default search action
Kenji Fukumizu
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j44]Shoji Toyota, Kenji Fukumizu:
Out-of-Distribution Optimality of Invariant Risk Minimization. Trans. Mach. Learn. Res. 2024 (2024) - [c70]Tam Le, Truyen Nguyen, Kenji Fukumizu:
Optimal Transport for Measures with Noisy Tree Metric. AISTATS 2024: 3115-3123 - [c69]Masanori Koyama, Kenji Fukumizu, Kohei Hayashi, Takeru Miyato:
Neural Fourier Transform: A General Approach to Equivariant Representation Learning. ICLR 2024 - [c68]Tam Le, Truyen Nguyen, Kenji Fukumizu:
Generalized Sobolev Transport for Probability Measures on a Graph. ICML 2024 - [c67]Eiki Shimizu, Kenji Fukumizu, Dino Sejdinovic:
Neural-Kernel Conditional Mean Embeddings. ICML 2024 - [i57]Tam Le, Truyen Nguyen, Kenji Fukumizu:
Generalized Sobolev Transport for Probability Measures on a Graph. CoRR abs/2402.04516 (2024) - [i56]Noboru Isobe, Masanori Koyama, Kohei Hayashi, Kenji Fukumizu:
Extended Flow Matching: a Method of Conditional Generation with Generalized Continuity Equation. CoRR abs/2402.18839 (2024) - [i55]Eiki Shimizu, Kenji Fukumizu, Dino Sejdinovic:
Neural-Kernel Conditional Mean Embeddings. CoRR abs/2403.10859 (2024) - [i54]Yuto Tanimoto, Kenji Fukumizu:
State-Separated SARSA: A Practical Sequential Decision-Making Algorithm with Recovering Rewards. CoRR abs/2403.11520 (2024) - [i53]Kenji Fukumizu, Taiji Suzuki, Noboru Isobe, Kazusato Oko, Masanori Koyama:
Flow matching achieves minimax optimal convergence. CoRR abs/2405.20879 (2024) - [i52]Shunya Minami, Yoshihiro Hayashi, Stephen Wu, Kenji Fukumizu, Hiroki Sugisawa, Masashi Ishii, Isao Kuwajima, Kazuya Shiratori, Ryo Yoshida:
Scaling Law of Sim2Real Transfer Learning in Expanding Computational Materials Databases for Real-World Predictions. CoRR abs/2408.04042 (2024) - [i51]Manuel Glöckler, Shoji Toyota, Kenji Fukumizu, Jakob H. Macke:
Compositional simulation-based inference for time series. CoRR abs/2411.02728 (2024) - 2023
- [c66]Tam Le, Truyen Nguyen, Kenji Fukumizu:
Scalable Unbalanced Sobolev Transport for Measures on a Graph. AISTATS 2023: 8521-8560 - [c65]Yuri Kinoshita, Kenta Oono, Kenji Fukumizu, Yuichi Yoshida, Shin-ichi Maeda:
Controlling Posterior Collapse by an Inverse Lipschitz Constraint on the Decoder Network. ICML 2023: 17041-17060 - [c64]Shunya Minami, Kenji Fukumizu, Yoshihiro Hayashi, Ryo Yoshida:
Transfer Learning with Affine Model Transformation. NeurIPS 2023 - [i50]Tam Le, Truyen Nguyen, Kenji Fukumizu:
Scalable Unbalanced Sobolev Transport for Measures on a Graph. CoRR abs/2302.12498 (2023) - [i49]Yuri Kinoshita, Kenta Oono, Kenji Fukumizu, Yuichi Yoshida, Shin-ichi Maeda:
Controlling Posterior Collapse by an Inverse Lipschitz Constraint on the Decoder Network. CoRR abs/2304.12770 (2023) - [i48]Masanori Koyama, Kenji Fukumizu, Kohei Hayashi, Takeru Miyato:
Neural Fourier Transform: A General Approach to Equivariant Representation Learning. CoRR abs/2305.18484 (2023) - [i47]Shoji Toyota, Kenji Fukumizu:
Out-of-Distribution Optimality of Invariant Risk Minimization. CoRR abs/2307.11972 (2023) - [i46]Tam Le, Truyen Nguyen, Kenji Fukumizu:
Optimal Transport for Measures with Noisy Tree Metric. CoRR abs/2310.13653 (2023) - 2022
- [j43]Hironori Murase, Kenji Fukumizu:
ALGAN: Anomaly Detection by Generating Pseudo Anomalous Data via Latent Variables. IEEE Access 10: 44259-44270 (2022) - [j42]Masaaki Imaizumi, Kenji Fukumizu:
Advantage of Deep Neural Networks for Estimating Functions with Singularity on Hypersurfaces. J. Mach. Learn. Res. 23: 111:1-111:54 (2022) - [c63]Pengzhou Abel Wu, Kenji Fukumizu:
$\beta$-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap. ICLR 2022 - [c62]Takeru Miyato, Masanori Koyama, Kenji Fukumizu:
Unsupervised Learning of Equivariant Structure from Sequences. NeurIPS 2022 - [c61]Shoji Toyota, Kenji Fukumizu:
Invariance Learning based on Label Hierarchy. NeurIPS 2022 - [c60]Hiroaki Mikami, Kenji Fukumizu, Shogo Murai, Shuji Suzuki, Yuta Kikuchi, Taiji Suzuki, Shin-ichi Maeda, Kohei Hayashi:
A Scaling Law for Syn2real Transfer: How Much Is Your Pre-training Effective? ECML/PKDD (3) 2022: 477-492 - [i45]Hironori Murase, Kenji Fukumizu:
ALGAN: Anomaly Detection by Generating Pseudo Anomalous Data via Latent Variables. CoRR abs/2202.10281 (2022) - [i44]Shoji Toyota, Kenji Fukumizu:
Invariance Learning based on Label Hierarchy. CoRR abs/2203.15549 (2022) - [i43]Siddharth Vishwanath, Bharath K. Sriperumbudur, Kenji Fukumizu, Satoshi Kuriki:
Robust Topological Inference in the Presence of Outliers. CoRR abs/2206.01795 (2022) - [i42]Takeru Miyato, Masanori Koyama, Kenji Fukumizu:
Unsupervised Learning of Equivariant Structure from Sequences. CoRR abs/2210.05972 (2022) - [i41]Masanori Koyama, Takeru Miyato, Kenji Fukumizu:
Invariance-adapted decomposition and Lasso-type contrastive learning. CoRR abs/2210.07413 (2022) - [i40]Shunya Minami, Kenji Fukumizu, Yoshihiro Hayashi, Ryo Yoshida:
Transfer learning with affine model transformation. CoRR abs/2210.09745 (2022) - 2021
- [j41]Daniel Andrade, Kenji Fukumizu, Yuzuru Okajima:
Convex covariate clustering for classification. Pattern Recognit. Lett. 151: 193-199 (2021) - [c59]Shunya Minami, Song Liu, Stephen Wu, Kenji Fukumizu, Ryo Yoshida:
A General Class of Transfer Learning Regression without Implementation Cost. AAAI 2021: 8992-8999 - [c58]Jean-François Ton, Dino Sejdinovic, Kenji Fukumizu:
Meta Learning for Causal Direction. AAAI 2021: 9897-9905 - [e1]Arindam Banerjee, Kenji Fukumizu:
The 24th International Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event. Proceedings of Machine Learning Research 130, PMLR 2021 [contents] - [i39]Pengzhou Wu, Kenji Fukumizu:
Identifying Treatment Effects under Unobserved Confounding by Causal Representation Learning. CoRR abs/2101.06662 (2021) - [i38]Hiroaki Mikami, Kenji Fukumizu, Shogo Murai, Shuji Suzuki, Yuta Kikuchi, Taiji Suzuki, Shin-ichi Maeda, Kohei Hayashi:
A Scaling Law for Synthetic-to-Real Transfer: A Measure of Pre-Training. CoRR abs/2108.11018 (2021) - [i37]Pengzhou Wu, Kenji Fukumizu:
Towards Principled Causal Effect Estimation by Deep Identifiable Models. CoRR abs/2109.15062 (2021) - [i36]Pengzhou Wu, Kenji Fukumizu:
β-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap. CoRR abs/2110.05225 (2021) - 2020
- [j40]Shaogao Lv, Zengyan Fan, Heng Lian, Taiji Suzuki, Kenji Fukumizu:
A reproducing kernel Hilbert space approach to high dimensional partially varying coefficient model. Comput. Stat. Data Anal. 152: 107039 (2020) - [j39]Motonobu Kanagawa, Bharath K. Sriperumbudur, Kenji Fukumizu:
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings. Found. Comput. Math. 20(1): 155-194 (2020) - [j38]Yu Nishiyama, Motonobu Kanagawa, Arthur Gretton, Kenji Fukumizu:
Model-based kernel sum rule: kernel Bayesian inference with probabilistic models. Mach. Learn. 109(5): 939-972 (2020) - [j37]Daniel Andrade, Akiko Takeda, Kenji Fukumizu:
Robust Bayesian model selection for variable clustering with the Gaussian graphical model. Stat. Comput. 30(2): 351-376 (2020) - [j36]Niko Yasui, Chrysafis Vogiatzis, Ruriko Yoshida, Kenji Fukumizu:
imPhy: Imputing Phylogenetic Trees with Missing Information Using Mathematical Programming. IEEE ACM Trans. Comput. Biol. Bioinform. 17(4): 1222-1230 (2020) - [c57]Pengzhou Wu, Kenji Fukumizu:
Causal Mosaic: Cause-Effect Inference via Nonlinear ICA and Ensemble Method. AISTATS 2020: 1157-1167 - [c56]Yuki Saito, Takuma Nakamura, Hirotaka Hachiya, Kenji Fukumizu:
Exchangeable Deep Neural Networks for Set-to-Set Matching and Learning. ECCV (17) 2020: 626-646 - [c55]Casey Chu, Kentaro Minami, Kenji Fukumizu:
Smoothness and Stability in GANs. ICLR 2020 - [c54]Siddharth Vishwanath, Kenji Fukumizu, Satoshi Kuriki, Bharath K. Sriperumbudur:
Robust Persistence Diagrams using Reproducing Kernels. NeurIPS 2020 - [i35]Pengzhou Wu, Kenji Fukumizu:
Causal Mosaic: Cause-Effect Inference via Nonlinear ICA and Ensemble Method. CoRR abs/2001.01894 (2020) - [i34]Casey Chu, Kentaro Minami, Kenji Fukumizu:
Smoothness and Stability in GANs. CoRR abs/2002.04185 (2020) - [i33]Casey Chu, Kentaro Minami, Kenji Fukumizu:
The equivalence between Stein variational gradient descent and black-box variational inference. CoRR abs/2004.01822 (2020) - [i32]Siddharth Vishwanath, Kenji Fukumizu, Satoshi Kuriki, Bharath K. Sriperumbudur:
Robust Persistence Diagrams using Reproducing Kernels. CoRR abs/2006.10012 (2020) - [i31]Shunya Minami, Song Liu, Stephen Wu, Kenji Fukumizu, Ryo Yoshida:
A General Class of Transfer Learning Regression without Implementation Cost. CoRR abs/2006.13228 (2020) - [i30]Jean-Francois Ton, Dino Sejdinovic, Kenji Fukumizu:
Meta Learning for Causal Direction. CoRR abs/2007.02809 (2020) - [i29]Masaaki Imaizumi, Kenji Fukumizu:
Advantage of Deep Neural Networks for Estimating Functions with Singularity on Curves. CoRR abs/2011.02256 (2020)
2010 – 2019
- 2019
- [j35]Ruriko Yoshida, Kenji Fukumizu, Chrysafis Vogiatzis:
Multilocus phylogenetic analysis with gene tree clustering. Ann. Oper. Res. 276(1-2): 293-313 (2019) - [c53]Masaaki Imaizumi, Kenji Fukumizu:
Deep Neural Networks Learn Non-Smooth Functions Effectively. AISTATS 2019: 869-878 - [c52]Makoto Yamada, Denny Wu, Yao-Hung Hubert Tsai, Hirofumi Ohta, Ruslan Salakhutdinov, Ichiro Takeuchi, Kenji Fukumizu:
Post Selection Inference with Incomplete Maximum Mean Discrepancy Estimator. ICLR (Poster) 2019 - [c51]Tam Le, Makoto Yamada, Kenji Fukumizu, Marco Cuturi:
Tree-Sliced Variants of Wasserstein Distances. NeurIPS 2019: 12283-12294 - [c50]Kenji Fukumizu, Shoichiro Yamaguchi, Yoh-ichi Mototake, Mirai Tanaka:
Semi-flat minima and saddle points by embedding neural networks to overparameterization. NeurIPS 2019: 13845-13853 - [i28]Tam Le, Makoto Yamada, Kenji Fukumizu, Marco Cuturi:
Tree-Sliced Approximation of Wasserstein Distances. CoRR abs/1902.00342 (2019) - [i27]Takafumi Kajihara, Motonobu Kanagawa, Yuuki Nakaguchi, Kanishka Khandelwal, Kenji Fukumizu:
Model Selection for Simulator-based Statistical Models: A Kernel Approach. CoRR abs/1902.02517 (2019) - [i26]Kenji Fukumizu, Shoichiro Yamaguchi, Yoh-ichi Mototake, Mirai Tanaka:
Semi-flat minima and saddle points by embedding neural networks to overparameterization. CoRR abs/1906.04868 (2019) - [i25]Heishiro Kanagawa, Wittawat Jitkrittum, Lester Mackey, Kenji Fukumizu, Arthur Gretton:
A Kernel Stein Test for Comparing Latent Variable Models. CoRR abs/1907.00586 (2019) - [i24]Yuki Saito, Takuma Nakamura, Hirotaka Hachiya, Kenji Fukumizu:
Deep Set-to-Set Matching and Learning. CoRR abs/1910.09972 (2019) - 2018
- [j34]Md. Ashad Alam, Kenji Fukumizu, Yu-Ping Wang:
Influence function and robust variant of kernel canonical correlation analysis. Neurocomputing 304: 12-29 (2018) - [c49]Makoto Yamada, Yuta Umezu, Kenji Fukumizu, Ichiro Takeuchi:
Post Selection Inference with Kernels. AISTATS 2018: 152-160 - [c48]Sho Yokoi, Sosuke Kobayashi, Kenji Fukumizu, Jun Suzuki, Kentaro Inui:
Pointwise HSIC: A Linear-Time Kernelized Co-occurrence Norm for Sparse Linguistic Expressions. EMNLP 2018: 1763-1775 - [c47]Yao-Hung Hubert Tsai, Denny Wu, Makoto Yamada, Ruslan Salakhutdinov, Ichiro Takeuchi, Kenji Fukumizu:
Selecting the Best in GANs Family: a Post Selection Inference Framework. ICLR (Workshop) 2018 - [c46]Takafumi Kajihara, Motonobu Kanagawa, Keisuke Yamazaki, Kenji Fukumizu:
Kernel Recursive ABC: Point Estimation with Intractable Likelihood. ICML 2018: 2405-2414 - [c45]Hao Zhang, Shinji Nakadai, Kenji Fukumizu:
From Black-Box to White-Box: Interpretable Learning with Kernel Machines. MLDM (1) 2018: 213-227 - [c44]Ho Chung Leon Law, Dino Sejdinovic, Ewan Cameron, Tim C. D. Lucas, Seth R. Flaxman, Katherine Battle, Kenji Fukumizu:
Variational Learning on Aggregate Outputs with Gaussian Processes. NeurIPS 2018: 6084-6094 - [i23]Yao-Hung Hubert Tsai, Makoto Yamada, Denny Wu, Ruslan Salakhutdinov, Ichiro Takeuchi, Kenji Fukumizu:
Selecting the Best in GANs Family: a Post Selection Inference Framework. CoRR abs/1802.05411 (2018) - [i22]Ho Chung Leon Law, Dino Sejdinovic, Ewan Cameron, Tim C. D. Lucas, Seth R. Flaxman, Katherine Battle, Kenji Fukumizu:
Variational Learning on Aggregate Outputs with Gaussian Processes. CoRR abs/1805.08463 (2018) - [i21]Sho Yokoi, Sosuke Kobayashi, Kenji Fukumizu, Jun Suzuki, Kentaro Inui:
Pointwise HSIC: A Linear-Time Kernelized Co-occurrence Norm for Sparse Linguistic Expressions. CoRR abs/1809.00800 (2018) - 2017
- [j33]Momoko Hayamizu, Kenji Fukumizu:
On minimum spanning tree-like metric spaces. Discret. Appl. Math. 226: 51-57 (2017) - [j32]Tomoharu Iwata, Motonobu Kanagawa, Tsutomu Hirao, Kenji Fukumizu:
Unsupervised group matching with application to cross-lingual topic matching without alignment information. Data Min. Knowl. Discov. 31(2): 350-370 (2017) - [j31]Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, Bernhard Schölkopf:
Kernel Mean Embedding of Distributions: A Review and Beyond. Found. Trends Mach. Learn. 10(1-2): 1-141 (2017) - [j30]Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyvärinen, Revant Kumar:
Density Estimation in Infinite Dimensional Exponential Families. J. Mach. Learn. Res. 18: 57:1-57:59 (2017) - [j29]Genki Kusano, Kenji Fukumizu, Yasuaki Hiraoka:
Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor. J. Mach. Learn. Res. 18: 189:1-189:41 (2017) - [j28]Momoko Hayamizu, Hiroshi Endo, Kenji Fukumizu:
A Characterization of Minimum Spanning Tree-Like Metric Spaces. IEEE ACM Trans. Comput. Biol. Bioinform. 14(2): 468-471 (2017) - [c43]Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton:
A Linear-Time Kernel Goodness-of-Fit Test. NIPS 2017: 262-271 - [c42]Song Liu, Akiko Takeda, Taiji Suzuki, Kenji Fukumizu:
Trimmed Density Ratio Estimation. NIPS 2017: 4518-4528 - [i20]Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton:
A Linear-Time Kernel Goodness-of-Fit Test. CoRR abs/1705.07673 (2017) - [i19]Motonobu Kanagawa, Bharath K. Sriperumbudur, Kenji Fukumizu:
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings. CoRR abs/1709.00147 (2017) - 2016
- [j27]Krikamol Muandet, Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf:
Kernel Mean Shrinkage Estimators. J. Mach. Learn. Res. 17: 48:1-48:41 (2016) - [j26]Yu Nishiyama, Kenji Fukumizu:
Characteristic Kernels and Infinitely Divisible Distributions. J. Mach. Learn. Res. 17: 180:1-180:28 (2016) - [j25]Motonobu Kanagawa, Yu Nishiyama, Arthur Gretton, Kenji Fukumizu:
Filtering with State-Observation Examples via Kernel Monte Carlo Filter. Neural Comput. 28(2): 382-444 (2016) - [c41]Kazuo Hara, Ikumi Suzuki, Kei Kobayashi, Kenji Fukumizu, Milos Radovanovic:
Flattening the Density Gradient for Eliminating Spatial Centrality to Reduce Hubness. AAAI 2016: 1659-1665 - [c40]Song Liu, Taiji Suzuki, Masashi Sugiyama, Kenji Fukumizu:
Structure Learning of Partitioned Markov Networks. ICML 2016: 439-448 - [c39]Genki Kusano, Yasuaki Hiraoka, Kenji Fukumizu:
Persistence weighted Gaussian kernel for topological data analysis. ICML 2016: 2004-2013 - [c38]Motonobu Kanagawa, Bharath K. Sriperumbudur, Kenji Fukumizu:
Convergence guarantees for kernel-based quadrature rules in misspecified settings. NIPS 2016: 3288-3296 - [c37]Song Liu, Kenji Fukumizu:
Estimating Posterior Ratio for Classification: Transfer Learning from Probabilistic Perspective. SDM 2016: 747-755 - [i18]Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, Bernhard Schölkopf:
Kernel Mean Embedding of Distributions: A Review and Beyonds. CoRR abs/1605.09522 (2016) - 2015
- [j24]Somayeh Danafar, Kenji Fukumizu, Faustino Gomez:
Kernel-Based Information Criterion. Comput. Inf. Sci. 8(1): 10-24 (2015) - [j23]Md. Ashad Alam, Kenji Fukumizu:
Higher-Order Regularized Kernel Canonical Correlation Analysis. Int. J. Pattern Recognit. Artif. Intell. 29(4): 1551005:1-1551005:24 (2015) - [j22]Bernhard Schölkopf, Krikamol Muandet, Kenji Fukumizu, Stefan Harmeling, Jonas Peters:
Computing functions of random variables via reproducing kernel Hilbert space representations. Stat. Comput. 25(4): 755-766 (2015) - [c36]Kazuo Hara, Ikumi Suzuki, Masashi Shimbo, Kei Kobayashi, Kenji Fukumizu, Milos Radovanovic:
Localized Centering: Reducing Hubness in Large-Sample Data. AAAI 2015: 2645-2651 - [c35]Kazuo Hara, Ikumi Suzuki, Kei Kobayashi, Kenji Fukumizu:
Reducing Hubness: A Cause of Vulnerability in Recommender Systems. SIGIR 2015: 815-818 - [c34]Kazuo Hara, Ikumi Suzuki, Kei Kobayashi, Kenji Fukumizu, Milos Radovanovic:
Reducing Hubness for Kernel Regression. SISAP 2015: 339-344 - [i17]Bernhard Schölkopf, Krikamol Muandet, Kenji Fukumizu, Jonas Peters:
Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations. CoRR abs/1501.06794 (2015) - [i16]Song Liu, Kenji Fukumizu:
Lazy Transfer Learning. CoRR abs/1506.02784 (2015) - [i15]Momoko Hayamizu, Hiroshi Endo, Kenji Fukumizu:
A characterization of minimum spanning tree-like metric spaces. CoRR abs/1510.09155 (2015) - 2014
- [j21]Md. Ashad Alam, Kenji Fukumizu:
Hyperparameter Selection in Kernel Principal Component Analysis. J. Comput. Sci. 10(7): 1139-1150 (2014) - [c33]Motonobu Kanagawa, Yu Nishiyama, Arthur Gretton, Kenji Fukumizu:
Monte Carlo Filtering Using Kernel Embedding of Distributions. AAAI 2014: 1897-1903 - [c32]Motonobu Kanagawa, Kenji Fukumizu:
Recovering Distributions from Gaussian RKHS Embeddings. AISTATS 2014: 457-465 - [c31]Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, Bernhard Schölkopf:
Kernel Mean Estimation and Stein Effect. ICML 2014: 10-18 - [i14]Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, Bernhard Schölkopf:
Kernel Mean Shrinkage Estimators. CoRR abs/1405.5505 (2014) - [i13]Pierre Baldi, Kenji Fukumizu, Tomaso A. Poggio:
Deep Learning: Theory, Algorithms, and Applications (NII Shonan Meeting 2014-5). NII Shonan Meet. Rep. 2014 (2014) - 2013
- [j20]Kenji Fukumizu, Le Song, Arthur Gretton:
Kernel Bayes' rule: Bayesian inference with positive definite kernels. J. Mach. Learn. Res. 14(1): 3753-3783 (2013) - [j19]Klaus-Robert Müller, Tülay Adali, Kenji Fukumizu, José C. Príncipe, Sergios Theodoridis:
Special Issue on Advances in Kernel-Based Learning for Signal Processing [From the Guest Editors]. IEEE Signal Process. Mag. 30(4): 14-15 (2013) - [j18]Le Song, Kenji Fukumizu, Arthur Gretton:
Kernel Embeddings of Conditional Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models. IEEE Signal Process. Mag. 30(4): 98-111 (2013) - [c30]Ikumi Suzuki, Kazuo Hara, Masashi Shimbo, Marco Saerens, Kenji Fukumizu:
Centering Similarity Measures to Reduce Hubs. EMNLP 2013: 613-623 - [c29]Md. Ashad Alam, Kenji Fukumizu:
Higher-Order Regularized Kernel CCA. ICMLA (1) 2013: 374-377 - [i12]Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, Bernhard Schölkopf:
Kernel Mean Estimation and Stein's Effect. CoRR abs/1306.0842 (2013) - 2012
- [c28]Dino Sejdinovic, Arthur Gretton, Bharath K. Sriperumbudur, Kenji Fukumizu:
Hypothesis testing using pairwise distances and associated kernels. ICML 2012 - [c27]Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, Bernhard Schölkopf:
Learning from Distributions via Support Measure Machines. NIPS 2012: 10-18 - [c26]Arthur Gretton, Bharath K. Sriperumbudur, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fukumizu:
Optimal kernel choice for large-scale two-sample tests. NIPS 2012: 1214-1222 - [c25]Kenji Fukumizu, Chenlei Leng:
Gradient-based kernel method for feature extraction and variable selection. NIPS 2012: 2123-2131 - [c24]Yu Nishiyama, Abdeslam Boularias, Arthur Gretton, Kenji Fukumizu:
Hilbert Space Embeddings of POMDPs. UAI 2012: 644-653 - [i11]Krikamol Muandet, Bernhard Schölkopf, Kenji Fukumizu, Francesco Dinuzzo:
Learning from Distributions via Support Measure Machines. CoRR abs/1202.6504 (2012) - [i10]Dino Sejdinovic, Arthur Gretton, Bharath K. Sriperumbudur, Kenji Fukumizu:
Hypothesis testing using pairwise distances and associated kernels (with Appendix). CoRR abs/1205.0411 (2012) - [i9]Dino Sejdinovic, Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu:
Equivalence of distance-based and RKHS-based statistics in hypothesis testing. CoRR abs/1207.6076 (2012) - [i8]Yu Nishiyama, Abdeslam Boularias, Arthur Gretton, Kenji Fukumizu:
Hilbert Space Embeddings of POMDPs. CoRR abs/1210.4887 (2012) - 2011
- [j17]Yusuke Watanabe, Kenji Fukumizu:
New Graph Polynomials from the Bethe Approximation of the Ising Partition Function. Comb. Probab. Comput. 20(2): 299-320 (2011) - [j16]Yuichi Shiraishi, Kenji Fukumizu:
Statistical approaches to combining binary classifiers for multi-class classification. Neurocomputing 74(5): 680-688 (2011) - [j15]Bharath K. Sriperumbudur, Kenji Fukumizu, Gert R. G. Lanckriet:
Universality, Characteristic Kernels and RKHS Embedding of Measures. J. Mach. Learn. Res. 12: 2389-2410 (2011) - [c23]Kenji Fukumizu, Le Song, Arthur Gretton:
Kernel Bayes' Rule. NIPS 2011: 1737-1745 - [c22]Bharath K. Sriperumbudur, Kenji Fukumizu, Gert R. G. Lanckriet:
Learning in Hilbert vs. Banach Spaces: A Measure Embedding Viewpoint. NIPS 2011: 1773-1781 - [c21]Francesco Dinuzzo, Kenji Fukumizu:
Learning low-rank output kernels. ACML 2011: 181-196 - [i7]Yusuke Watanabe, Kenji Fukumizu:
Loopy Belief Propagation, Bethe Free Energy and Graph Zeta Function. CoRR abs/1103.0605 (2011) - [i6]Kenji Fukumizu, Chenlei Leng:
Gradient-based kernel dimension reduction for supervised learning. CoRR abs/1109.0455 (2011) - 2010
- [j14]Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, Gert R. G. Lanckriet:
Hilbert Space Embeddings and Metrics on Probability Measures. J. Mach. Learn. Res. 11: 1517-1561 (2010) - [j13]Md. Ashad Alam, Mohammed Nasser, Kenji Fukumizu:
A Comparative Study of Kernel and Robust Canonical Correlation Analysis. J. Multim. 5(1): 3-11 (2010) - [c20]Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, Gert R. G. Lanckriet:
Non-parametric estimation of integral probability metrics. ISIT 2010: 1428-1432 - [c19]Bharath K. Sriperumbudur, Kenji Fukumizu, Gert R. G. Lanckriet:
On the relation between universality, characteristic kernels and RKHS embedding of measures. AISTATS 2010: 773-780 - [i5]Yusuke Watanabe, Kenji Fukumizu:
Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation. CoRR abs/1002.3307 (2010)
2000 – 2009
- 2009
- [c18]Le Song, Jonathan Huang, Alexander J. Smola, Kenji Fukumizu:
Hilbert space embeddings of conditional distributions with applications to dynamical systems. ICML 2009: 961-968 - [c17]Arthur Gretton, Kenji Fukumizu, Zaïd Harchaoui, Bharath K. Sriperumbudur:
A Fast, Consistent Kernel Two-Sample Test. NIPS 2009: 673-681 - [c16]Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Gert R. G. Lanckriet, Bernhard Schölkopf:
Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions. NIPS 2009: 1750-1758 - [c15]Yusuke Watanabe, Kenji Fukumizu:
Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation. NIPS 2009: 2017-2025 - [i4]Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Gert R. G. Lanckriet, Bernhard Schölkopf:
A note on integral probability metrics and $\phi$-divergences. CoRR abs/0901.2698 (2009) - [i3]Yusuke Watanabe, Kenji Fukumizu:
Graph polynomials and approximation of partition functions with Loopy Belief Propagation. CoRR abs/0903.4527 (2009) - [i2]Yusuke Watanabe, Kenji Fukumizu:
New graph polynomials from the Bethe approximation of the Ising partition function. CoRR abs/0908.3850 (2009) - 2008
- [j12]Katsuyuki Hagiwara, Kenji Fukumizu:
Relation between weight size and degree of over-fitting in neural network regression. Neural Networks 21(1): 48-58 (2008) - [c14]Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Gert R. G. Lanckriet, Bernhard Schölkopf:
Injective Hilbert Space Embeddings of Probability Measures. COLT 2008: 111-122 - [c13]Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, Bernhard Schölkopf:
Characteristic Kernels on Groups and Semigroups. NIPS 2008: 473-480 - 2007
- [j11]Akihiro Tanabe, Kenji Fukumizu, Shigeyuki Oba, Takashi Takenouchi, Shin Ishii:
Parameter estimation for von Mises-Fisher distributions. Comput. Stat. 22(1): 145-157 (2007) - [j10]Kenji Fukumizu, Francis R. Bach, Arthur Gretton:
Statistical Consistency of Kernel Canonical Correlation Analysis. J. Mach. Learn. Res. 8: 361-383 (2007) - [c12]Shotaro Akaho, Kenji Fukumizu:
Active Learning for Network Estimation. CIBCB 2007: 402-409 - [c11]Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf, Kenji Fukumizu:
A kernel-based causal learning algorithm. ICML 2007: 855-862 - [c10]Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, Bernhard Schölkopf:
Kernel Measures of Conditional Dependence. NIPS 2007: 489-496 - [c9]Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, Alexander J. Smola:
A Kernel Statistical Test of Independence. NIPS 2007: 585-592 - 2006
- [c8]Marco Cuturi, Kenji Fukumizu:
Kernels on Structured Objects Through Nested Histograms. NIPS 2006: 329-336 - 2005
- [j9]Marco Cuturi, Kenji Fukumizu, Jean-Philippe Vert:
Semigroup Kernels on Measures. J. Mach. Learn. Res. 6: 1169-1198 (2005) - [c7]Kenji Fukumizu, Francis R. Bach, Arthur Gretton:
Statistical Convergence of Kernel CCA. NIPS 2005: 387-394 - [i1]Marco Cuturi, Kenji Fukumizu:
Multiresolution Kernels. CoRR abs/cs/0507033 (2005) - 2004
- [j8]Kenji Fukumizu, Francis R. Bach, Michael I. Jordan:
Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces. J. Mach. Learn. Res. 5: 73-99 (2004) - 2003
- [c6]Kenji Fukumizu, Francis R. Bach, Michael I. Jordan:
Kernel Dimensionality Reduction for Supervised Learning. NIPS 2003: 81-88 - 2002
- [c5]Kenji Fukumizu, Shotaro Akaho, Shun-ichi Amari:
Critical Lines in Symmetry of Mixture Models and its Application to Component Splitting. NIPS 2002: 865-872 - 2000
- [j7]Shun-ichi Amari, Hyeyoung Park, Kenji Fukumizu:
Adaptive Method of Realizing Natural Gradient Learning for Multilayer Perceptrons. Neural Comput. 12(6): 1399-1409 (2000) - [j6]Kenji Fukumizu, Shun-ichi Amari:
Local minima and plateaus in hierarchical structures of multilayer perceptrons. Neural Networks 13(3): 317-327 (2000) - [j5]Hyeyoung Park, Shun-ichi Amari, Kenji Fukumizu:
Adaptive natural gradient learning algorithms for various stochastic models. Neural Networks 13(7): 755-764 (2000) - [j4]Kenji Fukumizu:
Statistical active learning in multilayer perceptrons. IEEE Trans. Neural Networks Learn. Syst. 11(1): 17-26 (2000) - [c4]Hyeyoung Park, Kenji Fukumizu, Shun-ichi Amari, Yillbyung Lee:
An Efficient Learning Algorithm Using Naturla Gradient and Second Order Information of Error Surface. PRICAI 2000: 199-207
1990 – 1999
- 1999
- [c3]Kenji Fukumizu:
Generalization Error of Limear Neural Networks in Unidentifiable Cases. ALT 1999: 51-62 - 1998
- [c2]Kenji Fukumizu:
Effect of Batch Learning in Multilayer Neural Networks. ICONIP 1998: 67-70 - [p1]Sumio Watanabe, Kenji Fukumizu:
Probabilistic design. Algorithms and Architectures 1998: 181-229 - 1996
- [j3]Shin Ishii, Kenji Fukumizu, Sumio Watanabe:
A network of chaotic elements for information processing. Neural Networks 9(1): 25-40 (1996) - [j2]Kenji Fukumizu:
A Regularity Condition of the Information Matrix of a Multilayer Perceptron Network. Neural Networks 9(5): 871-879 (1996) - 1995
- [j1]Sumio Watanabe, Kenji Fukumizu:
Probabilistic design of layered neural networks based on their unified framework. IEEE Trans. Neural Networks 6(3): 691-702 (1995) - [c1]Kenji Fukumizu:
Active Learning in Multilayer Perceptrons. NIPS 1995: 295-301
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint