default search action
Adam Krzyzak
Person information
- affiliation: Concordia University, Montreal, Canada
- affiliation: Westpomeranian University of Technology (WUT), Szczecin, Poland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j80]Guangyi Chen, Adam Krzyzak:
Wavelet-based 3D Data Cube Denoising Using Three Scales of Dependency. Circuits Syst. Signal Process. 43(6): 4010-4020 (2024) - [j79]Jeongik Cho, Adam Krzyzak:
Efficient integration of perceptual variational autoencoder into dynamic latent scale generative adversarial network. Expert Syst. J. Knowl. Eng. 41(10) (2024) - [j78]Adam Krzyzak, Jedrzej Wieckowski, Wojciech Rafajlowicz, Przemyslaw Moczko, Ewaryst Rafajlowicz:
Designing shape-preserving descriptors for classifying signals with application to vibrations of large mechanical structures. Knowl. Based Syst. 299: 112028 (2024) - [j77]Guang Yi Chen, Adam Krzyzak:
Face recognition via selective denoising, filter faces and hog features. Signal Image Video Process. 18(1): 369-378 (2024) - [j76]Guang Yi Chen, Adam Krzyzak:
Illumination invariant face recognition via multiscale filter faces and voting technique. Signal Image Video Process. 18(8-9): 5933-5938 (2024) - [c133]Karima Ben Suliman, Adam Krzyzak:
Vision Transformer Features-Based Leukemia Classification. ANNPR 2024: 111-120 - [c132]Farnaz Haghshenas, Adam Krzyzak, Stanislaw Osowski:
Comparative Study of Deep Learning Models in Melanoma Detection. ANNPR 2024: 121-131 - [c131]Guang Yi Chen, Adam Krzyzak, Ventzeslav Valev:
Palmprint Classification via Filter Faces and Feature Extraction. ANNPR 2024: 208-217 - [c130]Guangyi Chen, Wenfang Xie, Adam Krzyzak:
Hyperspectral Face Recognition via Existing 2D Face Recognition Methods. ICIC (5) 2024: 12-22 - [c129]Michael Kohler, Benjamin Walter, Adam Krzyzak:
Rate of Convergence of an Over-Parametrized Convolutional Neural Network Image Classifier Learned by Gradient Descent. ISIT 2024: 374-379 - [c128]Belal Nwiran, Adam Krzyzak:
MobileNetV3 Layer Sensitivity and Sparsity. SERP4IoT 2024: 38-43 - [e3]Ching Yee Suen, Adam Krzyzak, Mirco Ravanelli, Edmondo Trentin, Cem Subakan, Nicola Nobile:
Artificial Neural Networks in Pattern Recognition - 11th IAPR TC3 Workshop, ANNPR 2024, Montreal, QC, Canada, October 10-12, 2024, Proceedings. Lecture Notes in Computer Science 15154, Springer 2024, ISBN 978-3-031-71601-0 [contents] - [i5]Michael Kohler, Adam Krzyzak, Benjamin Walter:
Analysis of the rate of convergence of an over-parametrized convolutional neural network image classifier learned by gradient descent. CoRR abs/2405.07619 (2024) - 2023
- [j75]Mohammad Amin Shamshiri, Adam Krzyzak, Marek Kowal, Józef Korbicz:
Compatible-domain Transfer Learning for Breast Cancer Classification with Limited Annotated Data. Comput. Biol. Medicine 154: 106575 (2023) - [j74]Guangyi Chen, Adam Krzyzak:
Invariant Pattern Recognition with Log-Polar Transform and Dual-Tree Complex Wavelet-Fourier Features. Sensors 23(8): 3842 (2023) - [c127]Adam Krzyzak, Wojciech Rafajlowicz, Ewaryst Rafajlowicz:
Learning Bezier-Durrmeyer Type Descriptors for Classifying Curves - Preliminary Studies. ICAISC (1) 2023: 530-541 - [c126]Adam Krzyzak, Wojciech Rafajlowicz, Ewaryst Rafajlowicz:
Learning Shape-Preserving Autoencoder for the Reconstruction of Functional Data from Noisy Observations. ICCS (2) 2023: 264-272 - [c125]Guangyi Chen, Wenfang Xie, Adam Krzyzak:
Improved Blind Image Denoising with DnCNN. ICIC (2) 2023: 263-271 - [c124]Guangyi Chen, Wenfang Xie, Adam Krzyzak:
An Experimental Study on MRI Denoising with Existing Image Denoising Methods. ICIC (2) 2023: 429-437 - [c123]Guang Yi Chen, Adam Krzyzak, Ventzeslav Valev:
A Robust Preprocessing Method for Measuring Image Visual Quality Using Log-Polar FFT Features. IWAIPR 2023: 445-454 - [i4]Michael Kohler, Adam Krzyzak:
On the rate of convergence of an over-parametrized Transformer classifier learned by gradient descent. CoRR abs/2312.17007 (2023) - 2022
- [j73]Guangyi Chen, Adam Krzyzak, Shen-En Qian:
Hyperspectral imagery classification with minimum noise fraction, 2D spatial filtering and SVM. Int. J. Wavelets Multiresolution Inf. Process. 20(6): 2250025:1-2250025:13 (2022) - [j72]Guang Yi Chen, Adam Krzyzak, Piotr Duda, Andrzej Cader:
Noise Robust Illumination Invariant Face Recognition Via Bivariate Wavelet Shrinkage in Logarithm Domain. J. Artif. Intell. Soft Comput. Res. 12(3): 169-180 (2022) - [j71]Guang Yi Chen, Adam Krzyzak, Wen-Fang Xie:
Hyperspectral face recognition with histogram of oriented gradient features and collaborative representation-based classifier. Multim. Tools Appl. 81(2): 2299-2310 (2022) - [j70]Michael Kohler, Adam Krzyzak, Sophie Langer:
Estimation of a Function of Low Local Dimensionality by Deep Neural Networks. IEEE Trans. Inf. Theory 68(6): 4032-4042 (2022) - [c122]Adam Krzyzak, Tomasz Galkowski, Marian Partyka:
Convergence of RBF Networks Regression Function Estimates and Classifiers. ICAISC (1) 2022: 363-376 - [c121]Tomasz Galkowski, Adam Krzyzak, Piotr Dziwiñski:
Fast Estimation of Multidimensional Regression Functions. ICARCV 2022: 211-216 - [c120]Guangyi Chen, Wenfang Xie, Adam Krzyzak:
Illumination Invariant Face Recognition Using Directional Gradient Maps. ICIC (1) 2022: 330-338 - [c119]Tomasz Galkowski, Adam Krzyzak:
Fast Estimation of Multidimensional Regression Functions by the Parzen Kernel-Based Method. ICONIP (4) 2022: 251-262 - [c118]Vitaliy Tayanov, Adam Krzyzak, Ching Y. Suen:
Analysis of Different Deep Learning Architectures to Learn Generalised Classifier Stacking on Riemannian and Grassmann Manifolds. ICPR 2022: 2735-2741 - [c117]Manuel S. Lazo-Cortés, José Fco. Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, Ventzeslav Valev, Mohammad Amin Shamshiri, Adam Krzyzak:
Taking Advantage of Typical Testor Algorithms for Computing Non-reducible Descriptors. ICPRAM 2022: 188-194 - [c116]Jeongik Cho, Adam Krzyzak:
Dynamic Latent Scale for GAN Inversion. ICPRAM 2022: 221-228 - [c115]Guangyi Chen, Adam Krzyzak, Ventzeslav Valev:
A New Preprocessing Method for Measuring Image Visual Quality Robust to Rotation and Spatial Shifts. S+SSPR 2022: 94-102 - [c114]Jeongik Cho, Adam Krzyzak:
Self-supervised Out-of-Distribution Detection with Dynamic Latent Scale GAN. S+SSPR 2022: 113-121 - [c113]Naitik Bhise, Adam Krzyzak, Tien D. Bui:
Refining AttnGAN Using Attention on Attention Network. S+SSPR 2022: 283-291 - [e2]Adam Krzyzak, Ching Y. Suen, Andrea Torsello, Nicola Nobile:
Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshops, S+SSPR 2022, Montreal, QC, Canada, August 26-27, 2022, Proceedings. Lecture Notes in Computer Science 13813, Springer 2022, ISBN 978-3-031-23027-1 [contents] - 2021
- [j69]Vitaliy Tayanov, Adam Krzyzak, Ching Y. Suen:
Ensemble Learning Using Matrices of Classifier Interactions and Decision Profiles on Riemannian and Grassmann Manifolds. Int. J. Pattern Recognit. Artif. Intell. 35(12): 2160011:1-2160011:22 (2021) - [j68]Guangyi Chen, Adam Krzyzak:
An FFT-based visual quality metric robust to spatial shift. Int. J. Wavelets Multiresolution Inf. Process. 19(6): 2150024:1-2150024:11 (2021) - [j67]Guangyi Chen, Adam Krzyzak:
Noise reduction of shot-noise-dominated hyperspectral imagery by combining PCA with existing denoising methods. Int. J. Wavelets Multiresolution Inf. Process. 19(6): 2150028:1-2150028:20 (2021) - [j66]Tomasz Galkowski, Adam Krzyzak, Zofia Patora-Wysocka, Zbigniew Filutowicz, Lipo Wang:
A New Approach to Detection of Changes in Multidimensional Patterns - Part II. J. Artif. Intell. Soft Comput. Res. 11(3): 217-227 (2021) - [c112]Tomasz Galkowski, Adam Krzyzak:
Abrupt Change Detection by the Nonparametric Approach Based on Orthogonal Series Estimates. ICAISC (1) 2021: 318-327 - [c111]Adam Krzyzak, Heinrich Niemann:
Convergence properties of radial basis functions networks in function learning. KES 2021: 3761-3767 - 2020
- [j65]Tomasz Galkowski, Adam Krzyzak, Zbigniew Filutowicz:
A New Approach to Detection of Changes in Multidimensional Patterns. J. Artif. Intell. Soft Comput. Res. 10(2): 125-136 (2020) - [c110]Amr Shahin, Adam Krzyzak:
Genre-ous: The Movie Genre Detector. ACIIDS (Companion) 2020: 308-318 - [c109]Tomasz Galkowski, Adam Krzyzak:
A New Approach to Detection of Abrupt Changes in Black-and-White Images. ICAISC (2) 2020: 3-18 - [c108]Abdulrahman Aloyayri, Adam Krzyzak:
Breast Cancer Classification from Histopathological Images Using Transfer Learning and Deep Neural Networks. ICAISC (1) 2020: 491-502 - [c107]Varun Gupta, Adam Krzyzak:
An Empirical Evaluation of Attention and Pointer Networks for Paraphrase Generation. ICCS (3) 2020: 399-413 - [c106]Matthew Zak, Adam Krzyzak:
Classification of Lung Diseases Using Deep Learning Models. ICCS (3) 2020: 621-634 - [c105]Tomasz Galkowski, Adam Krzyzak:
Edge Curve Estimation by the Nonparametric Parzen Kernel Method. ICONIP (4) 2020: 377-385 - [c104]Nicola Yanev, Ventzeslav Valev, Karima Ben Suliman, Adam Krzyzak:
Supervised Classification Using Graph-based Space Partitioning for Multiclass Problems. ICPR 2020: 6486-6492 - [c103]Vitaliy Tayanov, Adam Krzyzak, Ching Y. Suen:
Comparison of Stacking-based Classifier Ensembles using Euclidean and Riemannian Geometries. ICPR 2020: 10359-10366 - [c102]Vitaliy Tayanov, Adam Krzyzak, Ching Y. Suen:
Manifold-Based Classifier Ensembles. ICPRAI 2020: 293-305 - [c101]Ellison Chan, Adam Krzyzak, Ching Y. Suen:
Predicting US Elections with Social Media and Neural Networks. ICPRAI 2020: 325-335 - [i3]Michael Kohler, Adam Krzyzak, Benjamin Walter:
On the rate of convergence of image classifiers based on convolutional neural networks. CoRR abs/2003.01526 (2020) - [i2]Michael Kohler, Adam Krzyzak:
On the rate of convergence of a deep recurrent neural network estimate in a regression problem with dependent data. CoRR abs/2011.00328 (2020)
2010 – 2019
- 2019
- [j64]Nicola Yanev, Ventzeslav Valev, Adam Krzyzak, Karima Ben Suliman:
Supervised classification using graph-based space partitioning. Pattern Recognit. Lett. 128: 122-130 (2019) - [j63]Michael Kohler, Adam Krzyzak:
Estimation of a Density From an Imperfect Simulation Model. IEEE Trans. Inf. Theory 65(3): 1535-1546 (2019) - [c100]Ventzeslav Valev, Nicola Yanev, Adam Krzyzak, Karima Ben Suliman:
Supervised Classification Box Algorithm Based on Graph Partitioning. CORES 2019: 276-285 - [c99]Adam Krzyzak, Marian Partyka:
On Learning and Convergence of RBF Networks in Regression Estimation and Classification. ICAISC (1) 2019: 131-142 - [c98]Bartosz Miselis, Thomas Fevens, Adam Krzyzak, Marek Kowal, Roman Monczak:
Deep Neural Networks for Breast Cancer Diagnosis: Fine Needle Biopsy Scenario. PCBBE 2019: 131-142 - [i1]Michael Kohler, Adam Krzyzak, Sophie Langer:
Deep Learning and MARS: A Connection. CoRR abs/1908.11140 (2019) - 2018
- [j62]Mina Yousefi, Adam Krzyzak, Ching Y. Suen:
Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning. Comput. Biol. Medicine 96: 283-293 (2018) - [j61]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Filter-based face recognition under varying illumination. IET Biom. 7(6): 628-635 (2018) - [j60]Michael Kohler, Adam Krzyzak:
Adaptive Estimation of Quantiles in a Simulation Model. IEEE Trans. Inf. Theory 64(1): 501-512 (2018) - [c97]Adam Krzyzak, Marian Partyka:
Learning and Convergence of the Normalized Radial Basis Functions Networks. ICAISC (1) 2018: 118-129 - [c96]Karima Ben Suliman, Adam Krzyzak:
Computerized Counting-Based System for Acute Lymphoblastic Leukemia Detection in Microscopic Blood Images. ICANN (2) 2018: 167-178 - [c95]Vitaliy Tayanov, Adam Krzyzak, Ching Y. Suen:
Prediction-based classification using learning on Riemannian manifolds. ICPR 2018: 591-596 - [c94]Jurek Z. Sasiadek, Steve Ulrich, Adam Krzyzak:
Trajectory Tracking and Nonparametric Identification of Flexible Space Robot Manipulators. MMAR 2018: 83-88 - [c93]Ventzeslav Valev, Nicola Yanev, Adam Krzyzak, Karima Ben Suliman:
Supervised Classification Using Feature Space Partitioning. S+SSPR 2018: 194-203 - 2017
- [j59]Augustin Kelava, Michael Kohler, Adam Krzyzak, Tim Fabian Schaffland:
Nonparametric estimation of a latent variable model. J. Multivar. Anal. 154: 112-134 (2017) - [j58]Benedikt Bauer, Luc Devroye, Michael Kohler, Adam Krzyzak, Harro Walk:
Nonparametric estimation of a function from noiseless observations at random points. J. Multivar. Anal. 160: 93-104 (2017) - [j57]Michael Kohler, Adam Krzyzak:
Nonparametric Regression Based on Hierarchical Interaction Models. IEEE Trans. Inf. Theory 63(3): 1620-1630 (2017) - [c92]Muneera Alsaedi, Thomas Fevens, Adam Krzyzak, Lukasz Jelen:
Cytological malignancy grading systems for fine needle aspiration biopsies of breast cancer. BIBM 2017: 705-709 - [c91]Vitaliy Tayanov, Adam Krzyzak, Ching Y. Suen:
Some Properties of Consensus-Based Classification. CORES 2017: 276-285 - [c90]Adam Krzyzak, Marian Partyka:
Convergence and Rates of Convergence of Recursive Radial Basis Functions Networks in Function Learning and Classification. ICAISC (1) 2017: 107-117 - [c89]Artur Starczewski, Adam Krzyzak:
A Study of Cluster Validity Indices for Real-Life Data. ICAISC (2) 2017: 148-158 - [c88]Artur Starczewski, Adam Krzyzak:
Improvement of the Validity Index for Determination of an Appropriate Data Partitioning. ICAISC (2) 2017: 159-170 - [c87]Vitaliy Tayanov, Adam Krzyzak, Ching Y. Suen:
Classification Boosting by Data Decomposition Using Consensus-Based Combination of Classifiers. ICIAR 2017: 408-415 - [c86]Jurek Z. Sasiadek, Steve Ulrich, Adam Krzyzak:
Direct fuzzy adaptive control and nonparametric identification of robot manipulator with elastic joints. MMAR 2017: 119-124 - 2016
- [j56]Lukasz Jelen, Adam Krzyzak, Thomas Fevens, Michal Jelen:
Influence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsies. Comput. Biol. Medicine 79: 80-91 (2016) - [j55]Behnam Karimi, Adam Krzyzak:
A novel technique for detecting suspicious lesions in breast ultrasound images. Concurr. Comput. Pract. Exp. 28(7): 2237-2260 (2016) - [j54]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Sparse support vector machine for pattern recognition. Concurr. Comput. Pract. Exp. 28(7): 2261-2273 (2016) - [j53]Daniel Jones, Michael Kohler, Adam Krzyzak, Alexander Richter:
Empirical Comparison of Nonparametric Regression Estimates on Real Data. Commun. Stat. Simul. Comput. 45(7): 2309-2319 (2016) - [j52]Georg C. Enss, Michael Kohler, Adam Krzyzak, Roland Platz:
Nonparametric Quantile Estimation Based on Surrogate Models. IEEE Trans. Inf. Theory 62(10): 5727-5739 (2016) - [c85]Mohammad Reza Ebrahimi, Ching Y. Suen, Olga Ormandjieva, Adam Krzyzak:
Recognizing Predatory Chat Documents using Semi-supervised Anomaly Detection. Document Recognition and Retrieval 2016: 1-9 - [c84]Piotr Duda, Lena Pietruczuk, Maciej Jaworski, Adam Krzyzak:
On the Cesàro-Means-Based Orthogonal Series Approach to Learning Time-Varying Regression Functions. ICAISC (2) 2016: 37-48 - [c83]Artur Starczewski, Adam Krzyzak:
A Modification of the Silhouette Index for the Improvement of Cluster Validity Assessment. ICAISC (2) 2016: 114-124 - [c82]Ventzeslav Valev, Nicola Yanev, Adam Krzyzak:
A new geometrical approach for solving the supervised pattern recognition problem. ICPR 2016: 1648-1652 - [c81]Michael Kohler, Adam Krzyzak:
The rates of convergence of neural network estimates of hierarchical interaction regression models. ISIT 2016: 975-977 - [p6]Yanbin Lu, Mina Yousefi, John Ellenberger, Richard H. Moore, Daniel B. Kopans, Adam Krzyzak, Ching Y. Suen:
3D Tomosynthesis to Detect Breast cancer. Handbook of Pattern Recognition and Computer Vision 2016: 371-393 - [p5]Adam Krzyzak:
Recent Results on Nonparametric Quantile Estimation in a Simulation Model. Challenges in Computational Statistics and Data Mining 2016: 225-246 - 2015
- [j51]Tina Felber, Michael Kohler, Adam Krzyzak:
Adaptive Density Estimation From Data With Small Measurement Errors. IEEE Trans. Inf. Theory 61(6): 3446-3456 (2015) - [c80]Artur Starczewski, Adam Krzyzak:
Performance Evaluation of the Silhouette Index. ICAISC 2015: 49-58 - [c79]Tomasz Olas, Wojciech K. Mleczko, Robert K. Nowicki, Roman Wyrzykowski, Adam Krzyzak:
Adaptation of RBM Learning for Intel MIC Architecture. ICAISC (1) 2015: 90-101 - [c78]Jerzy Z. Sasiadek, Anthony Green, Adam Krzyzak:
Nonparametric recursive identification and control of a flexible joint robot manipulator. MMAR 2015: 563-572 - 2014
- [j50]Joseph Lin Chu, Adam Krzyzak:
The Recognition Of Partially Occluded Objects with Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks. J. Artif. Intell. Soft Comput. Res. 4(1): 5-19 (2014) - [j49]Tomasz Bruzdzinski, Adam Krzyzak, Thomas Fevens, Lukasz Jelen:
Web-Based Framework For Breast Cancer Classification. J. Artif. Intell. Soft Comput. Res. 4(2): 149-162 (2014) - [c77]Joseph Lin Chu, Adam Krzyzak:
Analysis of Feature Maps Selection in Supervised Learning Using Convolutional Neural Networks. Canadian AI 2014: 59-70 - [c76]Mina Yousefi, Adam Krzyzak, Ching Y. Suen:
Convex Cardinality Restricted Boltzmann Machine and Its Application to Pattern Recognition. Canadian AI 2014: 369-374 - [c75]Mehdi Habibzadeh, Adam Krzyzak, Thomas Fevens:
Comparative Study of Feature Selection for White Blood Cell Differential Counts in Low Resolution Images. ANNPR 2014: 216-227 - [c74]Asai Asaithambi, Ventzeslav Valev, Adam Krzyzak, Vesna Zeljkovic:
A new approach for binary feature selection and combining classifiers. HPCS 2014: 681-687 - [c73]Joseph Lin Chu, Adam Krzyzak:
Application of Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks to Recognition of Partially Occluded Objects. ICAISC (1) 2014: 34-46 - [c72]Behnam Karimi, Adam Krzyzak:
Computer-Aided System for Automatic Classification of Suspicious Lesions in Breast Ultrasound Images. ICAISC (2) 2014: 131-142 - [c71]Bartosz Krawczyk, Lukasz Jelen, Adam Krzyzak, Thomas Fevens:
One-Class Classification Decomposition for Imbalanced Classification of Breast Cancer Malignancy Data. ICAISC (1) 2014: 539-550 - [c70]Tina Felber, Michael Kohler, Adam Krzyzak:
Density estimation using real and artificial data. ISIT 2014: 1677-1681 - [c69]Jerzy Z. Sasiadek, Anthony Green, Steve Ulrich, Adam Krzyzak:
Nonparametric identification and control of flexible joint robot manipulator. MMAR 2014: 221-228 - 2013
- [j48]Behnam Karimi, Adam Krzyzak:
A Novel Approach for Automatic Detection and Classification of Suspicious Lesions in Breast Ultrasound Images. J. Artif. Intell. Soft Comput. Res. 3(4): 265 (2013) - [j47]Pawel Filipczuk, Thomas Fevens, Adam Krzyzak, Roman Monczak:
Computer-Aided Breast Cancer Diagnosis Based on the Analysis of Cytological Images of Fine Needle Biopsies. IEEE Trans. Medical Imaging 32(12): 2169-2178 (2013) - [c68]Ali Jannatpour, Adam Krzyzak, Douglas D. O'Shaughnessy:
A new approach to short-time harmonic analysis of tonal audio signals using harmonic sinusoidals. CCECE 2013: 1-6 - [c67]Mehdi Habibzadeh, Adam Krzyzak, Thomas Fevens:
White Blood Cell Differential Counts Using Convolutional Neural Networks for Low Resolution Images. ICAISC (2) 2013: 263-274 - [c66]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Sparse Support Vector Machine for pattern recognition. HPCS 2013: 601-606 - [c65]Guangyi Chen, Tien Dai Bui, Adam Krzyzak, Weihua Liu:
Support Vector Machine with Customized Kernel. ISNN (1) 2013: 258-264 - [c64]Guangyi Chen, Tien Dai Bui, Adam Krzyzak, Yongjia Zhao:
Invariant Object Recognition Using Radon and Fourier Transforms. ISNN (1) 2013: 650-656 - 2012
- [j46]Michael Kohler, Adam Krzyzak:
Nonparametric estimation of non-stationary velocity fields from 3D particle tracking velocimetry data. Comput. Stat. Data Anal. 56(6): 1566-1580 (2012) - [j45]Gérard Biau, Luc Devroye, Vida Dujmovic, Adam Krzyzak:
An affine invariant k-nearest neighbor regression estimate. J. Multivar. Anal. 112: 24-34 (2012) - [j44]Adam Krzyzak:
Editorial. Trans. Mach. Learn. Data Min. 5(1): 1-2 (2012) - [c63]Guangyi Chen, Tien Dai Bui, Adam Krzyzak, Stéphane Coulombe:
Adaptive video denoising using block matching 3-D filtering. CCECE 2012: 1-4 - [c62]Ewa Skubalska-Rafajlowicz, Adam Krzyzak, Ewaryst Rafajlowicz:
Dimensionality Reduction Using External Context in Pattern Recognition Problems with Ordered Labels. ICAISC (1) 2012: 430-438 - [c61]Mehdi Habibzadeh, Adam Krzyzak, Thomas Fevens:
Analysis of White Blood Cell Differential Counts Using Dual-Tree Complex Wavelet Transform and Support Vector Machine Classifier. ICCVG 2012: 414-422 - [c60]Bartosz Krawczyk, Lukasz Jelen, Adam Krzyzak, Thomas Fevens:
Oversampling Methods for Classification of Imbalanced Breast Cancer Malignancy Data. ICCVG 2012: 483-490 - [c59]Gérard Biau, Adam Krzyzak, Luc Devroye, Vida Dujmovic:
An affine invariant k-nearest neighbor regression estimate. ISIT 2012: 1445-1447 - [c58]Adam Krzyzak, Jerzy Z. Sasiadek, Steve Ulrich:
Nonparametric identification of robot flexible joint space manipulator. MMAR 2012: 172-177 - 2011
- [j43]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Denoising of Three-Dimensional Data Cube Using bivariate Wavelet Shrinking. Int. J. Pattern Recognit. Artif. Intell. 25(3): 403-413 (2011) - [j42]László Györfi, Adam Krzyzak:
Why L1 view and what is next? Kybernetika 47(6): 840-854 (2011) - [c57]Adam Krzyzak:
Radial Basis Function Networks with optimal kernels. ISIT 2011: 860-863 - [c56]Mehdi Habibzadeh, Adam Krzyzak, Thomas Fevens, Ali Sadr:
Counting of RBCs and WBCs in noisy normal blood smear microscopic images. Computer-Aided Diagnosis 2011: 79633I - [c55]Jerzy Z. Sasiadek, Mark J. Walker, Adam Krzyzak:
Accurate feature matching for autonomous vehicle navigation in urban environments. MMAR 2011: 68-73 - [p4]Adam Krzyzak, Thomas Fevens, Mehdi Habibzadeh, Lukasz Jelen:
Application of Pattern Recognition Techniques for the Analysis of Histopathological Images. Computer Recognition Systems 4 2011: 623-644 - 2010
- [c54]Adam Krzyzak, Ewaryst Rafajlowicz:
Pattern Recognition with Linearly Structured Labels Using Recursive Kernel Estimator. ICAISC (1) 2010: 422-429 - [c53]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Denoising of Three Dimensional Data Cube Using Bivariate Wavelet Shrinking. ICIAR (1) 2010: 45-51
2000 – 2009
- 2009
- [j41]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Invariant pattern recognition using radon, dual-tree complex wavelet and Fourier transforms. Pattern Recognit. 42(9): 2013-2019 (2009) - [c52]Aleksey Izmailov, Adam Krzyzak:
On Improving the Efficiency of Eigenface Using a Novel Facial Feature Localization. ICIAP 2009: 414-424 - [c51]Lorenzo Luciano, Adam Krzyzak:
Automated Multimodal Biometrics Using Face and Ear. ICIAR 2009: 451-460 - [c50]Michael Kohler, Adam Krzyzak, Harro Walk:
On application of nonparametric regression estimation to options pricing. ISIT 2009: 1579-1583 - [c49]Lukasz Jelen, Thomas Fevens, Adam Krzyzak:
Influence of nuclei segmentation on breast cancer malignancy classification. Computer-Aided Diagnosis 2009: 726014 - 2008
- [j40]Lukasz Jelen, Thomas Fevens, Adam Krzyzak:
Classification of Breast Cancer Malignancy Using Cytological Images of Fine Needle Aspiration Biopsies. Int. J. Appl. Math. Comput. Sci. 18(1): 75-83 (2008) - [j39]Joanna Rokita, Adam Krzyzak, Ching Y. Suen:
Multimodal Biometrics by Face and Hand Images Taken by a Cell Phone Camera. Int. J. Pattern Recognit. Artif. Intell. 22(3): 411-429 (2008) - [c48]Lukasz Jelen, Adam Krzyzak, Thomas Fevens:
Comparison of Pleomorphic and Structural Features Used for Breast Cancer Malignancy Classification. Canadian AI 2008: 138-149 - [c47]Adam Krzyzak, Dominik Schäfer:
Nonlinear Function Learning Using Radial Basis Function Networks: Convergence and Rates. ICAISC 2008: 101-110 - [c46]Joanna Rokita, Adam Krzyzak, Ching Y. Suen:
Cell Phones Personal Authentication Systems Using Multimodal Biometrics. ICIAR 2008: 1013-1022 - [c45]Wu Ding, Ching Y. Suen, Adam Krzyzak:
A new courtesy amount recognition module of a Check Reading System. ICPR 2008: 1-4 - [c44]Jian-xiong Dong, Ching Y. Suen, Adam Krzyzak:
Effective shrinkage of large multi-class linear svm models for text categorization. ICPR 2008: 1-4 - 2007
- [j38]Shuo Li, Thomas Fevens, Adam Krzyzak, Chao Jin, Song Li:
Semi-automatic computer aided lesion detection in dental X-rays using variational level set. Pattern Recognit. 40(10): 2861-2873 (2007) - [j37]Michael Kohler, Adam Krzyzak:
On the Rate of Convergence of Local Averaging Plug-In Classification Rules Under a Margin Condition. IEEE Trans. Inf. Theory 53(5): 1735-1742 (2007) - [c43]Shuo Li, Thomas Fevens, Adam Krzyzak, Chao Jin, Song Li:
Computer aided root lesion detection using level set and complex wavelets. Computer-Aided Diagnosis 2007: 65141M - 2006
- [j36]Shuo Li, Thomas Fevens, Adam Krzyzak, Song Li:
An automatic variational level set segmentation framework for computer aided dental X-rays analysis in clinical environments. Comput. Medical Imaging Graph. 30(2): 65-74 (2006) - [j35]Shuo Li, Thomas Fevens, Adam Krzyzak, Song Li:
Automatic clinical image segmentation using pathological modeling, PCA and SVM. Eng. Appl. Artif. Intell. 19(4): 403-410 (2006) - [j34]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Rotation invariant feature extraction using Ridgelet and Fourier transforms. Pattern Anal. Appl. 9(1): 83-93 (2006) - [c42]Adam Krzyzak, Dominik Schäfer:
Nonlinear Function Learning by the Normalized Radial Basis Function Networks. ICAISC 2006: 46-55 - [c41]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Palmprint Classification using Dual-Tree Complex Wavelets. ICIP 2006: 2645-2648 - [c40]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Invariant Ridgelet-Fourier Descriptor for Pattern Recognition. ICPR (2) 2006: 768-771 - [c39]Michael Kohler, Adam Krzyzak:
Rate of convergence of local averaging plug-in classification rules under margin condition. ISIT 2006: 2176-2179 - [c38]Shuo Li, Thomas Fevens, Adam Krzyzak, Chao Jin, Song Li:
Fast and Robust Clinical Triple-Region Image Segmentation Using One Level Set Function. MICCAI (2) 2006: 766-773 - 2005
- [j33]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Image denoising using neighbouring wavelet coefficients. Integr. Comput. Aided Eng. 12(1): 99-107 (2005) - [j32]Jian-xiong Dong, Adam Krzyzak, Ching Y. Suen:
Fast SVM Training Algorithm with Decomposition on Very Large Data Sets. IEEE Trans. Pattern Anal. Mach. Intell. 27(4): 603-618 (2005) - [j31]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Image denoising with neighbour dependency and customized wavelet and threshold. Pattern Recognit. 38(1): 115-124 (2005) - [j30]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Rotation invariant pattern recognition using ridgelets, wavelet cycle-spinning and Fourier features. Pattern Recognit. 38(12): 2314-2322 (2005) - [j29]Jian-xiong Dong, Adam Krzyzak, Ching Y. Suen:
An improved handwritten Chinese character recognition system using support vector machine. Pattern Recognit. Lett. 26(12): 1849-1856 (2005) - [j28]Adam Krzyzak, Dominik Schäfer:
Nonparametric regression estimation by normalized radial basis function networks. IEEE Trans. Inf. Theory 51(3): 1003-1010 (2005) - [c37]Jian-xiong Dong, Dominique Ponson, Adam Krzyzak, Ching Y. Suen:
Cursive word skew/slant corrections based on Radon transform. ICDAR 2005: 478-483 - [c36]Jian-xiong Dong, Ching Y. Suen, Adam Krzyzak:
Algorithms of fast SVM evaluation based on subspace projection. IJCNN 2005: 865-870 - [c35]Michael Kohler, Adam Krzyzak:
Rates of convergence for adaptive regression estimates with multiple hidden layer feedforward neural networks. ISIT 2005: 1436-1440 - [c34]Shuo Li, Thomas Fevens, Adam Krzyzak, Chao Jin, Song Li:
Toward Automatic Computer Aided Dental X-ray Analysis Using Level Set Method. MICCAI 2005: 670-678 - [c33]Shuo Li, Thomas Fevens, Adam Krzyzak, Song Li:
A level set segmentation for computer-aided dental x-ray analysis. Image Processing 2005 - [c32]Shuo Li, Thomas Fevens, Adam Krzyzak, Song Li:
Automatic Clinical Image Segmentation Using Pathological Modelling, PCA and SVM. MLDM 2005: 314-324 - [c31]Jian-xiong Dong, Adam Krzyzak, Ching Y. Suen, Dominique Ponson:
Low-Level Cursive Word Representation Based on Geometric Decomposition. MLDM 2005: 590-599 - 2004
- [c30]Shuo Li, Thomas Fevens, Adam Krzyzak:
A SVM-based framework for autonomous volumetric medical image segmentation using hierarchical and coupled level sets. CARS 2004: 207-212 - [c29]Adam Krzyzak, Ewa Skubalska-Rafajlowicz:
Combining Space-Filling Curves and Radial Basis Function Networks. ICAISC 2004: 229-234 - [c28]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Image denoising using neighbouring wavelet coefficients. ICASSP (2) 2004: 917-920 - [c27]Michael Kohler, Adam Krzyzak:
Adaptive regression estimation with multilayer feedforward neural networks. ISIT 2004: 467 - [c26]Shuo Li, Thomas Fevens, Adam Krzyzak:
Image Segmentation Adapted for Clinical Settings by Combining Pattern Classification and Level Sets. MICCAI (1) 2004: 160-167 - 2003
- [j27]Jian-xiong Dong, Ching Y. Suen, Adam Krzyzak:
A Fast SVM Training Algorithm. Int. J. Pattern Recognit. Artif. Intell. 17(3): 367-384 (2003) - [j26]Guangyi Chen, Tien D. Bui, Adam Krzyzak:
Contour-based handwritten numeral recognition using multiwavelets and neural networks. Pattern Recognit. 36(7): 1597-1604 (2003) - [j25]Miroslaw Pawlak, Ewaryst Rafajlowicz, Adam Krzyzak:
Postfiltering versus prefiltering for signal recovery from noisy samples. IEEE Trans. Inf. Theory 49(12): 3195-3212 (2003) - [c25]Jian-xiong Dong, Adam Krzyzak, Ching Y. Suen:
A Fast Parallel Optimization for Training Support Vector Machine. MLDM 2003: 96-105 - 2002
- [b1]László Györfi, Michael Kohler, Adam Krzyzak, Harro Walk:
A Distribution-Free Theory of Nonparametric Regression. Springer series in statistics, Springer 2002, ISBN 978-0-387-95441-7, pp. I-XVI, 1-647 - [j24]Balázs Kégl, Adam Krzyzak:
Piecewise Linear Skeletonization Using Principal Curves. IEEE Trans. Pattern Anal. Mach. Intell. 24(1): 59-74 (2002) - [j23]Jie Zhou, Adam Krzyzak, Ching Y. Suen:
Verification - a method of enhancing the recognizers of isolated and touching handwritten numerals. Pattern Recognit. 35(5): 1179-1189 (2002) - [c24]Jian-xiong Dong, Adam Krzyzak, Ching Y. Suen:
A Fast SVM Training Algorithm. SVM 2002: 53-67 - 2001
- [j22]Adam Krzyzak, Jerzy Z. Sasiadek, Balázs Kégl:
Non-parametric identification of dynamic non-linear systems by a Hermite Series Approach. Int. J. Syst. Sci. 32(10): 1261-1285 (2001) - [j21]Michael Kohler, Adam Krzyzak:
Nonparametric regression estimation using penalized least squares. IEEE Trans. Inf. Theory 47(7): 3054-3059 (2001) - [c23]Jian-xiong Dong, Adam Krzyzak, Ching Y. Suen:
A Multi-Net Local Learning Framework for Pattern Recognition. ICDAR 2001: 328-332 - [c22]Adam Krzyzak:
Nonlinear Function Learning and Classification Using Optimal Radial Basis Function Networks. MLDM 2001: 217-225 - [c21]Jian-xiong Dong, Adam Krzyzak, Ching Y. Suen:
Local Learning Framework for Recognition of Lowercase Handwritten Characters. MLDM 2001: 226-238 - 2000
- [j20]Balázs Kégl, Adam Krzyzak, Tamás Linder, Kenneth Zeger:
Learning and Design of Principal Curves. IEEE Trans. Pattern Anal. Mach. Intell. 22(3): 281-297 (2000) - [c20]Balázs Kégl, Adam Krzyzak, Heinrich Niemann:
Radial Basis Function Networks and Complexity Regularization in Function Learning and Classification. ICPR 2000: 2081-2086 - [c19]Balázs Kégl, Adam Krzyzak:
Piecewise Linear Skeletonization Using Principal Curves. ICPR 2000: 3135-3138
1990 – 1999
- 1999
- [j19]Jie Zhou, Qiang Gan, Adam Krzyzak, Ching Y. Suen:
Recognition of handwritten numerals by Quantum Neural Network with fuzzy features. Int. J. Document Anal. Recognit. 2(1): 30-36 (1999) - 1998
- [j18]Adam Krzyzak, Tamás Linder:
Radial basis function networks and complexity regularization in function learning. IEEE Trans. Neural Networks 9(2): 247-256 (1998) - [c18]Balázs Kégl, Adam Krzyzak, Heinrich Niemann:
Radial basis function networks in nonparametric classification and function learning. ICPR 1998: 565-570 - [c17]Balázs Kégl, Adam Krzyzak, Tamás Linder, Kenneth Zeger:
A Polygonal Line Algorithm for Constructing Principal Curves. NIPS 1998: 501-507 - 1997
- [j17]Adam Krzyzak, Ewaryst Rafajlowicz, Miroslaw Pawlak:
Moving average restoration of bandlimited signals from noisy observations. IEEE Trans. Signal Process. 45(12): 2967-2976 (1997) - [c16]Janusz Mazurek, Adam Krzyzak, Andrzej Cichocki:
Rates of convergence of the recursive radial basis function networks. ICASSP 1997: 3317-3320 - 1996
- [j16]Adam Krzyzak:
On nonparametric estimation of nonlinear dynamic systems by the Fourier series estimate. Signal Process. 52(3): 299-321 (1996) - [j15]Adam Krzyzak, Tamás Linder, Gábor Lugosi:
Nonparametric estimation and classification using radial basis function nets and empirical risk minimization. IEEE Trans. Neural Networks 7(2): 475-487 (1996) - [j14]Miroslaw Pawlak, Ewaryst Rafajlowicz, Adam Krzyzak:
Exponential weighting algorithms for reconstruction of bandlimited signals. IEEE Trans. Signal Process. 44(3): 538-545 (1996) - [c15]Ewa Skubalska-Rafajlowicz, Adam Krzyzak:
Fast k-NN classification rule using metric on space-filling curves. ICPR 1996: 121-125 - [c14]Adam Krzyzak, Tamás Linder:
Radial basis function networks and nonparametric classification: complexity regularization and rates of convergence. ICPR 1996: 650-653 - [c13]Adam Krzyzak, Tamás Linder:
Radial Basis Function Networks and Complexity Regularization in Function Learning. NIPS 1996: 197-203 - 1995
- [c12]Adam Krzyzak:
On optimal radial basis function nets and nonlinear function estimates. ICNN 1995: 265-269 - [c11]Adam Krzyzak, Stan Klasa, Lei Xu:
On L1 convergence rate of RBF networks and kernel regression estimators with applications in classification. ICNN 1995: 2243-2246 - [p3]Patrice Scattolin, Adam Krzyzak:
Handwriting Recognition Using Weighted Elastic Matching. Research in Computer and Robot Vision 1995: 367-395 - 1994
- [j13]Lei Xu, Adam Krzyzak, Alan L. Yuille:
On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size. Neural Networks 7(4): 609-628 (1994) - [j12]Xinming Yu, Tien Dai Bui, Adam Krzyzak:
Robust Estimation for Range Image Segmentation and Reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 16(5): 530-538 (1994) - [c10]Adam Krzyzak, Tamás Linder, Gábor Lugosi:
Nonparametric classification using radial basis function nets and empirical risk minimization. ICPR (2) 1994: 72-76 - [c9]Adam Krzyzak, Stan Klasa, Lei Xu:
On L1 convergence rate of RBF networks and kernel regression estimators with applications in classification. ICPR (2) 1994: 364-366 - [c8]Adam Krzyzak, Rolf Unbehauen:
On Estimation of Nonlinear Systems by Nonparametric Techniques. ISCAS 1994: 189-192 - 1993
- [j11]Lei Xu, Adam Krzyzak, Erkki Oja:
Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Trans. Neural Networks 4(4): 636-649 (1993) - [c7]Nick W. Strathy, Ching Y. Suen, Adam Krzyzak:
Segmentation of handwritten digits using contour features. ICDAR 1993: 577-580 - 1992
- [j10]Adam Krzyzak:
Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation. IEEE Trans. Inf. Theory 38(4): 1323-1338 (1992) - [j9]Lei Xu, Adam Krzyzak, Ching Y. Suen:
Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 22(3): 418-435 (1992) - [c6]Xinming Yu, Tien D. Bui, Adam Krzyzak:
Range image segmentation and fitting by residual consensus. CVPR 1992: 657-660 - [c5]Lei Xu, Adam Krzyzak, Erkki Oja:
Unsupervised and supervised classifications by rival penalized competitive learning. ICPR (2) 1992: 496-499 - 1991
- [j8]Lei Xu, Adam Krzyzak, Erkki Oja:
Neural Nets for Dual Subspace Pattern Recognition Method. Int. J. Neural Syst. 2(3): 169-184 (1991) - [j7]Adam Krzyzak:
On exponential bounds on the Bayes risk of the kernel classification rule. IEEE Trans. Inf. Theory 37(3): 490-499 (1991) - [p2]Adam Krzyzak, W. Dai, Ching Y. Suen:
On the Recognition of Handwritten Characters using Neural Networks. Pattern Recognition: Architectures, Algorithms and Applications 1991: 115-135 - 1990
- [j6]Adam Krzyzak:
On estimation of a class of nonlinear systems by the kernel regression estimate. IEEE Trans. Inf. Theory 36(1): 141-152 (1990) - [c4]Adam Krzyzak, W. Dai, Ching Y. Suen:
Classification of large set of handwritten characters using modified back propagation model. IJCNN 1990: 225-232 - [c3]P. Y. Zhu, Tony Kasvand, Adam Krzyzak:
Motion estimation based on point correspondence using neural network. IJCNN 1990: 869-874
1980 – 1989
- 1989
- [j5]Adam Krzyzak, Siu Yun Leung, Ching Y. Suen:
Reconstruction of two-dimensional patterns from Fourier descriptors. Mach. Vis. Appl. 2(3): 123-140 (1989) - [p1]Adam Krzyzak, H. El Buaeshi:
Classification of Digitized Curves Represented by Signatures and Fourier Descriptors. Computer Vision and Shape Recognition 1989: 241-260 - [e1]Adam Krzyzak, Tony Kasvand, Ching Y. Suen:
Computer Vision and Shape Recognition. World Scientific Series in Computer Science 14, World Scientific 1989, ISBN 978-9971-5-0862-3, pp. 1-464 [contents] - 1988
- [c2]Adam Krzyzak, Siu Yun Leung, Ching Y. Suen:
Reconstruction of two dimensional patterns by Fourier descriptors. ICPR 1988: 555-558 - [c1]Adam Krzyzak, Siu Yun Leung, Ching Y. Suen:
Fourier Descriptors of Two Dimensional Shapes - Reconstruction and Accuracy. MVA 1988: 199-202 - 1986
- [j4]Adam Krzyzak:
The rates of convergence of kernel regression estimates and classification rules. IEEE Trans. Inf. Theory 32(5): 668-679 (1986) - 1984
- [j3]Adam Krzyzak, Miroslaw Pawlak:
Distribution-free consistency of a nonparametric kernel regression estimate and classification. IEEE Trans. Inf. Theory 30(1): 78-81 (1984) - [j2]Adam Krzyzak, Miroslaw Pawlak:
Almost everywhere convergence of a recursive regression function estimate and classification. IEEE Trans. Inf. Theory 30(1): 91-93 (1984) - 1983
- [j1]Adam Krzyzak:
Classification procedures using multivariate variable kernel density estimate. Pattern Recognit. Lett. 1(5-6): 293-298 (1983)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-22 21:34 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint