default search action
Viera Stopjaková
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c83]Adam Hudec, Róbert Ondica, Richard Ravasz, Viera Stopjaková:
Constant Voltage Maximum Power Point Tracking Method for Fully Integrated Solar-Powered Energy Harvester. DDECS 2024: 152-155 - 2023
- [j22]Fabian Khateb, Montree Kumngern, Tomasz Kulej, Viera Stopjaková, Costas Psychalinos:
0.3-V, 357.4-nW Voltage-Mode First-Order Analog Filter Using a Multiple-Input VDDDA. IEEE Access 11: 96636-96647 (2023) - [c82]Lukás Nagy, Michal Sovcik, Viera Stopjaková:
Design of Ultra-Low Power Comparator in 65 NM CMOS Technology with Rail-to-Rail Input Range. AFRICON 2023: 1-4 - [c81]Martin Kovác, Miroslav Potocný, Daniel Arbet, Róbert Ondica, Richard Ravasz, Viera Stopjaková:
Low-Power CMOS Frequency Comparator. MIPRO 2023: 196-201 - [c80]Richard Ravasz, David Maljar, Daniel Arbet, Viera Stopjaková, Peter Kubinec:
Design of the Slope Detection Circuit for On-Chip Current Sensing. MIXDES 2023: 111-115 - 2022
- [j21]Fabian Khateb, Montree Kumngern, Tomasz Kulej, Meysam Akbari, Viera Stopjaková:
0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing. Sensors 22(22): 8619 (2022) - [j20]Tomasz Kulej, Fabian Khateb, Daniel Arbet, Viera Stopjaková:
A 0.3-V High Linear Rail-to-Rail Bulk-Driven OTA in 0.13 μm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 69(4): 2046-2050 (2022) - [c79]David Maljar, Daniel Arbet, Martin Kovác, Róbert Ondica, Viera Stopjaková:
Autocalibration Approach for Improving Robustness of Analog ICs. DDECS 2022: 54-59 - [c78]Richard Ravasz, Adam Hudec, Daniel Arbet, Viera Stopjaková:
On-Chip Current Sensing Approaches for DC-DC Converters. DDECS 2022: 64-67 - [c77]Miroslav Hagara, Oldrich Ondrácek, Viera Stopjaková, Radovan Stojanovic:
Histogram memory reduction in FPGA gradient edge detectors. MECO 2022: 1-4 - [c76]Daniel Arbet, Martin Kovác, David Maljas, Lukás Nagy, Viera Stopjaková:
High Power Supply Rejection LDO Regulator for Switching Applications. MIPRO 2022: 162-167 - [c75]Lukás Nagy, Daniel Arbet, Martin Kovác, Miroslav Potocný, Michal Sovcik, Viera Stopjaková:
Low-Power Rail-to-Rail Comparator in 130 nm CMOS Technology. RADIOELEKTRONIKA 2022: 1-4 - 2021
- [j19]Erik Vavrinsky, Viera Stopjaková, Martin Kopani, Helena Kosnácová:
The Concept of Advanced Multi-Sensor Monitoring of Human Stress. Sensors 21(10): 3499 (2021) - [j18]Miroslav Potocný, Martin Kovác, Daniel Arbet, Michal Sovcik, Lukás Nagy, Viera Stopjaková, Richard Ravasz:
Low-Voltage DC-DC Converter for IoT and On-Chip Energy Harvester Applications. Sensors 21(17): 5721 (2021) - [c74]Lukás Nagy, Daniel Arbet, Martin Kovác, Miroslav Potocný, Róbert Ondica, Viera Stopjaková:
EKV Model for Bulk-Driven Circuit Design Using gmb/ID Method. AFRICON 2021: 1-4 - [c73]Lukás Nagy, Daniel Arbet, Martin Kovác, Miroslav Potocný, Michal Sovcik, Viera Stopjaková:
EKV MOS Transistor Model For Ultra Low-Voltage Bulk-Driven IC Design. DDECS 2021: 6-10 - [c72]David Maljar, Michal Sovcík, Daniel Arbet, Viera Stopjaková:
Enhanced Reliability of Fully Differential Difference Amplifier Through On-chip Digital Calibration. DDECS 2021: 119-122 - [c71]Daniel Arbet, Miroslav Potocný, Martin Kovác, Lukás Nagy, Viera Stopjaková:
Fully On-Chip Low-Drop Regulator for Low-Power Applications. MIPRO 2021: 101-106 - [c70]Róbert Ondica, Daniel Arbet, Martin Kovác, Viera Stopjaková:
Investigation of Inductor-based Fully On-chip Boost Converter. MIXDES 2021: 115-119 - [i2]Lukás Kohútka, Lukás Nagy, Viera Stopjaková:
RED-based Scheduler on Chip for Mixed-Criticality Real-Time Systems. CoRR abs/2110.01365 (2021) - [i1]Adam Hudec, Lukás Nagy, Martin Kovác, Viera Stopjaková:
Maximum Power Point Tracking Circuit for an Energy Harvester in 130 nm CMOS Technology. CoRR abs/2110.11504 (2021) - 2020
- [j17]Lukás Kohútka, Viera Stopjaková:
Novel efficient on-chip task scheduler for multi-core hard real-time systems. Microprocess. Microsystems 76: 103083 (2020) - [c69]Lukás Nagy, Daniel Arbet, Martin Kovác, Miroslav Potocný, Michal Sovcik, Viera Stopjaková:
Dynamic Properties Of Ultra Low-Voltage Rail-to-Rail Comparator Designed In 130 nm CMOS Technology. DDECS 2020: 1-4 - [c68]Lukás Kohútka, Lukás Nagy, Viera Stopjaková:
RED-based Scheduler on Chip for Mixed-Criticality Real-Time Systems. MECO 2020: 1-4 - [c67]Martin Kovác, Daniel Arbet, Lukás Nagy, Michal Sovcik, Viera Stopjaková:
Multi-Topology DC-DC Converter for Low-Voltage Energy Harvesting Systems. MIPRO 2020: 77-82 - [c66]Lukás Kohútka, Viera Stopjaková:
ASIC Architecture and Implementation of RED Scheduler for Mixed-Criticality Real-Time Systems. MIXDES 2020: 83-88 - [c65]Lukás Nagy, Ales Chvála, Viera Stopjaková:
Low-Leakage ESD Structures in 130nm CMOS Technology. RADIOELEKTRONIKA 2020: 1-4 - [c64]Miroslav Potocný, Michal Sovcík, Viera Stopjaková:
Development of test equipment for evaluation of low-power AC/DC converter ASIC. RADIOELEKTRONIKA 2020: 1-5 - [c63]Michal Sovcík, Viera Stopjaková, Daniel Arbet, Miroslav Potocný:
Autonomous On-Chip Digital Calibration for Analog ICs in Nanotechnologies. RADIOELEKTRONIKA 2020: 1-5 - [e2]Lukás Nagy, Viera Stopjaková:
30th International Conference Radioelektronika, RADIOELEKTRONIKA 2020, Bratislava, Slovakia, April 15-16, 2020. IEEE 2020, ISBN 978-1-7281-6469-4 [contents]
2010 – 2019
- 2019
- [j16]Lukás Kohútka, Lukás Nagy, Viera Stopjaková:
A Novel On-Chip Task Scheduler for Mixed-Criticality Real-Time Systems. J. Circuits Syst. Comput. 28(Supplement-1): 1940005:1-1940005:22 (2019) - [c62]Lukás Nagy, Daniel Arbet, Martin Kovác, Miroslav Potocný, Michal Sovcik, Viera Stopjaková:
Performance Analysis Of Ultra Low-Voltage Rail-to-Rail Comparator In 130 nm CMOS Technology. AFRICON 2019: 1-5 - [c61]Lukás Kohútka, Lukás Nagy, Viera Stopjaková:
Low Latency Hardware-Accelerated Dynamic Memory Manager for Hard Real-Time and Mixed-Criticality Systems. DDECS 2019: 1-6 - [c60]Martin Kovác, Daniel Arbet, Viera Stopjaková, Michal Sovcik, Lukás Nagy:
Investigation of Low-Voltage, Sub-threshold Charge Pump with Parasitics Aware Design Methodology. DDECS 2019: 1-4 - [c59]Lukás Nagy, Daniel Arbet, Martin Kovác, Miroslav Potocný, Viera Stopjaková:
Ultra Low-Voltage Rail-to-Rail Comparator Design in 130 nm CMOS Technology. DDECS 2019: 1-6 - [c58]Miroslav Potocný, Juraj Brenkus, Viera Stopjaková:
High side power MOSFET switch driver for a low-power AC/DC converter. DDECS 2019: 1-6 - [c57]Zoran Stamenkovic, Alberto Bosio, György Cserey, Ondrej Novák, Witold A. Pleskacz, Lukás Sekanina, Andreas Steininger, Goran Stojanovic, Viera Stopjaková:
International Symposium on Design and Diagnostics of Electronic Circuits and Systems. ITC 2019: 1-4 - [c56]Lukás Kohútka, Viera Stopjaková:
A New Hardware-Accelerated Scheduler for Soft Real-Time Tasks. MECO 2019: 1-4 - [c55]Daniel Arbet, Martin Kovác, Viera Stopjaková, Miroslav Potocný:
Voltage-to-Frequency Converter for Ultra-Low-Voltage Applications. MIPRO 2019: 53-58 - [c54]Viera Stopjaková, Martin Kovác, Daniel Arbet, Lukás Nagy:
Towards Energy-autonomous Integrated Systems Through Ultra-low Voltage Analog IC Design. MIXDES 2019: 38-45 - 2018
- [j15]Michal Sovcik, Martin Kovác, Daniel Arbet, Viera Stopjaková, Miroslav Potocný:
Ultra-low-voltage boosted driver for self-powered systems. Microelectron. Reliab. 80: 155-163 (2018) - [j14]Lukás Kohútka, Viera Stopjaková:
Reliable real-time task scheduler based on Rocket Queue architecture. Microelectron. Reliab. 84: 7-19 (2018) - [c53]Lukás Kohútka, Viera Stopjaková:
Heap Queue: A Novel Efficient Hardware Architecture of MIN/MAX Queues for Real-Time Systems. DDECS 2018: 5-8 - [c52]Daniel Arbet, Martin Kovác, Lukás Nagy, Viera Stopjaková, Michal Sovcik:
Two-Stage Bulk-Driven Variable Gain Amplifier for Low-Voltage Applications. DDECS 2018: 45-50 - [c51]Lukás Nagy, Daniel Arbet, Martin Kovác, Miroslav Potocný, Viera Stopjaková:
Design and Performance Analysis of Ultra-Low Voltage Rail-to-Rail Comparator in 130 nm CMOS Technology. DDECS 2018: 51-54 - [c50]Miroslav Potocný, Viera Stopjaková, Martin Kovác:
Self Vth-Compensating CMOS On-Chip Rectifier for Inductively Powered Implantable Medical Devices. DDECS 2018: 158-161 - [c49]Lukás Kohútka, Lukás Nagy, Viera Stopjaková:
A Novel Hardware-Accelerated Priority Queue for Real-Time Systems. DSD 2018: 46-53 - [c48]Lukás Kohútka, Viera Stopjaková:
A novel hardware-accelerated real-time task scheduler based on robust earliest deadline algorithm. DTIS 2018: 1-2 - [c47]Daniel Arbet, Martin Kovác, Viera Stopjaková, Miroslav Potocný:
Bulk-driven fully differential difference amplifier for ultra-low voltage applications. MIPRO 2018: 93-98 - 2017
- [j13]Andreas Steininger, Adam Pawlak, Viera Stopjaková:
Foreword. J. Circuits Syst. Comput. 26(8): 1702001:1-1702001:1 (2017) - [j12]Daniel Arbet, Viera Stopjaková, Martin Kovác, Lukás Nagy, Matej Rakus, Michal Sovcik:
130 nm CMOS Bulk-Driven Variable Gain Amplifier for Low-Voltage Applications. J. Circuits Syst. Comput. 26(8): 1740003:1-1740003:19 (2017) - [j11]Juraj Brenkus, Viera Stopjaková, Viera Cernanová, Daniel Arbet, Lukás Nagy, Vladimír Sedlák:
A Novel Method Towards Time-Efficient Fault Analysis of Analog and Mixed-Signal Circuits. J. Circuits Syst. Comput. 26(8): 1740005:1-1740005:20 (2017) - [c46]Lukás Nagy, Daniel Arbet, Martin Kovác, Viera Stopjaková:
Low-power bulk-driven rail-to-rail comparator in 130 nm CMOS technology. AFRICON 2017: 649-652 - [c45]Michal Sovcik, Martin Kovác, Daniel Arbet, Viera Stopjaková:
Ultra-low-voltage driver for large load capacitance in 130nm CMOS technology. DDECS 2017: 127-132 - [c44]Lukás Kohútka, Viera Stopjaková:
Rocket Queue: New data sorting architecture for real-time systems. DDECS 2017: 207-212 - [c43]Lukás Kohútka, Viera Stopjaková:
A new efficient sorting architecture for real-time systems. MECO 2017: 1-4 - 2016
- [j10]Daniel Arbet, Gabriel Nagy, Martin Kovác, Viera Stopjaková:
Fully Differential Difference Amplifier for Low-Noise and Low-Distortion Applications. J. Circuits Syst. Comput. 25(3): 1640019:1-1640019:18 (2016) - [c42]Matej Rakus, Viera Stopjaková, Daniel Arbet:
Comparison of gate-driven and bulk-driven current mirror topologies. DDECS 2016: 27-30 - [c41]Daniel Arbet, Martin Kovác, Lukás Nagy, Viera Stopjaková, Juraj Brenkus:
Low-voltage bulk-driven variable gain amplifier in 130 nm CMOS technology. DDECS 2016: 40-45 - [c40]Juraj Brenkus, Viera Stopjaková, Lukás Nagy, Daniel Arbet:
Impedance calculation based method for AC fault analysis of mixed-signal circuits. DDECS 2016: 74-79 - [c39]Michal Sovcik, Michal Matuska, Daniel Arbet, Viera Stopjaková:
CMOS variable-gain amplifier for low-frequency applications. DDECS 2016: 243-246 - [c38]Lukás Kohútka, Viera Stopjaková:
Improved Task Scheduler for Dual-Core Real-Time Systems. DSD 2016: 471-478 - [c37]Daniel Arbet, Martin Kovác, Lukás Nagy, Viera Stopjaková, Michal Sovcik:
Variable-gain amplifier for ultra-low voltage applications in 130nm CMOS technology. MIPRO 2016: 51-56 - [c36]Lukás Kohútka, Viera Stopjaková:
Task scheduler for dual-core real-time systems. MIXDES 2016: 474-479 - 2015
- [j9]Daniel Arbet, Viera Stopjaková, Martin Kovác:
Investigation of the optimum oscillation frequency value towards increasing the efficiency of OBIST approach. Microelectron. Reliab. 55(7): 1120-1125 (2015) - [c35]Daniel Arbet, Gabriel Nagy, Martin Kovác, Viera Stopjaková:
Fully Differential Difference Amplifier for Low-Noise Applications. DDECS 2015: 57-62 - [c34]Lukás Nagy, Viera Stopjaková, Alexander Satka:
Design of In AlN/GaN Heterostructure-Based Logic Cells. DDECS 2015: 83-86 - [c33]Daniel Arbet, Gabriel Nagy, Martin Kovác, Viera Stopjaková, Lukás Nagy:
Readout interface for capacitive MEMS microphone in CMOS technology. MIXDES 2015: 370-374 - 2014
- [j8]Lukás Nagy, Viera Stopjaková, Juraj Brenkus:
Current Sensing Completion Detection in Single-Rail Asynchronous Systems. Comput. Informatics 33(5): 1116-1138 (2014) - [j7]Gábor Gyepes, Viera Stopjaková, Daniel Arbet, Libor Majer, Juraj Brenkus:
A new IDDT test approach and its efficiency in covering resistive opens in SRAM arrays. Microprocess. Microsystems 38(5): 359-367 (2014) - [j6]Daniel Arbet, Viera Stopjaková, Juraj Brenkus, Gábor Gyepes, Martin Kovác, Libor Majer:
BIST architecture for oscillation test of analog ICs and investigation of test hardware influence. Microelectron. Reliab. 54(5): 985-992 (2014) - [c32]Juraj Brenkus, Viera Stopjaková, Daniel Arbet, Gábor Gyepes, Libor Majer:
A novel impedance calculation method and its time efficiency evaluation. DDECS 2014: 99-103 - [c31]Martin Kovác, Daniel Arbet, Gabriel Nagy, Viera Stopjaková:
An approach towards selection of the oscillation frequency for oscillation test of analog ICs. DDECS 2014: 266-267 - [c30]Roman Záluský, Daniela Duracková, Viera Stopjaková, Lukás Nagy, Vladimír Sedlák:
Novel architecture of a digital neuron for FFNN employing special multiplication. ECAI 2014: 933-938 - 2013
- [j5]Lukás Nagy, Viera Stopjaková, Roman Záluský:
Completion detection in dual-rail asynchronous systems by current-sensing. Microelectron. J. 44(6): 538-544 (2013) - [c29]Gabriel Nagy, Daniel Arbet, Viera Stopjaková:
Digital methods of offset compensation in 90nm CMOS operational amplifiers. DDECS 2013: 124-127 - [c28]Juraj Brenkus, Viera Stopjaková, Gábor Gyepes:
Numerical method for DC fault analysis simplification and simulation time reduction. DDECS 2013: 170-174 - [c27]Daniel Arbet, Gabriel Nagy, Viera Stopjaková, Gábor Gyepes:
Efficiency of oscillation-based BIST in 90nm CMOS active analog filters. DDECS 2013: 263-266 - 2012
- [c26]Lukás Nagy, Viera Stopjaková:
Current sensing completion detection in dual-rail asynchronous systems. DDECS 2012: 38-41 - [c25]Gábor Gyepes, Daniel Arbet, Juraj Brenkus, Viera Stopjaková:
Application of IDDT test towards increasing SRAM reliability in nanometer technologies. DDECS 2012: 167-170 - [c24]Daniel Arbet, Gábor Gyepes, Juraj Brenkus, Viera Stopjaková:
OBIST strategy versus parametric test - Efficiency in covering catastrophic faults in active analog filters. DDECS 2012: 193-194 - [e1]Jaan Raik, Viera Stopjaková, Heinrich Theodor Vierhaus, Witold A. Pleskacz, Raimund Ubar, Helena Kruus, Maksim Jenihhin:
IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems, DDECS 2012, Tallinn, Estonia, April 18-20, 2012. IEEE 2012, ISBN 978-1-4673-1187-8 [contents] - 2011
- [c23]Daniel Arbet, Juraj Brenkus, Gábor Gyepes, Viera Stopjaková:
Increasing the efficiency of analog OBIST using on-chip compensation of technology variations. DDECS 2011: 71-74 - [c22]Gábor Gyepes, Juraj Brenkus, Daniel Arbet, Viera Stopjaková:
Comparison of iddt test efficiency in covering opens in SRAMs realised in two different technologies. DDECS 2011: 395-396 - [c21]Lukás Nagy, Viera Stopjaková:
Current sensing methodology for completion detection in self-timed systems. DDECS 2011: 405-406 - [c20]Erik Vavrinsky, Martin Daricek, Martin Donoval, Peter Telek, Viera Stopjaková, Vladimir Tvarozek:
Alternative methods for heart-rate sensing. ISABEL 2011: 30:1-30:2 - 2010
- [c19]Lukás Nagy, Viera Stopjaková:
Current Sensing Completion Detection in deep sub-micron technologies. DDECS 2010: 145-148 - [c18]Libor Majer, Viera Stopjaková:
The novel approach to wideband RFIC receivers in standard CMOS process. DDECS 2010: 181-184
2000 – 2009
- 2009
- [c17]Juraj Brenkus, Viera Stopjaková, Ronny Vanhooren, Anton Chichkov:
Comparison of different test strategies on a mixed-signal circuit. DDECS 2009: 16-19 - [c16]Martin Donoval, Martin Daricek, Juraj Marek, Viera Stopjaková:
Power devices current monitoring using horizontal and vertical magnetic force sensor. DDECS 2009: 124-127 - [c15]Martin Donoval, Martin Daricek, Juraj Marek, Viera Stopjaková:
Vertical and horizontal magnetic force sensor and application of sensor in power devices. ECCTD 2009: 519-522 - 2008
- [j4]Witold A. Pleskacz, Viera Stopjaková, Tomasz Borejko, Artur Jutman, Andrzej Walkanis:
DefSim: A Remote Laboratory for Studying Physical Defects in CMOS Digital Circuits. IEEE Trans. Ind. Electron. 55(6): 2405-2415 (2008) - [c14]Libor Majer, Viera Stopjaková:
Portable Measurement Equipment for Continuous Biomedical Monitoring using Microelectrodes. DDECS 2008: 26-29 - [c13]Marcin J. Beresinski, Tomasz Borejko, Witold A. Pleskacz, Viera Stopjaková:
Built-In Current Monitor for IDDQ Testing in CMOS 90 nm Technology. DDECS 2008: 259-262 - [c12]Juraj Brenkus, Viera Stopjaková, Jozef Mihálov:
Experimental Analog Circuit for Parametric Test Methods Efficiency Evaluation. DDECS 2008: 293-298 - [c11]Martin Donoval, Martin Daricek, Viera Stopjaková, Juraj Marek:
On-chip Integration of Magnetic Force Sensing Current Monitors. DDECS 2008: 310-313 - [c10]Martin Donoval, Martin Daricek, Viera Stopjaková, Juraj Marek:
On-chip supply current monitoring units using magnetic force sensing. ICECS 2008: 1229-1232 - [c9]Martin Simlastík, Viera Stopjaková:
Automated Synchronous-to-Asynchronous Circuits Conversion: A Survey. PATMOS 2008: 348-358 - 2007
- [c8]Martin Simlastík, Viera Stopjaková, Libor Majer, Peter Malík:
Clockless Implementation of LEON2 for Low-Power Applications. DDECS 2007: 215-218 - 2006
- [c7]Pavol Malosek, Viera Stopjaková:
PCA Data Preprocessing for Neural Network-based Detection of Parametric Defects in Analog IC. DDECS 2006: 131-135 - [c6]Vladislav Nagy, Viera Stopjaková:
New Current Monitor Using Auto Zero Voltage Comparator for IDD Testing of Mixed-signal Circuits. DDECS 2006: 236-237 - [c5]Witold A. Pleskacz, Tomasz Borejko, Andrzej Walkanis, Viera Stopjaková, Artur Jutman, Raimund Ubar:
DefSim: CMOS Defects on Chip for Research and Education. LATW 2006: 74-79 - 2005
- [j3]Viera Stopjaková, Pavol Malosek, Marek Matej, Vladislav Nagy, Martin Margala:
Defect detection in analog and mixed circuits by neural networks using wavelet analysis. IEEE Trans. Reliab. 54(3): 441-448 (2005) - 2004
- [j2]Viera Stopjaková, Pavol Malosek, Daniel Micusík, Marek Matej, Martin Margala:
Classification of Defective Analog Integrated Circuits Using Artificial Neural Networks. J. Electron. Test. 20(1): 25-37 (2004) - 2002
- [j1]Daniel Micusík, Viera Stopjaková, Lubica Benusková:
Application of Feed-forward Artificial Neural Networks to the Identification of Defective Analog Integrated Circuits. Neural Comput. Appl. 11(1): 71-79 (2002) - [c4]Viera Stopjaková, Daniel Micusík, Lubica Benusková, Martin Margala:
Neural Networks-Based Parametric Testing of Analog IC. DFT 2002: 408-418 - 2000
- [c3]Martin Margala, Srdjan Dragic, Ahmed El-Abasiry, Samuel Ekpe, Viera Stopjaková:
I-V Fast IDDQ Current Sensor for On-Line Mixed-Signal/Analog Test. IOLTW 2000: 92-93
1990 – 1999
- 1999
- [c2]Viera Stopjaková, Hans A. R. Manhaeve, M. Sidiropulos:
On-Chip Transient Current Monitor for Testing of Low Voltage CMOS IC. DATE 1999: 538-542 - 1997
- [c1]Viera Stopjaková, Hans A. R. Manhaeve:
CCII+ current conveyor based BIC monitor for IDDQ testing of complex CMOS circuits. ED&TC 1997: 266-270
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:18 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint