default search action
John T. Hancock
Person information
- affiliation: Florida Atlantic University, Boca Raton, FL, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j16]John T. Hancock, Huanjing Wang, Taghi M. Khoshgoftaar, Qianxin Liang:
Data reduction techniques for highly imbalanced medicare Big Data. J. Big Data 11(1): 8 (2024) - [j15]Huanjing Wang, Qianxin Liang, John T. Hancock, Taghi M. Khoshgoftaar:
Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods. J. Big Data 11(1): 44 (2024) - 2023
- [j14]John T. Hancock, Taghi M. Khoshgoftaar, Justin M. Johnson:
Evaluating classifier performance with highly imbalanced Big Data. J. Big Data 10(1): 42 (2023) - [j13]Joffrey L. Leevy, Justin M. Johnson, John T. Hancock, Taghi M. Khoshgoftaar:
Threshold optimization and random undersampling for imbalanced credit card data. J. Big Data 10(1): 58 (2023) - [j12]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar:
Comparative analysis of binary and one-class classification techniques for credit card fraud data. J. Big Data 10(1): 118 (2023) - [j11]John T. Hancock, Richard A. Bauder, Huanjing Wang, Taghi M. Khoshgoftaar:
Explainable machine learning models for Medicare fraud detection. J. Big Data 10(1): 154 (2023) - [j10]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Azadeh Abdollah Zadeh:
Investigating the effectiveness of one-class and binary classification for fraud detection. J. Big Data 10(1): 157 (2023) - [j9]John T. Hancock, Taghi M. Khoshgoftaar:
Exploring Maximum Tree Depth and Random Undersampling in Ensemble Trees to Optimize the Classification of Imbalanced Big Data. SN Comput. Sci. 4(5): 462 (2023) - [c24]Huanjing Wang, Qianxin Liang, John T. Hancock, Taghi M. Khoshgoftaar:
A Comparative Study of Model-Agnostic and Importance-Based Feature Selection Approaches. CogMI 2023: 75-82 - [c23]John T. Hancock, Taghi M. Khoshgoftaar:
Data Reduction to Improve the Performance of One-Class Classifiers on Highly Imbalanced Big Data. ICMLA 2023: 465-471 - [c22]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Azadeh Abdollah Zadeh:
One-Class Classifier Performance: Comparing Majority versus Minority Class Training. ICTAI 2023: 86-91 - [c21]John T. Hancock, Richard A. Bauder, Taghi M. Khoshgoftaar:
A Model-Agnostic Feature Selection Technique to Improve the Performance of One-Class Classifiers. ICTAI 2023: 92-98 - [c20]Huanjing Wang, Qianxin Liang, John T. Hancock, Taghi M. Khoshgoftaar:
Enhancing Credit Card Fraud Detection Through a Novel Ensemble Feature Selection Technique. IRI 2023: 121-126 - [c19]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar:
Assessing One-Class and Binary Classification Approaches for Identifying Medicare Fraud. IRI 2023: 267-272 - [c18]Huanjing Wang, John T. Hancock, Taghi M. Khoshgoftaar:
Improving Medicare Fraud Detection through Big Data Size Reduction Techniques. SOSE 2023: 208-217 - 2022
- [j8]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Jared M. Peterson:
IoT information theft prediction using ensemble feature selection. J. Big Data 9(1): 6 (2022) - [j7]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
A new feature popularity framework for detecting cyberattacks using popular features. J. Big Data 9(1): 119 (2022) - [j6]John T. Hancock, Taghi M. Khoshgoftaar:
Hyperparameter Tuning for Medicare Fraud Detection in Big Data. SN Comput. Sci. 3(6): 440 (2022) - [c17]John T. Hancock, Justin M. Johnson, Taghi M. Khoshgoftaar:
A Comparative Approach to Threshold Optimization for Classifying Imbalanced Data. CIC 2022: 135-142 - [c16]John T. Hancock, Taghi M. Khoshgoftaar, Justin M. Johnson:
Informative Evaluation Metrics for Highly Imbalanced Big Data Classification. ICMLA 2022: 1419-1426 - [c15]Joffrey L. Leevy, Taghi M. Khoshgoftaar, John T. Hancock:
Evaluating Performance Metrics for Credit Card Fraud Classification. ICTAI 2022: 1336-1341 - [c14]John T. Hancock, Taghi M. Khoshgoftaar:
Optimizing Ensemble Trees for Big Data Healthcare Fraud Detection. IRI 2022: 243-249 - [c13]John T. Hancock, Taghi M. Khoshgoftaar, Justin M. Johnson:
The Effects of Random Undersampling for Big Data Medicare Fraud Detection. SOSE 2022: 141-146 - 2021
- [j5]Joffrey L. Leevy, John T. Hancock, Richard Zuech, Taghi M. Khoshgoftaar:
Detecting cybersecurity attacks across different network features and learners. J. Big Data 8(1): 1-29 (2021) - [j4]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Detecting web attacks using random undersampling and ensemble learners. J. Big Data 8(1): 75 (2021) - [j3]John T. Hancock, Taghi M. Khoshgoftaar:
Gradient Boosted Decision Tree Algorithms for Medicare Fraud Detection. SN Comput. Sci. 2(4): 268 (2021) - [c12]John T. Hancock, Taghi M. Khoshgoftaar:
Leveraging LightGBM for Categorical Big Data. BigDataService 2021: 149-154 - [c11]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Jared M. Peterson:
An Easy-to-Classify Approach for the Bot-IoT Dataset. CogMI 2021: 172-179 - [c10]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Naeem Seliya:
IoT Reconnaissance Attack Classification with Random Undersampling and Ensemble Feature Selection. CIC 2021: 41-49 - [c9]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Detecting SQL Injection Web Attacks Using Ensemble Learners and Data Sampling. CSR 2021: 27-34 - [c8]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Feature Popularity Between Different Web Attacks with Supervised Feature Selection Rankers. ICMLA 2021: 30-37 - [c7]John T. Hancock, Taghi M. Khoshgoftaar, Joffrey L. Leevy:
Detecting SSH and FTP Brute Force Attacks in Big Data. ICMLA 2021: 760-765 - [c6]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Jared M. Peterson:
Detecting Information Theft Attacks in the Bot-IoT Dataset. ICMLA 2021: 807-812 - [c5]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Detecting Web Attacks in Severely Imbalanced Network Traffic Data. IRI 2021: 267-273 - [c4]John T. Hancock, Taghi M. Khoshgoftaar:
Impact of Hyperparameter Tuning in Classifying Highly Imbalanced Big Data. IRI 2021: 348-354 - 2020
- [j2]John T. Hancock, Taghi M. Khoshgoftaar:
Survey on categorical data for neural networks. J. Big Data 7(1): 28 (2020) - [j1]John T. Hancock, Taghi M. Khoshgoftaar:
CatBoost for big data: an interdisciplinary review. J. Big Data 7(1): 94 (2020) - [c3]Joffrey L. Leevy, John T. Hancock, Richard Zuech, Taghi M. Khoshgoftaar:
Detecting Cybersecurity Attacks Using Different Network Features with LightGBM and XGBoost Learners. CogMI 2020: 190-197 - [c2]John T. Hancock, Taghi M. Khoshgoftaar:
Performance of CatBoost and XGBoost in Medicare Fraud Detection. ICMLA 2020: 572-579 - [c1]John T. Hancock, Taghi M. Khoshgoftaar:
Medicare Fraud Detection using CatBoost. IRI 2020: 97-103
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:11 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint