default search action
Vaishak Belle
Person information
- affiliation: University of Edinburgh, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j32]Ioannis Papantonis, Vaishak Belle:
Principled diverse counterfactuals in multilinear models. Mach. Learn. 113(3): 1421-1443 (2024) - [j31]Andreas C. Bueff, Vaishak Belle:
Learning explanatory logical rules in non-linear domains: a neuro-symbolic approach. Mach. Learn. 113(7): 4579-4614 (2024) - [c73]Daxin Liu, Vaishak Belle:
Progression with Probabilities in the Situation Calculus: Representation and Succinctness. AAMAS 2024: 1210-1218 - [c72]Jessica Ciupa, Vaishak Belle:
Ethical Reward Machine. NeSy (1) 2024: 180-194 - [c71]Weizhi Tang, Vaishak Belle:
ToM-LM: Delegating Theory of Mind Reasoning to External Symbolic Executors in Large Language Models. NeSy (2) 2024: 245-257 - [c70]Dagmara Panas, Sohan Seth, Vaishak Belle:
Can Large Language Models Put 2 and 2 Together? Probing for Entailed Arithmetical Relationships. NeSy (2) 2024: 258-276 - [i52]Weizhi Tang, Vaishak Belle:
ToM-LM: Delegating Theory of Mind Reasoning to External Symbolic Executors in Large Language Models. CoRR abs/2404.15515 (2024) - [i51]Dagmara Panas, Sohan Seth, Vaishak Belle:
Can Large Language Models put 2 and 2 together? Probing for Entailed Arithmetical Relationships. CoRR abs/2404.19432 (2024) - [i50]Miguel Ángel Méndez Lucero, Enrique Bojorquez Gallardo, Vaishak Belle:
Semantic Objective Functions: A distribution-aware method for adding logical constraints in deep learning. CoRR abs/2405.15789 (2024) - [i49]Weizhi Tang, Vaishak Belle:
Zero, Finite, and Infinite Belief History of Theory of Mind Reasoning in Large Language Models. CoRR abs/2406.04800 (2024) - [i48]Weizhi Tang, Vaishak Belle:
LTLBench: Towards Benchmarks for Evaluating Temporal Logic Reasoning in Large Language Models. CoRR abs/2407.05434 (2024) - [i47]Alec F. Diallo, Vaishak Belle, Paul Patras:
Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning. CoRR abs/2410.05484 (2024) - [i46]Jonathan Feldstein, Paulius Dilkas, Vaishak Belle, Efthymia Tsamoura:
Mapping the Neuro-Symbolic AI Landscape by Architectures: A Handbook on Augmenting Deep Learning Through Symbolic Reasoning. CoRR abs/2410.22077 (2024) - [i45]Chris Sypherd, Vaishak Belle:
Practical Considerations for Agentic LLM Systems. CoRR abs/2412.04093 (2024) - [i44]Vaishak Belle, Hana Chockler, Shannon Vallor, Kush R. Varshney, Joost Vennekens, Sander Beckers:
Trustworthiness and Responsibility in AI - Causality, Learning, and Verification (Dagstuhl Seminar 24121). Dagstuhl Reports 14(3): 75-91 (2024) - 2023
- [j30]Vaishak Belle, Thomas Bolander, Andreas Herzig, Bernhard Nebel:
Epistemic planning: Perspectives on the special issue. Artif. Intell. 316: 103842 (2023) - [j29]Vaishak Belle:
Knowledge representation and acquisition for ethical AI: challenges and opportunities. Ethics Inf. Technol. 25(1): 22 (2023) - [j28]Ionela G. Mocanu, Vaishak Belle:
Knowledge representation and acquisition in the era of large language models: Reflections on learning to reason via PAC-Semantics. Nat. Lang. Process. J. 5: 100036 (2023) - [j27]Ionela G. Mocanu, Vaishak Belle, Brendan Juba:
Learnability with PAC Semantics for Multi-agent Beliefs. Theory Pract. Log. Program. 23(4): 730-747 (2023) - [j26]Vaishak Belle:
Toward A Logical Theory Of Fairness and Bias. Theory Pract. Log. Program. 23(4): 865-883 (2023) - [c69]Vaishak Belle, Michael Fisher, Alessandra Russo, Ekaterina Komendantskaya, Alistair Nottle:
Neuro-Symbolic AI + Agent Systems: A First Reflection on Trends, Opportunities and Challenges. AAMAS Workshops 2023: 180-200 - [c68]Qihui Feng, Daxin Liu, Vaishak Belle, Gerhard Lakemeyer:
A Logic of Only-Believing over Arbitrary Probability Distributions. AAMAS 2023: 355-363 - [c67]Vaishak Belle:
Actions, Continuous Distributions and Meta-Beliefs. AAMAS 2023: 418-426 - [c66]Till Hofmann, Vaishak Belle:
Abstracting Noisy Robot Programs. AAMAS 2023: 534-542 - [c65]Ionela G. Mocanu, Vaishak Belle, Brendan Juba:
Learnability with PAC Semantics for Multi-agent Beliefs. AAMAS 2023: 2604-2606 - [c64]Sandrine Chausson, Ameer Saadat-Yazdi, Xue Li, Jeff Z. Pan, Vaishak Belle, Nadin Kökciyan, Björn Ross:
A Web-based Tool for Detecting Argument Validity and Novelty. AAMAS 2023: 3053-3055 - [c63]Daxin Liu, Qinfei Huang, Vaishak Belle, Gerhard Lakemeyer:
Verifying Belief-Based Programs via Symbolic Dynamic Programming. ECAI 2023: 1497-1504 - [c62]Ioannis Papantonis, Vaishak Belle:
Transparency in Sum-Product Network Decompilation. ECAI 2023: 1827-1834 - [c61]Ioannis Papantonis, Vaishak Belle:
Model Transparency: Why Do We Care? ICAART (3) 2023: 650-657 - [c60]Andreas C. Bueff, Vaishak Belle:
Logic + Reinforcement Learning + Deep Learning: A Survey. ICAART (3) 2023: 713-722 - [c59]Vaishak Belle:
Excursions in First-Order Logic and Probability: Infinitely Many Random Variables, Continuous Distributions, Recursive Programs and Beyond. JELIA 2023: 35-46 - [c58]Paulius Dilkas, Vaishak Belle:
Synthesising Recursive Functions for First-Order Model Counting: Challenges, Progress, and Conjectures. KR 2023: 198-207 - [c57]Daxin Liu, Qihui Feng, Vaishak Belle, Gerhard Lakemeyer:
Concerning Measures in a First-order Logic with Actions and Meta-beliefs. KR 2023: 451-460 - [c56]Bénédicte Legastelois, Amy Rafferty, Paul Brennan, Hana Chockler, Ajitha Rajan, Vaishak Belle:
Challenges in Explaining Brain Tumor Detection. TAS 2023: 21:1-21:8 - [c55]Andreas C. Bueff, Vaishak Belle:
Deep Inductive Logic Programming meets Reinforcement Learning. ICLP 2023: 339-352 - [p2]Miguel Ángel Méndez Lucero, Vaishak Belle:
Boolean Connectives and Deep Learning: Three Interpretations. Compendium of Neurosymbolic Artificial Intelligence 2023: 100-113 - [i43]Ioannis Papantonis, Vaishak Belle:
Why not both? Complementing explanations with uncertainty, and the role of self-confidence in Human-AI collaboration. CoRR abs/2304.14130 (2023) - [i42]Drew Hemment, Dave Murray-Rust, Vaishak Belle, Ruth Aylett, Matjaz Vidmar, Frank Broz:
Experiential AI: A transdisciplinary framework for legibility and agency in AI. CoRR abs/2306.00635 (2023) - [i41]Drew Hemment, Matjaz Vidmar, Daga Panas, Dave Murray-Rust, Vaishak Belle, Ruth Aylett:
Agency and legibility for artists through Experiential AI. CoRR abs/2306.02327 (2023) - [i40]Paulius Dilkas, Vaishak Belle:
Synthesising Recursive Functions for First-Order Model Counting: Challenges, Progress, and Conjectures. CoRR abs/2306.04189 (2023) - [i39]Ionela G. Mocanu, Vaishak Belle, Brendan Juba:
Learnability with PAC Semantics for Multi-agent Beliefs. CoRR abs/2306.05490 (2023) - [i38]Vaishak Belle:
Toward A Logical Theory Of Fairness and Bias. CoRR abs/2306.13659 (2023) - [i37]Vaishak Belle:
Statistical relational learning and neuro-symbolic AI: what does first-order logic offer? CoRR abs/2306.13660 (2023) - 2022
- [j25]Christian Muise, Vaishak Belle, Paolo Felli, Sheila A. McIlraith, Tim Miller, Adrian R. Pearce, Liz Sonenberg:
Efficient multi-agent epistemic planning: Teaching planners about nested belief. Artif. Intell. 302: 103605 (2022) - [j24]Vaishak Belle:
Analyzing generalized planning under nondeterminism. Artif. Intell. 307: 103696 (2022) - [j23]Miguel Ángel Méndez Lucero, Rafael-Michael Karampatsis, Enrique Bojorquez Gallardo, Vaishak Belle:
Signal Perceptron: On the Identifiability of Boolean Function Spaces and Beyond. Frontiers Artif. Intell. 5: 770254 (2022) - [j22]Gary Smith, Vaishak Belle, Ronald P. A. Petrick:
Intention Recognition With ProbLog. Frontiers Artif. Intell. 5: 806262 (2022) - [j21]Ionela Georgiana Mocanu, Zhenxu Yang, Vaishak Belle:
Breaking CAPTCHA with Capsule Networks. Neural Networks 154: 246-254 (2022) - [c54]Nick Hoernle, Rafael-Michael Karampatsis, Vaishak Belle, Kobi Gal:
MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks. AAAI 2022: 5700-5709 - [c53]Ameer Saadat-Yazdi, Xue Li, Sandrine Chausson, Vaishak Belle, Björn Ross, Jeff Z. Pan, Nadin Kökciyan:
KEViN: A Knowledge Enhanced Validity and Novelty Classifier for Arguments. ArgMining@COLING 2022: 104-110 - [c52]Vaishak Belle:
Tractable Probabilistic Models for Ethical AI. ICCS 2022: 3-8 - [i36]Ioannis Papantonis, Vaishak Belle:
Principled Diverse Counterfactuals in Multilinear Models. CoRR abs/2201.06467 (2022) - [i35]Xin Du, Bénédicte Legastelois, Bhargavi Ganesh, Ajitha Rajan, Hana Chockler, Vaishak Belle, Stuart Anderson, Subramanian Ramamoorthy:
Vision Checklist: Towards Testable Error Analysis of Image Models to Help System Designers Interrogate Model Capabilities. CoRR abs/2201.11674 (2022) - [i34]Andreas C. Bueff, Ioannis Papantonis, Auste Simkute, Vaishak Belle:
Explainability in Machine Learning: a Pedagogical Perspective. CoRR abs/2202.10335 (2022) - [i33]Till Hofmann, Vaishak Belle:
Abstracting Noisy Robot Programs. CoRR abs/2204.03536 (2022) - [i32]Till Hofmann, Vaishak Belle:
Using Abstraction for Interpretable Robot Programs in Stochastic Domains. CoRR abs/2207.12763 (2022) - 2021
- [j20]Lewis Hammond, Vaishak Belle:
Learning tractable probabilistic models for moral responsibility and blame. Data Min. Knowl. Discov. 35(2): 621-659 (2021) - [j19]Andreas C. Bueff, Stefanie Speichert, Vaishak Belle:
Probabilistic Tractable Models in Mixed Discrete-Continuous Domains. Data Intell. 3(2): 228-260 (2021) - [j18]Vaishak Belle, Ioannis Papantonis:
Principles and Practice of Explainable Machine Learning. Frontiers Big Data 4: 688969 (2021) - [j17]Ioannis Papantonis, Vaishak Belle:
Closed-Form Results for Prior Constraints in Sum-Product Networks. Frontiers Artif. Intell. 4: 644062 (2021) - [j16]Michael Varley, Vaishak Belle:
Fairness in machine learning with tractable models. Knowl. Based Syst. 215: 106715 (2021) - [j15]Sándor Bartha, James Cheney, Vaishak Belle:
One down, 699 to go: or, synthesising compositional desugarings. Proc. ACM Program. Lang. 5(OOPSLA): 1-29 (2021) - [c51]Alexander Philipp Rader, Ionela G. Mocanu, Vaishak Belle, Brendan Juba:
Learning Implicitly with Noisy Data in Linear Arithmetic. IJCAI 2021: 1410-1417 - [c50]Gary Smith, Ron P. A. Petrick, Vaishak Belle:
Intent Recognition in Smart Homes with ProbLog. PerCom Workshops 2021: 430-431 - [c49]Paulius Dilkas, Vaishak Belle:
Weighted Model Counting Without Parameter Variables. SAT 2021: 134-151 - [c48]Jonathan Feldstein, Vaishak Belle:
Lifted reasoning meets weighted model integration. UAI 2021: 322-332 - [c47]Paulius Dilkas, Vaishak Belle:
Weighted model counting with conditional weights for Bayesian networks. UAI 2021: 386-396 - [p1]Vaishak Belle:
Logic Meets Learning: From Aristotle to Neural Networks. Neuro-Symbolic Artificial Intelligence 2021: 78-102 - [i31]Sándor Bartha, James Cheney, Vaishak Belle:
One Down, 699 to Go: or, synthesising compositional desugarings. CoRR abs/2109.06114 (2021) - [i30]Christian Muise, Vaishak Belle, Paolo Felli, Sheila A. McIlraith, Tim Miller, Adrian R. Pearce, Liz Sonenberg:
Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested Belief. CoRR abs/2110.02480 (2021) - [i29]Nicholas Hoernle, Rafael-Michael Karampatsis, Vaishak Belle, Kobi Gal:
MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks. CoRR abs/2111.01564 (2021) - 2020
- [j14]Vaishak Belle, Hector J. Levesque:
Regression and progression in stochastic domains. Artif. Intell. 281: 103247 (2020) - [j13]Laszlo Treszkai, Vaishak Belle:
A correctness result for synthesizing plans with loops in stochastic domains. Int. J. Approx. Reason. 119: 92-107 (2020) - [j12]Vaishak Belle, Luc De Raedt:
Semiring programming: A semantic framework for generalized sum product problems. Int. J. Approx. Reason. 126: 181-201 (2020) - [j11]Vaishak Belle:
Abstracting probabilistic models: Relations, constraints and beyond. Knowl. Based Syst. 199: 105976 (2020) - [c46]Amélie Levray, Vaishak Belle:
Learning Credal Sum-Product Networks. AKBC 2020 - [c45]Paulius Dilkas, Vaishak Belle:
Generating Random Logic Programs Using Constraint Programming. CP 2020: 828-845 - [c44]Ionela G. Mocanu, Vaishak Belle, Brendan Juba:
Polynomial-Time Implicit Learnability in SMT. ECAI 2020: 1152-1158 - [c43]Anton Fuxjaeger, Vaishak Belle:
Logical Interpretations of Autoencoders. ECAI 2020: 2481-2488 - [c42]Anton Fuxjaeger, Vaishak Belle:
Scaling up Probabilistic Inference in Linear and Non-linear Hybrid Domains by Leveraging Knowledge Compilation. ICAART (2) 2020: 347-355 - [c41]Vaishak Belle:
Symbolic Logic Meets Machine Learning: A Brief Survey in Infinite Domains. SUM 2020: 3-16 - [c40]Vaishak Belle:
Logic, Probability and Action: A Situation Calculus Perspective. SUM 2020: 52-67 - [i28]Vaishak Belle:
SMT + ILP. CoRR abs/2001.05208 (2020) - [i27]Ioannis Papantonis, Vaishak Belle:
Interventions and Counterfactuals in Tractable Probabilistic Models: Limitations of Contemporary Transformations. CoRR abs/2001.10905 (2020) - [i26]Ioannis Papantonis, Vaishak Belle:
On Constraint Definability in Tractable Probabilistic Models. CoRR abs/2001.11349 (2020) - [i25]Paulius Dilkas, Vaishak Belle:
Generating Random Logic Programs Using Constraint Programming. CoRR abs/2006.01889 (2020) - [i24]Vaishak Belle:
Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains. CoRR abs/2006.08480 (2020) - [i23]Vaishak Belle:
Logic, Probability and Action: A Situation Calculus Perspective. CoRR abs/2006.09868 (2020) - [i22]Vaishak Belle, Ioannis Papantonis:
Principles and Practice of Explainable Machine Learning. CoRR abs/2009.11698 (2020) - [i21]Alexander Philipp Rader, Ionela G. Mocanu, Vaishak Belle, Brendan Juba:
Learning Implicitly with Noisy Data in Linear Arithmetic. CoRR abs/2010.12619 (2020)
2010 – 2019
- 2019
- [j10]Drew Hemment, Ruth Aylett, Vaishak Belle, Dave Murray-Rust, Ewa Luger, Jane Hillston, Michael Rovatsos, Frank Broz:
Experiential AI. AI Matters 5(1): 25-31 (2019) - [c39]Stefanie Speichert, Vaishak Belle:
Learning Probabilistic Logic Programs over Continuous Data. ILP 2019: 129-144 - [c38]Vaishak Belle, Brendan Juba:
Implicitly learning to reason in first-order logic. NeurIPS 2019: 3376-3386 - [i20]Amélie Levray, Vaishak Belle:
Learning Tractable Probabilistic Models in Open Worlds. CoRR abs/1901.05847 (2019) - [i19]Michael Varley, Vaishak Belle:
Fairness in Machine Learning with Tractable Models. CoRR abs/1905.07026 (2019) - [i18]Laszlo Treszkai, Vaishak Belle:
A Correctness Result for Synthesizing Plans With Loops in Stochastic Domains. CoRR abs/1905.07028 (2019) - [i17]Vaishak Belle, Brendan Juba:
Implicitly Learning to Reason in First-Order Logic. CoRR abs/1906.10106 (2019) - [i16]Drew Hemment, Ruth Aylett, Vaishak Belle, Dave Murray-Rust, Ewa Luger, Jane Hillston, Michael Rovatsos, Frank Broz:
Experiential AI. CoRR abs/1908.02619 (2019) - [i15]Vaishak Belle:
The Quest for Interpretable and Responsible Artificial Intelligence. CoRR abs/1910.04527 (2019) - [i14]Anton Fuxjaeger, Vaishak Belle:
Logical Interpretations of Autoencoders. CoRR abs/1911.11629 (2019) - 2018
- [j9]Vaishak Belle, Hector J. Levesque:
Reasoning about discrete and continuous noisy sensors and effectors in dynamical systems. Artif. Intell. 262: 189-221 (2018) - [c37]Vaishak Belle:
Probabilistic Planning by Probabilistic Programming. AAAI Workshops 2018: 654-657 - [c36]Vaishak Belle:
On Plans With Loops and Noise. AAMAS 2018: 1310-1317 - [c35]Samuel Kolb, Martin Mladenov, Scott Sanner, Vaishak Belle, Kristian Kersting:
Efficient Symbolic Integration for Probabilistic Inference. IJCAI 2018: 5031-5037 - [i13]Vaishak Belle:
Probabilistic Planning by Probabilistic Programming. CoRR abs/1801.08365 (2018) - [i12]Andreas C. Bueff, Stefanie Speichert, Vaishak Belle:
Tractable Querying and Learning in Hybrid Domains via Sum-Product Networks. CoRR abs/1807.05464 (2018) - [i11]Stefanie Speichert, Vaishak Belle:
Learning Probabilistic Logic Programs in Continuous Domains. CoRR abs/1807.05527 (2018) - [i10]Vaishak Belle:
On Plans With Loops and Noise. CoRR abs/1809.05309 (2018) - [i9]Vaishak Belle, Hector J. Levesque:
Reasoning about Discrete and Continuous Noisy Sensors and Effectors in Dynamical Systems. CoRR abs/1809.05314 (2018) - [i8]Vaishak Belle:
Abstracting Probabilistic Relational Models. CoRR abs/1810.02434 (2018) - [i7]Lewis Hammond, Vaishak Belle:
Deep Tractable Probabilistic Models for Moral Responsibility. CoRR abs/1810.03736 (2018) - [i6]Anton Fuxjaeger, Vaishak Belle:
Scaling up Probabilistic Inference in Linear and Non-Linear Hybrid Domains by Leveraging Knowledge Compilation. CoRR abs/1811.12127 (2018) - 2017
- [j8]Davide Nitti, Vaishak Belle, Tinne De Laet, Luc De Raedt:
Planning in hybrid relational MDPs. Mach. Learn. 106(12): 1905-1932 (2017) - [c34]Vaishak Belle:
Open-Universe Weighted Model Counting. AAAI 2017: 3701-3708 - [c33]Vaishak Belle:
Open-Universe Weighted Model Counting: Extended Abstract. AAAI Workshops 2017 - [c32]Martin Mladenov, Vaishak Belle, Kristian Kersting:
The Symbolic Interior Point Method. AAAI 2017: 1199-1205 - [c31]Vaishak Belle, Gerhard Lakemeyer:
Reasoning about Probabilities in Unbounded First-Order Dynamical Domains. IJCAI 2017: 828-836 - [c30]Anton Dries, Angelika Kimmig, Jesse Davis, Vaishak Belle, Luc De Raedt:
Solving Probability Problems in Natural Language. IJCAI 2017: 3981-3987 - [c29]Vaishak Belle:
Logic meets Probability: Towards Explainable AI Systems for Uncertain Worlds. IJCAI 2017: 5116-5120 - [c28]Vaishak Belle:
Weighted Model Counting With Function Symbols. UAI 2017 - 2016
- [j7]Vaishak Belle, Hector J. Levesque:
A Logical Theory of Localization. Stud Logica 104(4): 741-772 (2016) - [c27]Vaishak Belle:
Satisfiability and Model Counting in Open Universes. AAAI Workshop: Beyond NP 2016 - [c26]Vaishak Belle, Gerhard Lakemeyer, Hector J. Levesque:
A First-Order Logic of Probability and Only Knowing in Unbounded Domains. AAAI 2016: 893-899 - [c25]Vaishak Belle, Guy Van den Broeck, Andrea Passerini:
Component Caching in Hybrid Domains with Piecewise Polynomial Densities. AAAI 2016: 3369-3375 - [c24]Vaishak Belle, Guy Van den Broeck, Andrea Passerini:
Hashing-Based Approximate Probabilistic Inference in Hybrid Domains: An Abridged Report. IJCAI 2016: 4115-4119 - [c23]Vaishak Belle, Hector J. Levesque:
Foundations for Generalized Planning in Unbounded Stochastic Domains. KR 2016: 380-389 - [i5]Martin Mladenov, Vaishak Belle, Kristian Kersting:
The Symbolic Interior Point Method. CoRR abs/1605.08187 (2016) - [i4]Vaishak Belle, Luc De Raedt:
Semiring Programming: A Framework for Search, Inference and Learning. CoRR abs/1609.06954 (2016) - 2015
- [j6]Vaishak Belle, Gerhard Lakemeyer:
Semantical considerations on multiagent only knowing. Artif. Intell. 223: 1-26 (2015) - [j5]Vaishak Belle, Hector J. Levesque:
Robot location estimation in the situation calculus. J. Appl. Log. 13(4): 397-413 (2015) - [c22]Christian J. Muise, Vaishak Belle, Paolo Felli, Sheila A. McIlraith, Tim Miller, Adrian R. Pearce, Liz Sonenberg:
Planning Over Multi-Agent Epistemic States: A Classical Planning Approach. AAAI 2015: 3327-3334 - [c21]Guillaume Aucher, Vaishak Belle:
Multi-Agent Only Knowing on Planet Kripke. IJCAI 2015: 2713-2719 - [c20]Vaishak Belle, Gerhard Lakemeyer:
Only Knowing Meets Common Knowledge. IJCAI 2015: 2755-2761 - [c19]Vaishak Belle, Hector J. Levesque:
ALLEGRO: Belief-Based Programming in Stochastic Dynamical Domains. IJCAI 2015: 2762-2769 - [c18]Vaishak Belle, Andrea Passerini, Guy Van den Broeck:
Probabilistic Inference in Hybrid Domains by Weighted Model Integration. IJCAI 2015: 2770-2776 - [c17]Davide Nitti, Vaishak Belle, Luc De Raedt:
Planning in Discrete and Continuous Markov Decision Processes by Probabilistic Programming. ECML/PKDD (2) 2015: 327-342 - [c16]Vaishak Belle, Guy Van den Broeck, Andrea Passerini:
Hashing-Based Approximate Probabilistic Inference in Hybrid Domains. UAI 2015: 141-150 - 2014
- [j4]Vaishak Belle:
On the projection problem in active knowledge bases with incomplete information. AI Matters 1(2): 14-16 (2014) - [j3]Vaishak Belle, Gerhard Lakemeyer:
Multiagent Only Knowing in Dynamic Systems. J. Artif. Intell. Res. 49: 363-402 (2014) - [j2]Vaishak Belle:
Review of programming with higher-order logic by Dale Miller and Gopalan Nadathur. SIGACT News 45(2): 32-35 (2014) - [c15]Vaishak Belle, Hector J. Levesque:
PREGO: An Action Language for Belief-Based Cognitive Robotics in Continuous Domains. AAAI 2014: 989-995 - [c14]Christian J. Muise, Vaishak Belle, Sheila A. McIlraith:
Computing Contingent Plans via Fully Observable Non-Deterministic Planning. AAAI 2014: 2322-2329 - [c13]Vaishak Belle, Hector J. Levesque:
A Logical Theory of Robot Localization. AAAI Spring Symposia 2014 - [c12]Christian J. Muise, Sheila A. McIlraith, Vaishak Belle:
Non-Deterministic Planning With Conditional Effects. ICAPS 2014 - [c11]Vaishak Belle, Hector J. Levesque:
A logical theory of robot localization. AAMAS 2014: 349-356 - [c10]Vaishak Belle, Hector J. Levesque:
How to Progress Beliefs in Continuous Domains. KR 2014 - [c9]Vaishak Belle, Gerhard Lakemeyer:
On the Progression of Knowledge in Multiagent Systems. KR 2014 - [i3]Vaishak Belle, Hector J. Levesque:
Robot Location Estimation in the Situation Calculus. CoRR abs/1402.7276 (2014) - 2013
- [c8]Vaishak Belle, Hector J. Levesque:
Reasoning about Continuous Uncertainty in the Situation Calculus. IJCAI 2013: 732-738 - [c7]Vaishak Belle, Hector J. Levesque:
Reasoning about Probabilities in Dynamic Systems using Goal Regression. UAI 2013 - [i2]Vaishak Belle, Hector J. Levesque:
Reasoning about Probabilities in Dynamic Systems using Goal Regression. CoRR abs/1309.6816 (2013) - 2012
- [b1]Vaishak Belle:
On the projection problem in active knowledge bases with incomplete information. RWTH Aachen University, 2012, pp. 1-200 - 2011
- [j1]Vaishak Belle:
Review of from zero to infinity: what makes numbers interesting by Constance Reid. SIGACT News 42(2): 10-11 (2011) - [c6]Vaishak Belle, Gerhard Lakemeyer:
A Semantical Account of Progression in the Presence of Uncertainty. AAAI 2011: 165-170 - [c5]Vaishak Belle, Gerhard Lakemeyer:
On Progression and Query Evaluation in First-Order Knowledge Bases with Function Symbols. IJCAI 2011: 744-749 - 2010
- [c4]Vaishak Belle, Gerhard Lakemeyer:
Reasoning about Imperfect Information Games in the Epistemic Situation Calculus. AAAI 2010: 255-260 - [c3]Vaishak Belle:
Multi-Agent Only-Knowing Revisited. AlgoSyn 2010: 16 - [c2]Vaishak Belle, Gerhard Lakemeyer:
Multi-Agent Only-Knowing Revisited. KR 2010 - [i1]Vaishak Belle, Gerhard Lakemeyer:
Multi-Agent Only-Knowing Revisited. CoRR abs/1009.2041 (2010)
2000 – 2009
- 2008
- [c1]Vaishak Belle, Thomas Deselaers, Stefan Schiffer:
Randomized trees for real-time one-step face detection and recognition. ICPR 2008: 1-4
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-16 23:12 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint