default search action
Oliver Niggemann
Person information
- affiliation: Helmut Schmidt University, Hamburg, Germany
- affiliation (former): Hochschule Ostwestfalen-Lippe, Lemgo, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j17]Alexander Diedrich, Stefan Windmann, Oliver Niggemann:
Solving industrial fault diagnosis problems with quantum computers. Quantum Mach. Intell. 6(2): 66 (2024) - [c136]Daniel Vranjes, Jonas Ehrhardt, René Heesch, Lukas Moddemann, Henrik Sebastian Steude, Oliver Niggemann:
Design Principles for Falsifiable, Replicable and Reproducible Empirical Machine Learning Research. DX 2024: 7:1-7:13 - [c135]Alexander Diedrich, René Heesch, Marco Bozzano, Björn Ludwig, Alessandro Cimatti, Oliver Niggemann:
Inferring Sensor Placement Using Critical Pairs and Satisfiability Modulo Theory. DX 2024: 9:1-9:19 - [c134]Silke Merkelbach, Alexander Diedrich, Anna Sztyber-Betley, Louise Travé-Massuyès, Elodie Chanthery, Oliver Niggemann, Roman Dumitrescu:
Using Multi-Modal LLMs to Create Models for Fault Diagnosis (Short Paper). DX 2024: 31:1-31:15 - [c133]René Heesch, Alessandro Cimatti, Jonas Ehrhardt, Alexander Diedrich, Oliver Niggemann:
Summary of "A Lazy Approach to Neural Numerical Planning with Control Parameters" (Extended Abstract). DX 2024: 32:1-32:3 - [c132]René Heesch, Alessandro Cimatti, Jonas Ehrhardt, Alexander Diedrich, Oliver Niggemann:
A Lazy Approach to Neural Numerical Planning with Control Parameters. ECAI 2024: 4262-4270 - [c131]Sylvia Keßler, Oliver Niggemann:
Automated Impact Echo Spectrum Anomaly Detection using U-Net Autoencoder. ECAI 2024: 4634-4641 - [c130]Jonas Ehrhardt, Phillip Johann Overlöper, Daniel Vranjes, Henrik S. Steude, Alexander Diedrich, Oliver Niggemann:
Using Modular Neural Networks for Anomaly Detection in Cyber-Physical Systems. ETFA 2024: 1-7 - [c129]Michael Hohmann, Sebastian Eilermann, Willi Großmann, Oliver Niggemann:
Design Automation: A Conditional VAE Approach to 3D Object Generation Under Conditions. ETFA 2024: 1-8 - [c128]Björn Ludwig, Alexander Diedrich, Oliver Niggemann:
Using Ontologies to Create Logical System Descriptions for Fault Diagnosis. ETFA 2024: 1-8 - [c127]Frédéric Meyer, Lennart Freitag, Sven Hinrichsen, Oliver Niggemann:
Potentials of Large Language Models for Generating Assembly Instructions. ETFA 2024: 1-8 - [c126]Lukas Moddemann, Henrik Sebastian Steude, Alexander Diedrich, Ingo Pill, Oliver Niggemann:
Extracting Knowledge using Machine Learning for Anomaly Detection and Root-Cause Diagnosis. ETFA 2024: 1-8 - [c125]Phillip Johann Overlöper, Lukas Moddemann, Nemanja Hranisavljevic, Alexander Windmann, Oliver Niggemann:
Discretization of CPS Time Series with Neural Networks. ETFA 2024: 1-8 - [c124]Bernd Zimmering, Jan-Philipp Roche, Oliver Niggemann:
Enhancing Nonlinear Electrical Circuit Modeling with Prior Knowledge-Infused Neural ODEs. ETFA 2024: 1-8 - [c123]Philipp Rosenthal, Niels Demke, Frank Mantwill, Oliver Niggemann:
Plan-Based Derivation of General Functional Structures in Product Design. ICPS 2024: 1-8 - [c122]Daniel Vranjes, Oliver Niggemann:
Enhancing Cyber-Physical System Analysis with Structure-Aware Modular Neural Networks. ICPS 2024: 1-8 - [i25]Tim Rensmeyer, Oliver Niggemann:
On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors. CoRR abs/2403.08609 (2024) - [i24]Daniel Vranjes, Oliver Niggemann:
Design Principles for Falsifiable, Replicable and Reproducible Empirical ML Research. CoRR abs/2405.18077 (2024) - [i23]Alexander Windmann, Philipp Wittenberg, Marvin Schieseck, Oliver Niggemann:
Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems. CoRR abs/2405.18580 (2024) - [i22]Oliver Niggemann, Gautam Biswas, Alexander Diedrich, Jonas Ehrhardt, René Heesch, Niklas Widulle:
AAAI Workshop on AI Planning for Cyber-Physical Systems - CAIPI24. CoRR abs/2410.07245 (2024) - 2023
- [j16]Kaja Balzereit, Oliver Niggemann:
AutoConf: New Algorithm for Reconfiguration of Cyber-Physical Production Systems. IEEE Trans. Ind. Informatics 19(1): 739-749 (2023) - [c121]René Heesch, Jonas Ehrhardt, Oliver Niggemann:
Integrating Machine Learning into an SMT-Based Planning Approach for Production Planning in Cyber-Physical Production Systems. ECAI Workshops (2) 2023: 318-331 - [c120]Jonas Ehrhardt, René Heesch, Oliver Niggemann:
Learning Process Steps as Dynamical Systems for a Sub-Symbolic Approach of Process Planning in Cyber-Physical Production Systems. ECAI Workshops (2) 2023: 332-345 - [c119]Artur Liebert, Christian Wittke, Jonas Ehrhardt, Richard Jaufmann, Niklas Widulle, Sebastian Eilermann, Maria Krantz, Oliver Niggemann:
Using FliPSi to Generate Data for Machine Learning Algorithms. ETFA 2023: 1-8 - [c118]Leon Wehmeier, Sebastian Eilermann, Oliver Niggemann, Andreas Deuter:
Task-fidelity Assessment for Programming Tasks Using Semantic Code Analysis. FIE 2023: 1-5 - [c117]Maria Krantz, Niklas Widulle, Oliver Niggemann:
Game Design Tools for ML Data Generation in CPS. ICARA 2023: 362-367 - [c116]Sebastian Eilermann, Leon Wehmeier, Oliver Niggemann, Andreas Deuter:
KIAAA: An AI Assistant for Teaching Programming in the Field of Automation. INDIN 2023: 1-7 - [i21]Philipp Rosenthal, Niels Demke, Frank Mantwill, Oliver Niggemann:
Plan-Based Derivation of General Functional Structures in Product Design. CoRR abs/2302.04600 (2023) - [i20]Tim Rensmeyer, Benjamin Craig, Denis Kramer, Oliver Niggemann:
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks. CoRR abs/2304.03694 (2023) - [i19]Daniel C. Hinck, Jonas J. Schöttler, Maria Krantz, Katharina-Sophie Isleif, Oliver Niggemann:
A Cross-Frequency Protective Emblem: Protective Options for Medical Units and Wounded Soldiers in the Context of (fully) Autonomous Warfare. CoRR abs/2305.05459 (2023) - [i18]Maria Krantz, Oliver Niggemann:
A Diagnosis Algorithms for a Rotary Indexing Machine. CoRR abs/2305.15934 (2023) - [i17]Alexander Windmann, Henrik S. Steude, Oliver Niggemann:
Robustness and Generalization Performance of Deep Learning Models on Cyber-Physical Systems: A Comparative Study. CoRR abs/2306.07737 (2023) - [i16]Jan Lukas Augustin, Oliver Niggemann:
Graph Structural Residuals: A Learning Approach to Diagnosis. CoRR abs/2308.06961 (2023) - [i15]Jan-Philipp Roche, Oliver Niggemann, Jens Friebe:
Using Autoencoders and AutoDiff to Reconstruct Missing Variables in a Set of Time Series. CoRR abs/2308.10496 (2023) - [i14]Lukas Moddemann, Henrik Sebastian Steude, Alexander Diedrich, Oliver Niggemann:
Discret2Di - Deep Learning based Discretization for Model-based Diagnosis. CoRR abs/2311.03413 (2023) - [i13]Christoph Petroll, Sebastian Eilermann, Philipp Hoefer, Oliver Niggemann:
A Generative Neural Network Approach for 3D Multi-Criteria Design Generation and Optimization of an Engine Mount for an Unmanned Air Vehicle. CoRR abs/2311.03414 (2023) - [i12]Henrik S. Steude, Lukas Moddemann, Alexander Diedrich, Jonas Ehrhardt, Oliver Niggemann:
Diagnosis driven Anomaly Detection for CPS. CoRR abs/2311.15924 (2023) - [i11]Willi Großmann, Sebastian Eilermann, Tim Rensmeyer, Artur Liebert, Michael Hohmann, Christian Wittke, Oliver Niggemann:
Position Paper on Materials Design - A Modern Approach. CoRR abs/2312.10996 (2023) - 2022
- [j15]Alexander Diedrich, Oliver Niggemann:
On Residual-based Diagnosis of Physical Systems. Eng. Appl. Artif. Intell. 109: 104636 (2022) - [c115]Jonas Ehrhardt, Malte Ramonat, René Heesch, Kaja Balzereit, Alexander Diedrich, Oliver Niggemann:
An AI benchmark for Diagnosis, Reconfiguration & Planning. ETFA 2022: 1-8 - [c114]Samim Ahmad Multaheb, Fabian Bauer, Peter Bretschneider, Oliver Niggemann:
Learning Physically Meaningful Representations of Energy Systems with Variational Autoencoders. ETFA 2022: 1-6 - [c113]Jonas J. Schöttler, Claus C. Otto, Willi Großmann, Oliver Niggemann:
Opportunities of AI for maritime forces in an in- and outward-looking view. ICMCIS 2022: 249-257 - [c112]Aljosha Köcher, René Heesch, Niklas Widulle, Anna Nordhausen, Julian Putzke, Alexander Windmann, Oliver Niggemann:
A Research Agenda for AI Planning in the Field of Flexible Production Systems. ICPS 2022: 1-8 - [c111]Artur Liebert, Wolfgang Weber, Sebastian Reif, Bernd Zimmering, Oliver Niggemann:
Anomaly Detection with Autoencoders as a Tool for Detecting Sensor Malfunctions. ICPS 2022: 1-8 - [c110]Daniel Vranjes, Oliver Niggemann:
Anomaly detection based on time series data from industrial automatic sewing machines. ICPS 2022: 1-8 - [p2]Oliver Niggemann, Bernd Zimmering, Henrik S. Steude, Jan Lukas Augustin, Alexander Windmann, Samim Ahmad Multaheb:
Machine Learning for Cyber-Physical Systems. Digital Transformation 2022: 415-446 - [i10]Philipp Rosenthal, Oliver Niggemann:
Problem examination for AI methods in product design. CoRR abs/2201.07642 (2022) - [i9]Maria Krantz, Alexander Windmann, René Heesch, Lukas Moddemann, Oliver Niggemann:
On a Uniform Causality Model for Industrial Automation. CoRR abs/2209.09618 (2022) - 2021
- [j14]Samim Ahmad Multaheb, Bernd Zimmering, Oliver Niggemann:
Expressing uncertainty in neural networks for production systems. Autom. 69(3): 221-230 (2021) - [j13]Bernd Zimmering, Oliver Niggemann, Constanze Hasterok, Erik Pfannstiel, Dario Ramming, Julius Pfrommer:
Generating Artificial Sensor Data for the Comparison of Unsupervised Machine Learning Methods. Sensors 21(7): 2397 (2021) - [j12]Peng Li, Oliver Niggemann:
A Nonconvex Archetypal Analysis for One-Class Classification Based Anomaly Detection in Cyber-Physical Systems. IEEE Trans. Ind. Informatics 17(9): 6429-6437 (2021) - [c109]Oliver Niggemann, Alexander Diedrich, Christian Kühnert, Erik Pfannstiel, Joshua Schraven:
A Generic DigitalTwin Model for Artificial Intelligence Applications. ICPS 2021: 55-62 - [c108]Kaja Balzereit, Oliver Niggemann:
Gradient-based Reconfiguration of Cyber-Physical Production Systems. ICPS 2021: 125-131 - [c107]Jan-Philipp Roche, Jens Friebe, Oliver Niggemann:
Neural Network Modeling of Nonlinear Filters for EMC Simulation in Discrete Time Domain. IECON 2021: 1-7 - [c106]Kaja Balzereit, Alexander Diedrich, Jonas Ginster, Stefan Windmann, Oliver Niggemann:
An Ensemble of Benchmarks for the Evaluation of AI Methods for Fault Handling in CPPS. INDIN 2021: 1-6 - [i8]Kaja Balzereit, Oliver Niggemann:
Reconfiguring Hybrid Systems Using SAT. CoRR abs/2105.08398 (2021) - [i7]Henrik S. Steude, Alexander Windmann, Oliver Niggemann:
Learning Physical Concepts in Cyber-Physical Systems: A Case Study. CoRR abs/2111.14151 (2021) - [i6]Aljosha Köcher, René Heesch, Niklas Widulle, Anna Nordhausen, Julian Putzke, Alexander Windmann, Sven Vagt, Oliver Niggemann:
A Research Agenda for Artificial Intelligence in the Field of Flexible Production Systems. CoRR abs/2112.15484 (2021) - 2020
- [j11]Peng Li, Oliver Niggemann:
Non-convex hull based anomaly detection in CPPS. Eng. Appl. Artif. Intell. 87 (2020) - [j10]Nemanja Hranisavljevic, Alexander Maier, Oliver Niggemann:
Discretization of hybrid CPPS data into timed automaton using restricted Boltzmann machines. Eng. Appl. Artif. Intell. 95: 103826 (2020) - [c105]Kaja Balzereit, Oliver Niggemann:
Automated Reconfiguration of Cyber-Physical Production Systems using Satisfiability Modulo Theories. ICPS 2020: 461-468 - [c104]Carlo Voß, Benedikt Eiteneuer, Oliver Niggemann:
Incorporating Uncertainty into Unsupervised Machine Learning for Cyber-Physical Systems. ICPS 2020: 475-480 - [c103]Kaja Balzereit, Marta Fullen, Oliver Niggemann:
A Concept for the Automated Reconfiguration of Quadcopters. LWDA 2020: 180-191 - [e4]Jürgen Beyerer, Alexander Maier, Oliver Niggemann:
Machine Learning for Cyber Physical Systems, Selected papers from the International Conference ML4CPS 2017, Lemgo, Germany, September 25-26, 2017. Springer 2020, ISBN 978-3-662-59083-6 [contents] - [i5]Oliver Niggemann, Alexander Diedrich, Christian Kühnert, Erik Pfannstiel, Joshua Schraven:
The DigitalTwin from an Artificial Intelligence Perspective. CoRR abs/2010.14376 (2020) - [i4]Benedikt Eiteneuer, Nemanja Hranisavljevic, Oliver Niggemann:
Dimensionality Reduction and Anomaly Detection for CPPS Data using Autoencoder. CoRR abs/2010.14957 (2020) - [i3]Nemanja Hranisavljevic, Oliver Niggemann, Alexander Maier:
A Novel Anomaly Detection Algorithm for Hybrid Production Systems based on Deep Learning and Timed Automata. CoRR abs/2010.15415 (2020) - [i2]Benedikt Eiteneuer, Oliver Niggemann:
LSTM for Model-Based Anomaly Detection in Cyber-Physical Systems. CoRR abs/2010.15680 (2020)
2010 – 2019
- 2019
- [j9]Stefan Windmann, Kaja Balzereit, Oliver Niggemann:
Model-based routing in flexible manufacturing systems. Autom. 67(2): 95-112 (2019) - [c102]Alexander Diedrich, Alexander Maier, Oliver Niggemann:
Model-Based Diagnosis of Hybrid Systems Using Satisfiability Modulo Theory. AAAI 2019: 1452-1459 - [c101]Andreas Bunte, Benno Stein, Oliver Niggemann:
Model-Based Diagnosis for Cyber-Physical Production Systems Based on Machine Learning and Residual-Based Diagnosis Models. AAAI 2019: 2727-2735 - [c100]Andreas Bunte, Andreas Fischbach, Jan Strohschein, Thomas Bartz-Beielstein, Heide Faeskorn-Woyke, Oliver Niggemann:
Evaluation of Cognitive Architectures for Cyber-Physical Production Systems. ETFA 2019: 729-736 - [c99]Andreas Bunte, Paul Wunderlich, Natalia Moriz, Peng Li, André Mankowski, Antje Rogalla, Oliver Niggemann:
Why Symbolic AI is a Key Technology for Self-Adaption in the Context of CPPS. ETFA 2019: 1701-1704 - [c98]Kaja Balzereit, Alexander Maier, Björn Barig, Tino Hutschenreuther, Oliver Niggemann:
Data-driven Identification of Causal Dependencies in Cyber-Physical Production Systems. ICAART (2) 2019: 592-601 - [c97]Benedikt Eiteneuer, Nemanja Hranisavljevic, Oliver Niggemann:
Dimensionality Reduction and Anomaly Detection for CPPS Data using Autoencoder. ICIT 2019: 1286-1292 - [c96]Peng Li, Oliver Niggemann, Barbara Hammer:
On the Identification of Decision Boundaries for Anomaly Detection in CPPS. ICIT 2019: 1311-1316 - [c95]Fan Zhang, Kevin Pinkal, Patrick Wefing, Florian Conradi, Jan Schneider, Oliver Niggemann:
Quality Control of Continuous Wort Production through Production Data Analysis in Latent Space. ICIT 2019: 1323-1328 - [e3]Jürgen Beyerer, Christian Kühnert, Oliver Niggemann:
Machine Learning for Cyber Physical Systems, Selected papers from the International Conference ML4CPS 2018, Karlsruhe, Germany, October 23-24, 2018. Springer 2019, ISBN 978-3-662-58484-2 [contents] - [i1]Andreas Bunte, Andreas Fischbach, Jan Strohschein, Thomas Bartz-Beielstein, Heide Faeskorn-Woyke, Oliver Niggemann:
Evaluation of Cognitive Architectures for Cyber-Physical Production Systems. CoRR abs/1902.08448 (2019) - 2018
- [j8]Jürgen Beyerer, Oliver Niggemann:
Machine Learning in Automation. Autom. 66(4): 281-282 (2018) - [j7]Stefan Windmann, Oliver Niggemann, Heiko Stichweh:
Computation of energy efficient driving speeds in conveying systems. Autom. 66(4): 308-319 (2018) - [j6]Jens Otto, Birgit Vogel-Heuser, Oliver Niggemann:
Online parameter estimation for cyber-physical production systems based on mixed integer nonlinear programming, process mining and black-box optimization techniques. Autom. 66(4): 331-343 (2018) - [j5]Jens Otto, Birgit Vogel-Heuser, Oliver Niggemann:
Automatic Parameter Estimation for Reusable Software Components of Modular and Reconfigurable Cyber-Physical Production Systems in the Domain of Discrete Manufacturing. IEEE Trans. Ind. Informatics 14(1): 275-282 (2018) - [c94]Antje Rogalla, Alexander Fay, Oliver Niggemann:
Improved Domain Modeling for Realistic Automated Planning and Scheduling in Discrete Manufacturing. ETFA 2018: 464-471 - [c93]Stefan Windmann, Oliver Niggemann:
Information Retrieval in Industrial Production Environments. ETFA 2018: 1205-1208 - [c92]Peng Li, Oliver Niggemann:
A Data Provenance based Architecture to Enhance the Reliability of Data Analysis for Industry 4.0. ETFA 2018: 1375-1382 - [c91]Andreas Bunte, Oliver Niggemann, Benno Stein:
Integrating OWL Ontologies for Smart Services into AutomationML and OPC UA. ETFA 2018: 1383-1390 - [c90]Andreas Bunte, Peng Li, Oliver Niggemann:
Mapping Data Sets to Concepts using Machine Learning and a Knowledge based Approach. ICAART (2) 2018: 430-437 - [c89]Peng Li, Oliver Niggemann, Barbara Hammer:
A Geometric Approach to Clustering Based Anomaly Detection for Industrial Applications. IECON 2018: 5345-5352 - [c88]Paul Wunderlich, Oliver Niggemann:
Challenges in Learning Causal Models of Alarms in Industrial Plants. INDIN 2018: 623-628 - [c87]Felix Specht, Jens Otto, Oliver Niggemann, Barbara Hammer:
Generation of Adversarial Examples to Prevent Misclassification of Deep Neural Network based Condition Monitoring Systems for Cyber-Physical Production Systems. INDIN 2018: 760-765 - [c86]Paul Wunderlich, Oliver Niggemann:
Inference Methods for Detecting the Root Cause of Alarm Floods in Causal Models. MMAR 2018: 893-898 - [c85]Alexander Diedrich, Oliver Niggemann:
Diagnosing Hybrid Cyber-Physical Systems using State-Space Models and Satisfiability Modulo Theory. DX 2018 - [c84]Benedikt Eiteneuer, Oliver Niggemann:
LSTM for Model-based Anomaly Detection in Cyber-Physical Systems. DX 2018 - [c83]Dorota Lang, Paul Wunderlich, Mario Heinz, Lukasz Wisniewski, Jürgen Jasperneite, Oliver Niggemann, Carsten Röcker:
Assistance system to support troubleshooting of complex industrial systems. WFCS 2018: 1-4 - 2017
- [j4]Christian Diedrich, Alexander Bieliaiev, Jürgen Bock, Andreas Gössling, Rolf Hänisch, Andreas Kraft, Florian Pethig, Oliver Niggemann, Johannes Reich, Friedrich Vollmar, Jörg Wende:
Interaktionsmodell für Industrie 4.0 Komponenten. Autom. 65(1): 5-18 (2017) - [j3]Stefan Windmann, Oliver Niggemann:
A self-configurable fault detection system for Industrial Ethernet networks. Autom. 65(6): 396 (2017) - [c82]Sebastian Büttner, Paul Wunderlich, Mario Heinz, Oliver Niggemann, Carsten Röcker:
Managing Complexity: Towards Intelligent Error-Handling Assistance Trough Interactive Alarm Flood Reduction. CD-MAKE 2017: 69-82 - [c81]Alexander von Birgelen, Oliver Niggemann:
Using self-organizing maps to learn hybrid timed automata in absence of discrete events. ETFA 2017: 1-8 - [c80]Christian Diedrich, Alexander Belyaev, Tizian Schroder, Jens Vialkowitsch, Alexander Willmann, Thomas Usländer, Heiko Koziolek, Jörg Wende, Florian Pethig, Oliver Niggemann:
Semantic interoperability for asset communication within smart factories. ETFA 2017: 1-8 - [c79]Antje Rogalla, Oliver Niggemann:
Automated process planning for cyber-physical production systems. ETFA 2017: 1-8 - [c78]Stefan Windmann, Dorota Lang, Oliver Niggemann:
Learning parallel automata of PLCs. ETFA 2017: 1-7 - [c77]Stefan Windmann, Oliver Niggemann, Holger Ruwe, Friedrich Becker:
A novel self-configuration method for RFID systems in industrial production environments. ETFA 2017: 1-5 - [c76]Paul Wunderlich, Oliver Niggemann:
Structure learning methods for Bayesian networks to reduce alarm floods by identifying the root cause. ETFA 2017: 1-8 - [c75]Kevin Pinkal, Oliver Niggemann:
A new approach to model-based test case generation for industrial automation systems. INDIN 2017: 53-58 - [c74]Florian Pethig, Oliver Niggemann, Armin Walter:
Towards Industrie 4.0 compliant configuration of condition monitoring services. INDIN 2017: 271-276 - [c73]Marta Fullen, Peter Schüller, Oliver Niggemann:
Defining and validating similarity measures for industrial alarm flood analysis. INDIN 2017: 781-786 - [c72]Katharina Giese, Jens Eickmeyer, Oliver Niggemann:
Differential Evolution in Production Process Optimization of Cyber Physical Systems. ML4CPS 2017: 17-23 - [c71]Andreas Bunte, Peng Li, Oliver Niggemann:
Learned Abstraction: Knowledge Based Concept Learning for Cyber Physical Systems. ML4CPS 2017: 43-51 - [c70]Marta Fullen, Peter Schüller, Oliver Niggemann:
Semi-supervised Case-based Reasoning Approach to Alarm Flood Analysis. ML4CPS 2017: 53-61 - [p1]Oliver Niggemann, Gautam Biswas, John S. Kinnebrew, Hamed Khorasgani, Sören Volgmann, Andreas Bunte:
Datenanalyse in der intelligenten Fabrik. Handbuch Industrie 4.0 (2) 2017: 471-490 - [e2]Jürgen Beyerer, Oliver Niggemann, Christian Kühnert:
Machine Learning for Cyber Physical Systems, Selected papers from the International Conference ML4CPS 2016, Karlsruhe, Germany, September 29, 2016. Springer 2017, ISBN 978-3-662-53805-0 [contents] - 2016
- [c69]Andreas Bunte, Alexander Diedrich, Oliver Niggemann:
Integrating semantics for diagnosis of manufacturing systems. ETFA 2016: 1-8 - [c68]Alexander Diedrich, Björn Böttcher, Oliver Niggemann:
Exposing Design Mistakes During Requirements Engineering by Solving Constraint Satisfaction Problems to Obtain Minimum Correction Subsets. ICAART (2) 2016: 280-287 - [c67]Stefan Windmann, Oliver Niggemann:
A GPU-based method for robust and efficient fault detection in industrial automation processes. INDIN 2016: 442-445 - [c66]Peng Li, Oliver Niggemann:
Improving clustering based anomaly detection with concave hull: An application in fault diagnosis of wind turbines. INDIN 2016: 463-466 - [c65]Jens Otto, Birgit Vogel-Heuser, Oliver Niggemann:
Optimizing modular and reconfigurable cyber-physical production systems by determining parameters automatically. INDIN 2016: 1100-1105 - [c64]Steffen Henning, Jens Otto, Oliver Niggemann:
Pattern-based control-code synthesis. INDIN 2016: 1106-1111 - [e1]Oliver Niggemann, Jürgen Beyerer:
Machine Learning for Cyber Physical Systems, Selected papers from the International Conference ML4CPS 2015, Lemgo, Germany, October 1-2, 2015. Springer 2016, ISBN 978-3-662-48836-2 [contents] - 2015
- [j2]Oliver Niggemann, Christian W. Frey:
Data-driven anomaly detection in cyber-physical production systems. Autom. 63(10): 821-832 (2015) - [j1]Jürgen Jasperneite, Sven Hinrichsen, Oliver Niggemann:
"Plug-and-Produce" für Fertigungssysteme - Anwendungsfälle und Lösungsansätze. Inform. Spektrum 38(3): 183-190 (2015) - [c63]Oliver Niggemann, Volker Lohweg:
On the Diagnosis of Cyber-Physical Production Systems. AAAI 2015: 4119-4126 - [c62]Jens Otto, Oliver Niggemann:
Automatic Parameterization of Automation Software for Plug-and-Produce. AAAI Workshop: Algorithm Configuration 2015 - [c61]Peng Li, Jens Eickmeyer, Oliver Niggemann:
Data Driven Condition Monitoring of Wind Power Plants Using Cluster Analysis. CyberC 2015: 131-136 - [c60]Anas Anis, Wilhelm Schäfer, Andrey Pines, Oliver Niggemann:
CP3L: A Cyber-Physical Production Planning Language. ETFA 2015: 1-4 - [c59]Ganesh Man Shrestha, Oliver Niggemann:
Hybrid approach combining Bayesian network and rule-based systems for resource optimization in industrial cleaning processes. ETFA 2015: 1-4 - [c58]Felix Specht, Holger Flatt, Jens Eickmeyer, Oliver Niggemann:
Exploiting multicore processors in PLCs using libraries for IEC 61131-3. ETFA 2015: 1-7 - [c57]Stefan Windmann, Florian Jungbluth, Oliver Niggemann:
A HMM-based fault detection method for piecewise stationary industrial processes. ETFA 2015: 1-6 - [c56]Stefan Windmann, Oliver Niggemann:
MapReduce algorithms for efficient generation of CPS models from large historical data sets. ETFA 2015: 1-4 - [c55]Stefan Windmann, Oliver Niggemann, Heiko Stichweh:
Energy efficiency optimization by automatic coordination of motor speeds in conveying systems. ICIT 2015: 731-737 - [c54]Stefan Windmann, Oliver Niggemann:
Automatic model separation and application for diagnosis in industrial automation systems. ICIT 2015: 1845-1850 - [c53]Ganesh Man Shrestha, Peng Li, Oliver Niggemann:
Bayesian predictive assistance system: An embedded application for resource optimization in industrial cleaning processes. INDIN 2015: 104-109 - [c52]Stefan Windmann, Oliver Niggemann:
Efficient fault detection for industrial automation processes with observable process variables. INDIN 2015: 121-126 - [c51]Stefan Windmann, Jens Eickmeyer, Florian Jungbluth, Johann Badinger, Oliver Niggemann:
Evaluation of Model-Based Condition Monitoring Systems in Industrial Application Cases. ML4CPS 2015: 45-50 - [c50]Alexander Diedrich, Andreas Bunte, Alexander Maier, Oliver Niggemann:
Kognitive Architektur zum Konzeptlernen in technischen Systemen. ML4CPS 2015: 75-85 - [c49]Jens Eickmeyer, Peng Li, Omid Givehchi, Florian Pethig, Oliver Niggemann:
Data Driven Modeling for System-Level Condition Monitoring on Wind Power Plants. DX 2015: 43-50 - [c48]Oliver Niggemann, Gautam Biswas, John S. Kinnebrew, Hamed Khorasgani, Sören Volgmann, Andreas Bunte:
Data-Driven Monitoring of Cyber-Physical Systems Leveraging on Big Data and the Internet-of-Things for Diagnosis and Control. DX 2015: 185-192 - [c47]Alexander Maier, Oliver Niggemann, Jens Eickmeyer:
On the Learning of Timing Behavior for Anomaly Detection in Cyber-Physical Production Systems. DX 2015: 217-224 - 2014
- [c46]Björn Böttcher, Natalia Moriz, Oliver Niggemann:
From Formal Requirements on Technical Systems to Complete Designs - A Holistic Approach. ECAI 2014: 977-978 - [c45]Sören Volgmann, Francisco M. Rangel Pardo, Oliver Niggemann, Paolo Rosso:
Emotional Trends in Social Media - A State Space Approach. ECAI 2014: 1123-1124 - [c44]Anas Anis, Wilhelm Schäfer, Oliver Niggemann:
A comparison of modeling approaches for planning in Cyber Physical Production Systems. ETFA 2014: 1-8 - [c43]Steffen Henning, Oliver Niggemann, Jens Otto, Sebastian Schriegel:
A descriptive engineering approach for cyber-physical systems. ETFA 2014: 1-4 - [c42]Björn Kroll, David Schaffranek, Sebastian Schriegel, Oliver Niggemann:
System modeling based on machine learning for anomaly detection and predictive maintenance in industrial plants. ETFA 2014: 1-7 - [c41]Natalia Moriz, Björn Böttcher, Oliver Niggemann, Josef Lackhove:
Assisted design for automation systems - From formal requirements to final designs. ETFA 2014: 1-5 - [c40]Oliver Niggemann, Björn Kroll:
On the applicability of model based software development to cyber physical production systems. ETFA 2014: 1-4 - [c39]Ganesh Man Shrestha, Oliver Niggemann:
A Bayesian predictive assistance system for resource optimization - A case study in industrial cleaning process. ETFA 2014: 1-6 - [c38]Sebastian Schriegel, Jürgen Jasperneite, Oliver Niggemann:
Plug and Work für verteilte Echtzeitsysteme mit Zeitsynchronisation. Echtzeit 2014: 11-20 - 2013
- [c37]Björn Böttcher, Johann Badinger, Natalia Moriz, Oliver Niggemann:
Design of industrial automation systems - Formal requirements in the engineering process. ETFA 2013: 1-4 - [c36]Syed Shiraz Gilani, Stefan Windmann, Florian Pethig, Björn Kroll, Oliver Niggemann:
The importance of model-learning for the analysis of the energy consumption of production plants. ETFA 2013: 1-8 - [c35]Björn Kroll, Sebastian Schriegel, Oliver Niggemann, Stefan Schramm:
A software architecture for the analysis of energy- and process-data. ETFA 2013: 1-4 - [c34]Asmir Vodencarevic, Alexander Maier, Oliver Niggemann:
Evaluating Learning Algorithms for Stochastic Finite Automata - Comparative Empirical Analyses on Learning Models for Technical Systems. ICPRAM 2013: 229-238 - [c33]Stefan Windmann, Shuo Jiao, Oliver Niggemann, Holger Borcherding:
A stochastic method for the detection of anomalous energy consumption in hybrid industrial systems. INDIN 2013: 194-199 - [c32]Jens Otto, Björn Böttcher, Oliver Niggemann:
Plug-and-Produce: Semantic Module Profile. MBEES 2013: 90-99 - 2012
- [c31]Oliver Niggemann, Benno Stein, Asmir Vodencarevic, Alexander Maier, Hans Kleine Büning:
Learning Behavior Models for Hybrid Timed Systems. AAAI 2012: 1083-1090 - [c30]Florian Pethig, Björn Kroll, Oliver Niggemann, Alexander Maier, Tim Tack, Matthias Maag:
A generic synchronized data acquisition solution for distributed automation systems. ETFA 2012: 1-8 - [c29]Alexander Maier, Tim Tack, Oliver Niggemann:
Visual Anomaly Detection in Production Plants. ICINCO (1) 2012: 67-75 - [c28]Sebastian Faltinski, Holger Flatt, Florian Pethig, Björn Kroll, Asmir Vodencarevic, Alexander Maier, Oliver Niggemann:
Detecting anomalous energy consumptions in distributed manufacturing systems. INDIN 2012: 358-363 - [c27]Oliver Niggemann, Benno Stein, Alexander Maier:
Solving Modeling Problems with Machine Learning -- A Classification Scheme of Model Learning Approaches for Technical Systems. MBEES 2012: 21-30 - 2011
- [c26]Michael Jäger, Roman Just, Oliver Niggemann:
Using automatic topology discovery to diagnose PROFINET networks. ETFA 2011: 1-4 - [c25]Asmir Vodencarevic, Hans Kleine Büning, Oliver Niggemann, Alexander Maier:
Identifying behavior models for process plants. ETFA 2011: 1-8 - [c24]Michael Wienke, Sebastian Faltinski, Oliver Niggemann, Jürgen Jasperneite:
mINA-DL: A novel description language enabling dynamic reconfiguration in industrial automation. ETFA 2011: 1-4 - [c23]Asmir Vodencarevic, Hans Kleine Büning, Oliver Niggemann, Alexander Maier:
Using behavior models for anomaly detection in hybrid systems. ICAT 2011: 1-8 - [c22]Barath Kumar, Oliver Niggemann, Wilhelm Schäfer, Jürgen Jasperneite:
Modeling and Testing of Automation Systems. ICFCE 2011: 1027-1034 - [c21]Olaf Graeser, Barath Kumar, Oliver Niggemann, Natalia Moriz, Alexander Maier:
AutomationML as a Basis for Offline - And Realtime-simulation - Planning, Simulation and Diagnosis of Automation Systems. ICINCO (2) 2011: 359-368 - [c20]Alexander Maier, Oliver Niggemann, Roman Just, Michael Jäger, Asmir Vodencarevic:
Anomaly Detection in Production Plants using Timed Automata - Automated Learning of Models from Observations. ICINCO (1) 2011: 363-369 - [c19]Oliver Niggemann, Alexander Maier, Asmir Vodencarevic, Bernhard Jantscher:
Fighting the Modeling Bottleneck - Learning Models for Production Plants. MBEES 2011: 157-166 - 2010
- [c18]Oliver Niggemann, Volker Lohweg, Tim Tack:
A Probabilistic MajorClust Variant for the Clustering of Near-Homogeneous Graphs. KI 2010: 184-194 - [c17]Oliver Niggemann, Alexander Maier, Jürgen Jasperneite:
Model-based Development of Automation Systems. MBEES 2010: 45-54
2000 – 2009
- 2009
- [c16]Oliver Niggemann, Benno Stein, Thomas Spanuth, Heinrich Balzer:
Using Models for Dynamic System Diagnosis: A Case Study in Automotive Engineering. MBEES 2009: 46-56 - [c15]Olaf Graeser, Oliver Niggemann:
Planning of Time Triggered Communication Schedules. Echtzeit 2009: 21-30 - 2008
- [c14]Oliver Niggemann, Joachim Stroop:
Models for model's sake: why explicit system models are also an end to themselves. ICSE 2008: 561-570 - [c13]Oliver Niggemann, Rainer Otterbach:
Durchgehende Systemverifikation im Automotiven Entwicklungsprozess. MBEES 2008: 20-27 - [c12]Rainer Otterbach, Oliver Niggemann:
Vom modellbasierten Architekturentwurf über die Simulation verteilter Systeme zum Serienprojekt. Software Engineering (Workshops) 2008: 108-112 - 2007
- [c11]Holger Giese, Stefan Neumann, Oliver Niggemann, Bernhard Schätz:
Model-Based Integration. Model-Based Engineering of Embedded Real-Time Systems 2007: 17-54 - [c10]Oliver Niggemann, Anne Geburzi, Joachim Stroop:
Benefits of System Simulation for Automotive Applications. Model-Based Engineering of Embedded Real-Time Systems 2007: 329-336 - [c9]Matthias Gehrke, Martin Hirsch, Wilhelm Schäfer, Oliver Niggemann, Dirk Stichling, Ulrich Nickel:
Typisierung und Verifikation zeitlicher Anforderungen automotiver Software Systeme. MBEES 2007: 73-82 - [c8]Matthias Gehrke, Martin Hirsch, Wilhelm Schäfer, Oliver Niggemann, Dirk Stichling, Ulrich Nickel:
Verifikation zeitlicher Anforderungen in automotiven komponentenbasierten Software Systemen. Software Engineering 2007: 251-252 - 2006
- [c7]Benno Stein, Oliver Niggemann, Theodor Lettmann:
Speeding Up Model-based Diagnosis by a Heuristic Approach to Solving SAT. Artificial Intelligence and Applications 2006: 273-278 - [c6]Matthias Gehrke, Petra Nawratil, Oliver Niggemann, Wilhelm Schäfer, Martin Hirsch:
Scenario-Based Verification of Automotive Software Systems. MBEES 2006: 35-42 - 2001
- [b1]Oliver Niggemann:
Visual data mining of graph based data. University of Paderborn, Germany, 2001, pp. 1-150 - [c5]Oliver Niggemann, Benno Stein, Jens Tölle:
Visualization of traffic structures. ICC 2001: 1516-1521 - [c4]Benno Stein, Oliver Niggemann:
Generation of Similarity Measures from Different Sources. IEA/AIE 2001: 197-206 - [c3]Michael Lappe, Jong-Chan Park, Oliver Niggemann, Liisa Holm:
Generating protein interaction maps from incomplete data: application to fold assignment. ISMB (Supplement of Bioinformatics) 2001: 149-156 - 2000
- [c2]Oliver Niggemann, Benno Stein:
A Meta Heuristic for Graph Drawing. Advanced Visual Interfaces 2000: 286-289
1990 – 1999
- 1999
- [c1]Benno Stein, Oliver Niggemann:
On the Nature of Structure and Its Identification. WG 1999: 122-134
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 21:47 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint