wald, Jason Van Hulse:
Comparison of approaches to alleviate problems with high-dimensional and class-imbalanced data. IRI 2011: 234-239 - [c168]Wilker Altidor, Taghi M. Khoshgoftaar, Amri Napolitano:
A noise-based stability evaluation of threshold-based feature selection techniques. IRI 2011: 240-245 - [c167]Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald:
Measuring robustness of Feature Selection techniques on software engineering datasets. IRI 2011: 309-314 - [c166]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
A comparative evaluation of feature ranking methods for high dimensional bioinformatics data. IRI 2011: 315-320 - [c165]Randall Wald, Taghi M. Khoshgoftaar, John C. Sloan:
Fourier transforms for vibration analysis: A review and case study. IRI 2011: 366-371 - [c164]Xiaoyuan Su, Russell Greiner, Taghi M. Khoshgoftaar, Amri Napolitano:
Using Classifier-Based Nominal Imputation to Improve Machine Learning. PAKDD (1) 2011: 124-135 - [c163]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano:
A Comparative Study of Different Strategies for Predicting Software Quality. SEKE 2011: 65-70 - [c162]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Study of Software Metrics Selection Using Support Vector Machine. SEKE 2011: 83-88 - [c161]Kehan Gao, Taghi M. Khoshgoftaar:
Software Defect Prediction for High-Dimensional and Class-Imbalanced Data. SEKE 2011: 89-94 - 2010
- [c160]Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano:
An Empirical Study of Predictive Modeling Techniques of Software Quality. BIONETICS 2010: 288-302 - [c159]Kehan Gao, Taghi M. Khoshgoftaar, Jason Van Hulse:
An Evaluation of Sampling on Filter-Based Feature Selection Methods. FLAIRS 2010 - [c158]Huanjing Wang, Taghi M. Khoshgoftaar, Jason Van Hulse:
A Comparative Study of Threshold-Based Feature Selection Techniques. GrC 2010: 499-504 - [c157]Naeem Seliya, Taghi M. Khoshgoftaar, Jason Van Hulse:
Predicting Faults in High Assurance Software. HASE 2010: 26-34 - [c156]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
A Novel Noise Filtering Algorithm for Imbalanced Data. ICMLA 2010: 9-14 - [c155]Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano:
A Comparative Study of Ensemble Feature Selection Techniques for Software Defect Prediction. ICMLA 2010: 135-140 - [c154]David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, Jason Van Hulse:
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques. ICMLA 2010: 147-152 - [c153]Taghi M. Khoshgoftaar, Kehan Gao, Naeem Seliya:
Attribute Selection and Imbalanced Data: Problems in Software Defect Prediction. ICTAI (1) 2010: 137-144 - [c152]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
Evaluating the impact of data quality on sampling. IRI 2010: 31-36 - [c151]Huanjing Wang, Taghi M. Khoshgoftaar, Kehan Gao:
A comparative study of filter-based feature ranking techniques. IRI 2010: 43-48 - [c150]Naeem Seliya, Taghi M. Khoshgoftaar:
Active learning with neural networks for intrusion detection. IRI 2010: 49-54 - [c149]Taghi M. Khoshgoftaar, Kehan Gao, Jason Van Hulse:
A novel feature selection technique for highly imbalanced data. IRI 2010: 80-85 - [c148]Taghi M. Khoshgoftaar, Kehan Gao:
Software Engineering with Computational Intelligence and Machine Learning A Novel Software Metric Selection Technique Using the Area Under ROC Curves. SEKE 2010: 203-208 - [c147]Huanjing Wang, Taghi M. Khoshgoftaar, Kehan Gao:
Ensemble Feature Selection Technique for Software Quality Classification. SEKE 2010: 215-220 - 2009
- [c146]Xiaoyuan Su, Taghi M. Khoshgoftaar, Russell Greiner:
VipBoost: A More Accurate Boosting Algorithm. FLAIRS 2009 - [c145]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano, Randall Wald:
Feature Selection with High-Dimensional Imbalanced Data. ICDM Workshops 2009: 507-514 - [c144]Huanjing Wang, Taghi M. Khoshgoftaar, Kehan Gao, Naeem Seliya:
Mining Data from Multiple Software Development Projects. ICDM Workshops 2009: 551-557 - [c143]Taghi M. Khoshgoftaar, Kehan Gao:
Feature Selection with Imbalanced Data for Software Defect Prediction. ICMLA 2009: 235-240 - [c142]Wilker Altidor, Taghi M. Khoshgoftaar, Amri Napolitano:
Wrapper-Based Feature Ranking for Software Engineering Metrics. ICMLA 2009: 241-246 - [c141]Naeem Seliya, Taghi M. Khoshgoftaar, Jason Van Hulse:
A Study on the Relationships of Classifier Performance Metrics. ICTAI 2009: 59-66 - [c140]Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano:
Exploring Software Quality Classification with a Wrapper-Based Feature Ranking Technique. ICTAI 2009: 67-74 - [c139]Wilker Altidor, Taghi M. Khoshgoftaar, Jason Van Hulse:
An Empirical Study on Wrapper-Based Feature Ranking. ICTAI 2009: 75-82 - [c138]Huanjing Wang, Taghi M. Khoshgoftaar, Kehan Gao, Naeem Seliya:
High-Dimensional Software Engineering Data and Feature Selection. ICTAI 2009: 83-90 - [c137]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
An Empirical Comparison of Repetitive Undersampling Techniques. IRI 2009: 29-34 - [c136]Naeem Seliya, Taghi M. Khoshgoftaar, Jason Van Hulse:
Aggregating Performance Metrics for Classifier Evaluation. IRI 2009: 35-40 - [c135]Kehan Gao, Taghi M. Khoshgoftaar, Huanjing Wang:
An Empirical Investigation of Filter Attribute Selection Techniques for Software Quality Classification. IRI 2009: 272-277 - [c134]Pengpeng Lin, Huanjing Wang, Taghi M. Khoshgoftaar:
A Novel Hybrid Search Algorithm for Feature Selection. SEKE 2009: 81-86 - [c133]Naeem Seliya, Taghi M. Khoshgoftaar:
Value-Based Software Quality Modeling. SEKE 2009: 116-121 - [c132]John C. Sloan, Taghi M. Khoshgoftaar, Augusto Varas:
An Extendible Translation of BPEL to a Machine-verifiable Model. SEKE 2009: 344-349 - 2008
- [c131]Andres Folleco, Taghi M. Khoshgoftaar, Jason Van Hulse, Lofton A. Bullard:
Software quality modeling: The impact of class noise on the random forest classifier. IEEE Congress on Evolutionary Computation 2008: 3853-3859 - [c130]Chinar C. Shah, Xingquan Zhu, Taghi M. Khoshgoftaar, Justin Beyer:
Contrast Pattern Mining with Gap Constraints for Peptide Folding Prediction. FLAIRS 2008: 95-100 - [c129]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Building Useful Models from Imbalanced Data with Sampling and Boosting. FLAIRS 2008: 306-311 - [c128]Xiaoyuan Su, Taghi M. Khoshgoftaar, Russell Greiner:
A Mixture Imputation-Boosted Collaborative Filter. FLAIRS 2008: 312-316 - [c127]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
A Comparative Study of Data Sampling and Cost Sensitive Learning. ICDM Workshops 2008: 46-52 - [c126]Andres Folleco, Taghi M. Khoshgoftaar, Amri Napolitano:
Comparison of Four Performance Metrics for Evaluating Sampling Techniques for Low Quality Class-Imbalanced Data. ICMLA 2008: 153-158 - [c125]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
RUSBoost: Improving classification performance when training data is skewed. ICPR 2008: 1-4 - [c124]Xiaoyuan Su, Taghi M. Khoshgoftaar, Xingquan Zhu:
VoB predictors: Voting on bagging classifications. ICPR 2008: 1-4 - [c123]Xiaoyuan Su, Taghi M. Khoshgoftaar, Russell Greiner:
Using Imputation Techniques to Help Learn Accurate Classifiers. ICTAI (1) 2008: 437-444 - [c122]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Resampling or Reweighting: A Comparison of Boosting Implementations. ICTAI (1) 2008: 445-451 - [c121]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Improving Learner Performance with Data Sampling and Boosting. ICTAI (1) 2008: 452-459 - [c120]Naeem Seliya, Zhiwei Xu, Taghi M. Khoshgoftaar:
Addressing Class Imbalance in Non-binary Classification Problems. ICTAI (1) 2008: 460-466 - [c119]Andres Folleco, Taghi M. Khoshgoftaar, Jason Van Hulse, Lofton A. Bullard:
Identifying learners robust to low quality data. IRI 2008: 190-195 - [c118]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse:
Hybrid sampling for imbalanced data. IRI 2008: 202-207 - [c117]Xiaoyuan Su, Taghi M. Khoshgoftaar, Xingquan Zhu:
VCI predictors: Voting on classifications from imputed learning sets. IRI 2008: 296-301 - [c116]Xiaoyuan Su, Taghi M. Khoshgoftaar, Xingquan Zhu, Russell Greiner:
Imputation-boosted collaborative filtering using machine learning classifiers. SAC 2008: 949-950 - [c115]Andres Folleco, Taghi M. Khoshgoftaar, Lofton A. Bullard:
Analyzing the Impact of Attribute Noise on Software Quality Classification. SEKE 2008: 73-78 - [c114]Taghi M. Khoshgoftaar, Naeem Seliya, Dennis J. Drown:
On the Rarity of Fault-prone Modules in Knowledge-based Software Quality Modeling. SEKE 2008: 279-284 - [c113]John C. Sloan, Taghi M. Khoshgoftaar:
Toward Model Checking Web Services Over the Web. SEKE 2008: 519-524 - [c112]Xiaoyuan Su, Taghi M. Khoshgoftaar, Russell Greiner:
Imputed Neighborhood Based Collaborative Filtering. Web Intelligence 2008: 633-639 - 2007
- [c111]Taghi M. Khoshgoftaar, Chris Seiffert, Naeem Seliya:
Low-Effort Labeling of Network Events for Intrusion Detection in WLANs. FLAIRS 2007: 490-495 - [c110]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
Skewed Class Distributions and Mislabeled Examples. ICDM Workshops 2007: 477-482 - [c109]Xiaoyuan Su, Taghi M. Khoshgoftaar:
Arbitrarily-Shaped Window Based Stereo Matching using the Go-Light Optimization Algorithm. ICIP (6) 2007: 556-559 - [c108]Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:
Experimental perspectives on learning from imbalanced data. ICML 2007: 935-942 - [c107]Lofton A. Bullard, Taghi M. Khoshgoftaar, Kehan Gao:
An application of a rule-based model in software quality classification. ICMLA 2007: 204-210 - [c106]Taghi M. Khoshgoftaar, Chris Seiffert, Jason Van Hulse, Amri Napolitano, Andres Folleco:
Learning with limited minority class data. ICMLA 2007: 348-353 - [c105]Dennis J. Drown, Taghi M. Khoshgoftaar, Ramaswamy Narayanan:
Using evolutionary sampling to mine imbalanced data. ICMLA 2007: 363-368 - [c104]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Amri Napolitano:
Mining Data with Rare Events: A Case Study. ICTAI (2) 2007: 132-139 - [c103]Taghi M. Khoshgoftaar, Moiz Golawala, Jason Van Hulse:
An Empirical Study of Learning from Imbalanced Data Using Random Forest. ICTAI (2) 2007: 310-317 - [c102]Xingquan Zhu, Xindong Wu, Taghi M. Khoshgoftaar, Yong Shi:
An Empirical Study of the Noise Impact on Cost-Sensitive Learning. IJCAI 2007: 1168-1174 - [c101]Qiming Luo, Taghi M. Khoshgoftaar:
An Empirical Study on Estimating Motions in Video Stabilization. IRI 2007: 360-366 - [c100]Jason Van Hulse, Taghi M. Khoshgoftaar:
Incomplete-Case Nearest Neighbor Imputation in Software Measurement Data. IRI 2007: 630-637 - [c99]Yi Liu, Taghi M. Khoshgoftaar, Jenq-Foung Yao:
Building a Novel GP-Based Software Quality Classifier Using Multiple Validation Datasets. IRI 2007: 644-650 - [c98]Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, Andres Folleco:
An Empirical Study of the Classification Performance of Learners on Imbalanced and Noisy Software Quality Data. IRI 2007: 651-658 - [c97]Xiaoyuan Su, Taghi M. Khoshgoftaar:
A Progressive Edge-Based Stereo Correspondence Method. ISVC (1) 2007: 248-257 - [c96]Xiaoyuan Su, Taghi M. Khoshgoftaar, Xingquan Zhu, Andres Folleco:
Rule-Based Multiple Object Tracking for Traffic Surveillance Using Collaborative Background Extraction. ISVC (2) 2007: 469-478 - [c95]Andres Folleco, Taghi M. Khoshgoftaar, Jason Van Hulse, Chris Seiffert:
Learning from Software Quality Data with Class Imbalance and Noise. SEKE 2007: 487- - [c94]Xiaoyuan Su, Russell Greiner, Taghi M. Khoshgoftaar, Xingquan Zhu:
Hybrid Collaborative Filtering Algorithms Using a Mixture of Experts. Web Intelligence 2007: 645-649 - 2006
- [c93]Jason Van Hulse, Taghi M. Khoshgoftaar, Chris Seiffert:
A Comparison of Software Fault Imputation Procedures. ICMLA 2006: 135-142 - [c92]Xiaoyuan Su, Taghi M. Khoshgoftaar:
Collaborative Filtering for Multi-class Data Using Belief Nets Algorithms. ICTAI 2006: 497-504 - [c91]Taghi M. Khoshgoftaar, Kehan Gao:
Assessment of a Multi-Strategy Classifier for an Embedded Software System. ICTAI 2006: 651-658 - [c90]Taghi M. Khoshgoftaar, Jason Van Hulse, Chris Seiffert:
A Hybrid Approach to Cleansing Software Measurement Data. ICTAI 2006: 713-722 - [c89]Taghi M. Khoshgoftaar, Chris Seiffert, Naeem Seliya:
Labeling network event records for intrusion detection in a Wireless LAN. IRI 2006: 200-206 - [c88]Yi Liu, Taghi M. Khoshgoftaar, Jenq-Foung Yao:
Developing an effective validation strategy for genetic programming models based on multiple datasets. IRI 2006: 232-237 - [c87]Qiming Luo, Taghi M. Khoshgoftaar, Andres Folleco:
Classification of ships in surveillance video. IRI 2006: 432-437 - [c86]Jason Van Hulse, Taghi M. Khoshgoftaar, Chris Seiffert, Lili Zhao:
Noise correction using bayesian multiple imputation. IRI 2006: 478-483 - [c85]Taghi M. Khoshgoftaar, Andres Folleco, Jason Van Hulse, Lofton A. Bullard:
Software quality imputation in the presence of noisy data. IRI 2006: 484-489 - [c84]Taghi M. Khoshgoftaar, Jason Van Hulse:
Multiple Imputation of Software Measurement Data: A Case Study. SEKE 2006: 220-226 - [c83]Taghi M. Khoshgoftaar, Chris Seiffert, Jason Van Hulse:
Polishing Noise in Continuous Software Measurement Data. SEKE 2006: 227-231 - 2005
- [c82]Naeem Seliya, Taghi M. Khoshgoftaar, Shi Zhong:
Analyzing Software Quality with Limited Fault-Proneness Defect Data. HASE 2005: 89-98 - [c81]Taghi M. Khoshgoftaar, Jason Van Hulse:
Identifying noise in an attribute of interest. ICMLA 2005 - [c80]Taghi M. Khoshgoftaar, Shyam Varan Nath, Shi Zhong, Naeem Seliya:
Intrusion detection in wireless networks using clustering techniques with expert analysis. ICMLA 2005 - [c79]Shi Zhong, Taghi M. Khoshgoftaar, Shyam Varan Nath:
A Clustering Approach to Wireless Network Intrusion Detection. ICTAI 2005: 190-196 - [c78]Zhiwei Xu, Kehan Gao, Taghi M. Khoshgoftaar:
Application of fuzzy expert system in test case selection for system regression test. IRI 2005: 120-125 - [c77]Yudong Xiao, Taghi M. Khoshgoftaar, Naeem Seliya:
The partitioning- and rule-based filter for noise detection. IRI 2005: 205-210 - [c76]Taghi M. Khoshgoftaar, Jason Van Hulse:
Empirical case studies in attribute noise detection. IRI 2005: 211-216 - [c75]Qiming Luo, Taghi M. Khoshgoftaar, Edgar An:
Hierarchical indexing of ocean survey video by mean shift clustering and MDL principle. IRI 2005: 404-409 - 2004
- [c74]Yi Liu, Taghi M. Khoshgoftaar:
Reducing Overfitting in Genetic Programming Models for Software Quality Classification. HASE 2004: 56-65 - [c73]Shi Zhong, Taghi M. Khoshgoftaar, Naeem Seliya:
Unsupervised Learning for Expert-Based Software Quality Estimation. HASE 2004: 149-155 - [c72]Taghi M. Khoshgoftaar, Mohamed E. Abushadi:
Resource-Sensitive Intrusion Detection Models for Network Traffic. HASE 2004: 249-258 - [c71]Naeem Seliya, Taghi M. Khoshgoftaar, Shi Zhong:
Semi-Supervised Learning for Software Quality Estimation. ICTAI 2004: 183-190 - [c70]Qiming Luo, Taghi M. Khoshgoftaar:
Efficient Image Segmentation by Mean Shift Clustering and MDL-Guided Region Merging. ICTAI 2004: 337-343 - [c69]Wei Tang, Taghi M. Khoshgoftaar:
Noise Identification with the k-Means Algorithm. ICTAI 2004: 373-378 - [c68]Taghi M. Khoshgoftaar, Naeem Seliya, Kehan Gao:
Rule-Based Noise Detection for Software Measurement Data. IRI 2004: 302-307 - [c67]Taghi M. Khoshgoftaar, Pierre Rebours:
Generating Multiple Noise Elimination Filters with the Ensemble-Partitioning Filter. IRI 2004: 369-375 - [c66]Taghi M. Khoshgoftaar, Naeem Seliya:
The Necessity of Assuring Quality in Software Measurement Data. IEEE METRICS 2004: 119-130 - [c65]Taghi M. Khoshgoftaar, Yi Liu, Naeem Seliya:
Module-Order Modeling using an Evolutionary Multi-Objective Optimization Approach. IEEE METRICS 2004: 159-169 - [c64]Taghi M. Khoshgoftaar, Yudong Xiao, Kehan Gao:
Multi-Objective Optimization by CBR GA-Optimizer for Module-Order Modeling. SEKE 2004: 220-225 - [c63]Taghi M. Khoshgoftaar, Vedang H. Joshi:
Noise Elimination with Ensemble-Classifier Filtering: A Case-Study in Software Quality Engineerin. SEKE 2004: 226-231 - 2003
- [c62]Yi Liu, Taghi M. Khoshgoftaar:
Building Decision Tree Software Quality Classification Models Using Genetic Programming. GECCO 2003: 1808-1809 - [c61]Taghi M. Khoshgoftaar, Lofton A. Bullard, Kehan Gao:
Detecting Outliers Using Rule-Based Modeling for Improving CBR-Based Software Quality Classification Models. ICCBR 2003: 216-230 - [c60]Taghi M. Khoshgoftaar, Laurent A. Nguyen, Kehan Gao, Jayanth Rajeevalochanam:
Application of an Attribute Selection Method to CBR-Based Software Quality Classification. ICTAI 2003: 47-52 - [c59]Taghi M. Khoshgoftaar, Yi Liu, Naeem Seliya:
Genetic Programming-Based Decision Trees for Software Quality Classification. ICTAI 2003: 374-383 - [c58]Taghi M. Khoshgoftaar, Erik Geleyn, Laurent A. Nguyen:
Empirical Case Studies of Combining Software Quality Classification Models. QSIC 2003: 40- - 2002
- [c57]Ali Idri, Taghi M. Khoshgoftaar, Alain Abran:
Can neural networks be easily interpreted in software cost estimation? FUZZ-IEEE 2002: 1162-1167 - [c56]Taghi M. Khoshgoftaar, Erik Geleyn, Laurent A. Nguyen, Lofton A. Bullard:
Cost-Sensitive Boosting In Software Quality Modeling. HASE 2002: 51-62 - [c55]Taghi M. Khoshgoftaar, Naeem Seliya:
Software Quality Classification Modeling Using The SPRINT Decision Tree Algorithm. ICTAI 2002: 365-374 - [c54]Taghi M. Khoshgoftaar:
Improving Usefulness of Software Quality Classification Models Based on Boolean Discriminant Functions. ISSRE 2002: 221-230 - [c53]Ali Idri, Alain Abran, Taghi M. Khoshgoftaar:
Estimating Software Project Effort by Analogy Based on Linguistic Values. IEEE METRICS 2002: 21- - [c52]Taghi M. Khoshgoftaar, Erik Geleyn, Kehan Gao:
An Empirical Study of the Impact of Count Models Predictions on Module-Order Models. IEEE METRICS 2002: 161-172 - [c51]Taghi M. Khoshgoftaar, Naeem Seliya:
Tree-Based Software Quality Estimation Models For Fault Prediction. IEEE METRICS 2002: 203- - 2001
- [c50]Yi Liu, Taghi M. Khoshgoftaar:
Genetic Programming Model for Software Quality Classification. HASE 2001: 127-138 - [c49]Taghi M. Khoshgoftaar, Kehan Gao, Robert M. Szabo:
An Application of Zero-Inflated Poisson Regression for Software Fault Prediction . ISSRE 2001: 66-73 - [c48]Edward B. Allen, Taghi M. Khoshgoftaar, Ye Chen:
Measuring Coupling and Cohesion of Software Modules: An Information-Theory Approach. IEEE METRICS 2001: 124-134 - [c47]Taghi M. Khoshgoftaar, Edward B. Allen, Jianyu Deng:
Controlling Overfitting in Software Quality Models: Experiments with Regression Trees and Classification. IEEE METRICS 2001: 190-198 - 2000
- [c46]Zhiwei Xu, Taghi M. Khoshgoftaar, Edward B. Allen:
Prediction of software faults using fuzzy nonlinear regression modeling. HASE 2000: 281-290 - [c45]Taghi M. Khoshgoftaar, Ruqun Shan, Edward B. Allen:
Using product, process, and execution metrics to predict fault-prone software modules with classification trees. HASE 2000: 301-310 - [c44]Taghi M. Khoshgoftaar, Edward B. Allen, Jason C. Busboom:
Modeling software quality: the Software Measurement Analysis and Reliability Toolkit. ICTAI 2000: 54-61 - [c43]Taghi M. Khoshgoftaar, Ruqun Shan, Edward B. Allen:
Improving Tree-Based Models of Software Quality with Principal Components Analysis. ISSRE 2000: 198-209 - [c42]Taghi M. Khoshgoftaar, Vishal Thaker, Edward B. Allen:
Modeling Fault-Prone Modules of Subsystems. ISSRE 2000: 259-269 - 1999
- [c41]Wendell D. Jones, John P. Hudepohl, Taghi M. Khoshgoftaar, Edward B. Allen:
Application of a Usage Profile in Software Quality Models. CSMR 1999: 148-159 - [c40]Matthew P. Evett, Taghi M. Khoshgoftaar, Pei-der Chien, Edward B. Allen:
Using Genetic Programming to Determine Software Quality. FLAIRS 1999: 113-117 - [c39]Matthew P. Evett, Taghi M. Khoshgoftaar, Pei-der Chien, Edward B. Allen:
Modelling software quality with GP. GECCO 1999: 1232 - [c38]Taghi M. Khoshgoftaar, Edward B. Allen:
Predicting Fault-Prone Software Modules in Embedded Systems with Classification Trees. HASE 1999: 105-114 - [c37]Taghi M. Khoshgoftaar, Edward B. Allen, Xiaojing Yuan, Wendell D. Jones, John P. Hudepohl:
Experience Paper: Preparing Measurements of Legacy Software for Predicting Operational Faults. ICSM 1999: 359- - [c36]Taghi M. Khoshgoftaar, Edward B. Allen, Wendell D. Jones, John P. Hudepohl:
Classification tree models of software quality over multiple releases. ISSRE 1999: 116-125 - [c35]Edward B. Allen, Taghi M. Khoshgoftaar:
Measuring Coupling and Cohesion: An Information-Theory Approach. IEEE METRICS 1999: 119- - [c34]Taghi M. Khoshgoftaar, Edward B. Allen, Xiaojing Yuan, Wendell D. Jones, John P. Hudepohl:
Assessing Uncertain Predictions of Software Quality. IEEE METRICS 1999: 159- - [c33]Norman F. Schneidewind, Wendell D. Jones, Taghi M. Khoshgoftaar, Paul W. Oman, George E. Stark:
Can Metrics and Models be Applied Across Multiple Releases or Projects? IEEE METRICS 1999: 324- - 1998
- [c32]Taghi M. Khoshgoftaar, Edward B. Allen, Archana Naik, Wendell D. Jones, John P. Hudepohl:
Using Classification Trees for Software Quality Models: Lessons Learned. HASE 1998: 82-89 - [c31]Donald F. Schenker, Taghi M. Khoshgoftaar:
The Application of Fuzzy Enhanced Case-Based Reasoning for Identifying Fault-Prone Modules. HASE 1998: 90-97 - [c30]Wendell D. Jones, Taghi M. Khoshgoftaar, John C. Munson, T. Troy Pearse, George E. Stark:
Hitting the Moving Target: Trials and Tribulations of Modeling Quality in Evolving Software Systems. ICSM 1998: 66-67 - [c29]Taghi M. Khoshgoftaar, Edward B. Allen:
Can a Software Quality Model Hit a Moving Target? ICSM 1998: 68-70 - [c28]Taghi M. Khoshgoftaar, Edward B. Allen:
Predicting the order of fault-prone modules in legacy software. ISSRE 1998: 344-353 - 1997
- [c27]Taghi M. Khoshgoftaar, Edward B. Allen, Robert Halstead, Gary P. Trio, Ronald M. Flass:
Process Measures for Predicting Software Quality. HASE 1997: 155-161 - [c26]Robert Hochman, Taghi M. Khoshgoftaar, Edward B. Allen, John P. Hudepohl:
Evolutionary neural networks: a robust approach to software reliability problems. ISSRE 1997: 13-26 - [c25]Taghi M. Khoshgoftaar, K. Ganesan, Edward B. Allen, Fletcher D. Ross, Rama Munikoti, Nishith Goel, Amit Nandi:
Predicting fault-prone modules with case-based reasoning. ISSRE 1997: 27-35 - [c24]Taghi M. Khoshgoftaar, Edward B. Allen:
The Impact of Costs of Misclassification on Software Quality Modeling. IEEE METRICS 1997: 54- - 1996
- [c23]Taghi M. Khoshgoftaar, Edward B. Allen, Lofton A. Bullard, Robert Halstead, Gary P. Trio:
A tree-based classification model for analysis of a military software system. HASE 1996: 244-251 - [c22]Taghi M. Khoshgoftaar, Edward B. Allen, Robert Halstead, Gary P. Trio:
Detection of Fault-Prone Software Modules During a Spiral Life Cycle. ICSM 1996: 69-76 - [c21]John P. Hudepohl, Stephen J. Aud, Taghi M. Khoshgoftaar, Edward B. Allen, Jean Mayrand:
Integrating metrics and models for software risk assessment. ISSRE 1996: 93-98 - [c20]Robert Hochman, Taghi M. Khoshgoftaar, Edward B. Allen, John P. Hudepohl:
Using the genetic algorithm to build optimal neural networks for fault-prone module detection. ISSRE 1996: 152-162 - [c19]Taghi M. Khoshgoftaar, Edward B. Allen, Nishith Goel, Amit Nandi, John McMullan:
Detection of software modules with high debug code churn in a very large legacy system. ISSRE 1996: 364-371 - 1995
- [c18]Taghi M. Khoshgoftaar, Edward B. Allen:
Multivariate assessment of complex software systems: a comparative study. ICECCS 1995: 389-396 - [c17]Taghi M. Khoshgoftaar, Robert M. Szabo, Jeffrey M. Voas:
Detecting program modules with low testability. ICSM 1995: 242-250 - [c16]Taghi M. Khoshgoftaar, Edward B. Allen, Kalai Kalaichelvan, Nishith Goel, John P. Hudepohl, Jean Mayrand:
Detection of fault-prone program modules in a very large telecommunications system. ISSRE 1995: 24-33 - [c15]Robert M. Szabo, Taghi M. Khoshgoftaar:
An assessment of software quality in a C++ environment. ISSRE 1995: 240-249 - 1994
- [c14]Taghi M. Khoshgoftaar, Robert M. Szabo:
Improving Code Churn Predictions During the System Test and Maintenance Phases. ICSM 1994: 58-67 - [c13]David L. Lanning, Taghi M. Khoshgoftaar:
Canonical Modeling of Software Complexity and Fault Correction Activity. ICSM 1994: 374-381 - [c12]Taghi M. Khoshgoftaar, David L. Lanning:
On the impact of software product dissimilarity on software quality models. ISSRE 1994: 104-114 - [c11]Taghi M. Khoshgoftaar, David L. Lanning:
Are the principal components of software complexity data stable across software products? IEEE METRICS 1994: 61-72 - 1993
- [c10]Taghi M. Khoshgoftaar, John C. Munson, David L. Lanning:
A Comparative Study of Predictive Models for Program Changes During System Testing and Maintenance. ICSM 1993: 72-79 - [c9]Taghi M. Khoshgoftaar, David L. Lanning, Abhijit S. Pandya:
A neural network modeling methodology for the detection of high-risk programs. ISSRE 1993: 302-309 - [c8]Taghi M. Khoshgoftaar, John C. Munson, David L. Lanning:
Dynamic system complexity. IEEE METRICS 1993: 129-140 - [c7]Khoa D. Huynh, Taghi M. Khoshgoftaar:
A Performance Analysis of the IBM Subsystem Control Block Architecture in a Video Conferencing Environment. ACM Multimedia 1993: 321-330 - 1992
- [c6]John C. Munson, Taghi M. Khoshgoftaar:
Software measurement for the space shuttle HAL/S maintenance environment. ICSM 1992 - [c5]Taghi M. Khoshgoftaar, Abhijit S. Pandya, Hemant B. More:
A neural network approach for predicting software development faults. ISSRE 1992: 83-89 - 1991
- [c4]John C. Munson, Taghi M. Khoshgoftaar:
The use of software complexity metrics in software reliability modeling. ISSRE 1991: 2-11 - [c3]Taghi M. Khoshgoftaar, Timothy G. Woodcock:
Software reliability model selection: a cast study. ISSRE 1991: 183-191 - 1990
- [c2]Taghi M. Khoshgoftaar, John C. Munson:
The lines of code metric as a predictor of program faults: a critical analysis. COMPSAC 1990: 408-413 - 1989
- [c1]John C. Munson, Taghi M. Khoshgoftaar:
The Dimensionality of Program Complexity. ICSE 1989: 245-253
Parts in Books or Collections
- 2016
- [p5]Karl R. Weiss, Taghi M. Khoshgoftaar, Dingding Wang:
Transfer Learning Techniques. Big Data Technologies and Applications 2016: 53-99 - [p4]Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya, Randall Wald, Edin Muharemagic:
Deep Learning Techniques in Big Data Analytics. Big Data Technologies and Applications 2016: 133-156 - [p3]David J. Dittman, Taghi M. Khoshgoftaar, Amri Napolitano:
Is Data Sampling Required When Using Random Forest for Classification on Imbalanced Bioinformatics Data? Theoretical Information Reuse and Integration 2016: 157-171 - 2008
- [p2]Taghi M. Khoshgoftaar, Naeem Seliya:
Software Module Risk Analysis. Wiley Encyclopedia of Computer Science and Engineering 2008 - [p1]Naeem Seliya, Taghi M. Khoshgoftaar:
Software Quality Modeling as a Reliability Tool. Wiley Encyclopedia of Computer Science and Engineering 2008
Editorship
- 2019
- [e4]M. Arif Wani, Taghi M. Khoshgoftaar, Dingding Wang, Huanjing Wang, Naeem Seliya:
18th IEEE International Conference On Machine Learning And Applications, ICMLA 2019, Boca Raton, FL, USA, December 16-19, 2019. IEEE 2019, ISBN 978-1-7281-4550-1 [contents] - 2011
- [e3]Taghi M. Khoshgoftaar:
13th IEEE International Symposium on High-Assurance Systems Engineering, HASE 2011, Boca Raton, FL, USA, November 10-12, 2011. IEEE Computer Society 2011, ISBN 978-1-4673-0107-7 [contents] - 2010
- [e2]Sorin Draghici, Taghi M. Khoshgoftaar, Vasile Palade, Witold Pedrycz, M. Arif Wani, Xingquan Zhu:
The Ninth International Conference on Machine Learning and Applications, ICMLA 2010, Washington, DC, USA, 12-14 December 2010. IEEE Computer Society 2010, ISBN 978-0-7695-4300-0 [contents] - 2005
- [e1]Du Zhang, Taghi M. Khoshgoftaar, Mei-Ling Shyu:
Proceedings of the 2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005, August 15-17, 2005, Las Vegas Hilton, Las Vegas, NV, USA. IEEE Systems, Man, and Cybernetics Society 2005, ISBN 0-7803-9093-8 [contents]
Reference Works
- 2009
- [r1]Kehan Gao, Taghi M. Khoshgoftaar:
Count Models for Software Quality Estimation. Encyclopedia of Data Warehousing and Mining 2009: 346-352
Coauthor Index
aka: Gabriel Castaneda
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-04 03:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint