


default search action
Minoru Watanabe
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c132]Minoru Watanabe:
Analysis of Clock Tree Buffer Degradation Caused by Radiation. ARC 2024: 120-133 - [c131]Yuki Shimamura, Minoru Watanabe, Nobuya Watanabe:
Voltage Range Evaluation of An Optically Reconfigurable Gate Array VLSI. ASAP 2024: 239-240 - [c130]Sae Goto, Minoru Watanabe, Akifumi Ogiwara, Nobuya Watanabe:
Parallel configuration experiment for a radiation-hardened optically reconfigurable gate array with a holographic polymer-dispersed liquid crystal memory. ICCE 2024: 1-2 - [c129]Akifumi Ogiwara, Minoru Watanabe:
Holographic memory formed by different laser wavelengths in laser combiner system for optically reconfigurable gate array. ICCE 2024: 1-4 - [c128]Utsuki Sekioka, Minoru Watanabe, Nobuya Watanabe:
Remote monitoring system for optically reconfigurable gate arrays in radiation environments. ICCE 2024: 1-2 - [c127]Atsushi Takata, Minoru Watanabe, Nobuya Watanabe:
Wafer-scale VLSI realization using programmable architecture. ICCE 2024: 1-2 - [c126]Nobuya Watanabe, Ryoya Ishitani, Minoru Watanabe:
Application design system for high-speed dynamically reconfigurable gate arrays. ICCE 2024: 1-6 - [c125]Minoru Watanabe, Makoto Inami Kobayashi, Mitsutaka Isobe, Kunihiro Ogawa, Shigeo Matsuyama, Misako Miwa:
Fast-neutron soft-error tolerance experimentation with a radiation-hardened optically reconfigurable gate array. ICCE 2024: 1-2 - [c124]Shintaro Takatsuki, Minoru Watanabe, Nobuya Watanabe:
Ring oscillator based clock generation for a radiation-hardened optically reconfigurable gate array VLSI. SOCC 2024: 1-6 - 2023
- [c123]Daisuke Bamba, Minoru Watanabe, Nobuya Watanabe:
Total-Ionizing-Dose Tolerance Analysis of a Radiation-Hardened Image Sensor. ICCE 2023: 1-2 - [c122]Takato Tanizawa, Minoru Watanabe:
Radiation-hardened stabilized power supply unit based on bipolar transistors. ICM 2023: 313-316 - [c121]Minoru Watanabe:
Radiation-hardened triple-modular redundant field programmable gate array with a two-phase clock. ISCAS 2023: 1-5 - [c120]Kakeru Ando, Minoru Watanabe, Nobuya Watanabe:
Multi-context-scrubbing operation for a 1-bit counter circuit. NEWCAS 2023: 1-4 - [c119]Masashi Tsujino, Minoru Watanabe, Nobuya Watanabe:
An optically reconfigurable gate array VLSI driven by an unstabilized power supply unit. SOCC 2023: 1-5 - 2022
- [c118]Sae Goto, Minoru Watanabe, Nobuya Watanabe:
Optically Reconfigurable Gate Array VLSI That Can Support a Perfect Parallel Configuration. APCCAS 2022: 241-245 - [c117]Akihiko Ushiroyama, Minoru Watanabe, Nobuya Watanabe, Akira Nagoya:
Convolutional neural network implementations using Vitis AI. CCWC 2022: 365-371 - [c116]Kaho Yamada, Takeshi Okazaki, Minoru Watanabe, Nobuya Watanabe:
Total Dose Tolerance Analysis of an Optically Reconfigurable Gate Array VLSI. ICECS 2022 2022: 1-4 - 2021
- [c115]Hirotoshi Ito, Minoru Watanabe:
Total-ionizing-dose tolerance evaluation of an optoelectronic field programmable gate array VLSI during operation. FPT 2021: 1-4 - [c114]Kurea Murakami, Minoru Watanabe:
Sequential Circuit Implementation Method for Multi-Context Scrubbing Operations on FPGAs. ISCAS 2021: 1-5
2010 – 2019
- 2019
- [c113]Masaki Watanabe, Minoru Watanabe:
Full-hardware triple modular and penta-modular redundancies using a high frequency majority voting operation. APCCAS 2019: 177-181 - [c112]Yusuke Takaki, Kohei Nagasu, Shin Abiko, Minoru Watanabe, Kentaro Sano:
FPGA implementation of a robot control algorithm. ETFA 2019: 1571-1574 - [c111]Hirotoshi Ito, Minoru Watanabe:
Radiation-degradation Analysis and a Circuit Performance Improvement Method for Optoelectronic Field Programmable Gate Array. SoCC 2019: 306-311 - 2018
- [j5]Minoru Watanabe:
Foreword. IEICE Trans. Inf. Syst. 101-D(2): 277 (2018) - [c110]Takumi Fujimori, Minoru Watanabe:
A 400 Mrad radiation-hardened optoelectronic embedded system with a silver-halide holographic memory. AHS 2018: 218-224 - [c109]Takumi Fujimori, Minoru Watanabe:
High total-ionizing-dose tolerance field programmable gate array. ISCAS 2018: 1-4 - [p1]Masato Motomura, Masanori Hariyama, Minoru Watanabe:
Advanced Devices and Architectures. Principles and Structures of FPGAs 2018: 207-231 - 2017
- [c108]Yoshizumi Ito, Minoru Watanabe, Akifumi Ogiwara:
500 Mrad total-ionizing-dose tolerance of a holographic memory on an optical FPGA. AHS 2017: 167-171 - [c107]Hiroki Shinba, Minoru Watanabe:
Optically reconfigurable gate array platform for mono-instruction set computer architecture. CCWC 2017: 1-4 - [c106]Takumi Fujimori, Minoru Watanabe:
Holographic Memory Calculation FPGA Accelerator for Optically Reconfigurable Gate Arrays. DASC/PiCom/DataCom/CyberSciTech 2017: 620-625 - [c105]Takumi Fujimori, Minoru Watanabe:
Multi-context scrubbing method. MWSCAS 2017: 1548-1551 - [c104]Takumi Fujimori, Minoru Watanabe:
Radiation tolerance demonstration of high-speed scrubbing on an optically reconfigurable gate array. SoCC 2017: 91-95 - 2016
- [c103]Shinya Furukawa, Ili Shairah Abdul Halim
, Minoru Watanabe, Fuminori Kobayashi:
Direct optical communication on an optically reconfigurable gate array. FGCT 2016: 17-20 - [c102]Yoshizumi Ito, Minoru Watanabe, Akifumi Ogiwara:
A 200 Mrad Radiation Tolerance of a Polymer-Dispersed Liquid Crystal Holographic Memory. HPCC/SmartCity/DSS 2016: 1534-1535 - [c101]Takumi Fujimori, Minoru Watanabe:
Full FPGA game machine. ICCE 2016: 431-432 - [c100]Bharat Ramanathan, Minoru Watanabe:
Photodiode sensitivity measurement methodology using low light intensity for optically reconfigurable gate arrays. ICCSE 2016: 454-457 - [c99]Tomoya Akabe
, Minoru Watanabe:
Reconfiguration Performance Recovery on Optically Reconfigurable Gate Arrays. VLSID 2016: 603-604 - 2015
- [c98]Minoru Watanabe, Takumi Fujimori:
Holographic scrubbing technique for a programmable gate array. AHS 2015: 1-5 - [c97]Retsu Moriwaki, Hiroyuki Ito, Kouta Akagi, Minoru Watanabe, Akifumi Ogiwara:
Total Ionizing Dose Effects of Optical Components on an Optically Reconfigurable Gate Array. ARC 2015: 393-400 - [c96]Takumi Fujimori, Minoru Watanabe:
Parallel-Operation-Oriented Optically Reconfigurable Gate Array. ARCS 2015: 3-14 - [c95]Takumi Fujimori, Tomoya Akabe
, Yoshizumi Ito, Kouta Akagi, Shinya Furukawa, Hiroki Shinba, Aoi Tanibata, Minoru Watanabe:
FPGA Trax Solver based on a neural network design. FPT 2015: 260-263 - [c94]Minoru Watanabe:
Sustainable advantage of a parallel configuration in an optical FPGA. SII 2015: 807-810 - 2014
- [c93]Takashi Yoza, Minoru Watanabe:
Enhanced Radiation Tolerance of an Optically Reconfigurable Gate Array by Exploiting an Inversion/Non-inversion Implementation. ARC 2014: 156-166 - [c92]Retsu Moriwaki, Hikaru Maekawa, Akifumi Ogiwara, Minoru Watanabe:
Optically reconfigurable gate array with an angle-multiplexed holographic memory. ACM Great Lakes Symposium on VLSI 2014: 341-346 - [c91]Takumi Fujimori, Minoru Watanabe:
Radiation Tolerance of Color Configuration on an Optically Reconfigurable Gate Array. IPDPS Workshops 2014: 205-210 - [c90]Yuki Kamikubo, Minoru Watanabe, Shoji Kawahito:
Image recognition system using an optical Fourier transform on a dynamically reconfigurable vision architecture. ISCAS 2014: 1528-1531 - 2013
- [c89]Yuichiro Yamaji, Minoru Watanabe:
Four-configuration-context optically reconfigurable gate array with a MEMS interleaving method. AHS 2013: 172-177 - [c88]Yuya Shirahashi, Minoru Watanabe:
Dependability-Increasing Method of Processors under a Space Radiation Environment. ARC 2013: 218 - [c87]Yuki Kamikubo, Minoru Watanabe, Shoji Kawahito:
Image recognition operation on a dynamically reconfigurable vison architecture. FPL 2013: 1-4 - [c86]Takumi Fujimori, Minoru Watanabe:
Color configuration method for an optically reconfigurable gate array. FPT 2013: 406-409 - [c85]Takashi Yoza, Retsu Moriwaki, Yuki Torigai, Yuki Kamikubo, Takayuki Kubota, Takahiro Watanabe, Takumi Fujimori, Hiroyuki Ito, Masato Seo, Kouta Akagi, Yuichiro Yamaji, Minoru Watanabe:
FPGA Blokus Duo Solver using a massively parallel architecture. FPT 2013: 494-497 - [c84]Takayuki Kubota, Minoru Watanabe:
0.18 μm CMOS process photodiode memory. ISCAS 2013: 1464-1467 - [c83]Akira Tanigawa, Minoru Watanabe:
Dependability-increasing technique for a multi-context optically reconfigurable gate array. ISCAS 2013: 1568-1571 - [c82]Hiroyuki Ito, Minoru Watanabe:
Fourier transformation on an optically reconfigurable gate array. MWSCAS 2013: 193-196 - 2012
- [j4]Takahiro Watanabe, Minoru Watanabe:
0.18 μm CMOS proess high-sensitivity optially reonfgurable gatearray VLSI. SIGARCH Comput. Archit. News 40(5): 82-86 (2012) - [c81]Takashi Yoza, Minoru Watanabe:
A 16-configuration-context dynamic optically reconfigurable gate array with a dependable laser array. AHS 2012: 92-98 - [c80]Takahiro Watanabe, Minoru Watanabe:
Triple Module Redundancy of a Laser Array Driver Circuit for Optically Reconfigurable Gate Arrays. ARC 2012: 163-173 - [c79]Takashi Yoza, Minoru Watanabe:
A 16-configuration-context robust optically reconfigurable gate array with a reconfiguration speed adjustment function. FPL 2012: 361-366 - [c78]Takahiro Watanabe, Minoru Watanabe:
High Speed - Low Power Optical Configuration on an ORGA with a Phase-modulation Type Holographic Memory. IPDPS Workshops 2012: 256-260 - [c77]Takahiro Watanabe, Minoru Watanabe:
0.18-um CMOS Process Highly Sensitive Differential Optically Reconfigurable Gate Array VLSI. ISVLSI 2012: 308-313 - [c76]Takahiro Watanabe, Minoru Watanabe:
Inversion/non-inversion reconfiguration scheme for a 0.18 J.1m CMOS process optically reconfigurable gate array VLSI. MWSCAS 2012: 117-120 - [c75]Hiroyuki Ito, Minoru Watanabe:
A Uniform Partitioning Method for Mono-Instruction Set Computer (MISC). NBiS 2012: 832-837 - [c74]Yuki Kamikubo, Minoru Watanabe, Shoji Kawahito:
Gray-level image recognition on a dynamically reconfigurable vision architecture. SoCC 2012: 61-65 - 2011
- [j3]Shinya Kubota, Minoru Watanabe:
A MEMS writer system embedded for a programmable optically reconfigurable gate array. SIGARCH Comput. Archit. News 39(4): 94-97 (2011) - [j2]Mao Nakajima, Minoru Watanabe:
Fast Optical Reconfiguration of a Nine-Context DORGA Using a Speed Adjustment Control. ACM Trans. Reconfigurable Technol. Syst. 4(2): 15:1-15:21 (2011) - [c73]Takayuki Mabuchi, Minoru Watanabe, Akifumi Ogiwara, Fuminori Kobayashi:
Optically reconflgurable gate array with a polymer-dispersed liquid crystal holographic memory. AHS 2011: 44-49 - [c72]Hironobu Morita, Minoru Watanabe:
MEMS Interleaving Read Operation of a Holographic Memory for Optically Reconfigurable Gate Arrays. ARC 2011: 242-252 - [c71]Takahiro Watanabe, Minoru Watanabe:
Dependable Optically Reconfigurable Gate Array with a Phase-Modulation Type Holographic Memory. FPL 2011: 34-37 - [c70]Takahiro Watanabe, Retsu Moriwaki, Yuichiro Yamaji, Yuki Kamikubo, Yuki Torigai, Yuki Nihira, Takashi Yoza, Yumiko Ueno, Yuji Aoyama, Minoru Watanabe:
An FPGA Connect6 Solver with a two-stage pipelined evaluation. FPT 2011: 1-4 - [c69]Yuki Torigai, Minoru Watanabe:
Triple module redundancy scheme on an optically reconfigure gate array. ISOCC 2011: 250-253 - [c68]Yuichiro Yamaji, Minoru Watanabe:
A 144-configuration context MEMS optically reconfigurable gate array. SoCC 2011: 237-241 - 2010
- [c67]Hironobu Morita, Minoru Watanabe:
Binary MEMS Optically Reconfigurable Gate Array. ACIS-ICIS 2010: 63-68 - [c66]Daisaku Seto, Minoru Watanabe:
Recovery method for a turn-off failure mode of a laser array on an ORGA. AHS 2010: 235-240 - [c65]Yuji Aoyama, Minoru Watanabe:
Acceleration method of optical reconfigurations using analog configuration contexts. AHS 2010: 304-308 - [c64]Daisaku Seto, Minoru Watanabe:
MEMS Dynamic Optically Reconfigurable Gate Array Usable under a Space Radiation Environment. ARC 2010: 134-144 - [c63]Daisaku Seto, Minoru Watanabe:
Recovery Method for a Laser Array Failure on Dynamic Optically Reconfigurable Gate Arrays. DFT 2010: 411-419 - [c62]Daisaku Seto, Minoru Watanabe:
Partial Block-by-Block Reconfiguration for a Dynamic Optically Reconfigurable Gate Array. ERSA 2010: 232-237 - [c61]Maki Yasuda, Minoru Watanabe:
Dynamically Reconfigurable Vision-Chip Architecture. FPL 2010: 508-512 - [c60]Yuichiro Yamaji, Minoru Watanabe:
A 64-context MEMS optically reconfigurable gate array. FPT 2010: 499-502 - [c59]Takayuki Mabuchi, Takahiro Watanabe, Retsu Moriwaki, Yuji Aoyama, Amarjargal Gundjalam, Yuichiro Yamaji, Hironari Nakada, Minoru Watanabe:
Othello Solver based on a soft-core MIMD processor array. FPT 2010: 511-514 - [c58]Mao Nakajima, Minoru Watanabe:
A 100-context optically reconfigurable gate array. ISCAS 2010: 2884-2887 - [c57]Yuji Aoyama, Minoru Watanabe:
Estimation of characteristic variation of photodiodes and its compensation method in an optically reconfigurable gate array. SoCC 2010: 243-247
2000 – 2009
- 2009
- [c56]Takayuki Mabuchi, Kenji Miyashiro, Minoru Watanabe, Akifumi Ogiwara:
Defect Tolerance of an Optically Reconfigurable Gate Array with a One-time Writable Volume Holographic Memory. AHS 2009: 106-111 - [c55]Mao Nakajima, Minoru Watanabe:
A Sixteen-Context Dynamic Optically Reconfigurable Gate Array. AHS 2009: 120-125 - [c54]Mao Nakajima, Minoru Watanabe:
Fast Optical Reconfiguration of a Nine-Context DORGA. ARC 2009: 123-132 - [c53]Mao Nakajima, Minoru Watanabe:
A 16-context Optically Reconfigurable Gate Array. ASAP 2009: 227-230 - [c52]Daisaku Seto, Minoru Watanabe:
An 11, 424 gate-count dynamic optically reconfigurable gate array with a photodiode memory architecture. ASP-DAC 2009: 117-118 - [c51]Shinya Kubota, Minoru Watanabe:
A Multi-Context Programmable Optically Reconfigurable Gate Array. ERSA 2009: 305-306 - [c50]Takayuki Mabuchi, Kenji Miyashiro, Minoru Watanabe, Akifumi Ogiwara:
Optically Reconfigurable Gate Array with a One-Time Writable Holographic Memory. ERSA 2009: 307-308 - [c49]Hironobu Morita, Minoru Watanabe:
Alignment compensation method for an optically reconfigurable gate array. ERSA 2009: 332-333 - [c48]Hironobu Morita, Minoru Watanabe:
Mems optically reconfigurable gate array. FPL 2009: 511-515 - [c47]Shinya Kubota, Minoru Watanabe:
A nine-context programmable optically reconfigurable gate array with semiconductor lasers. ACM Great Lakes Symposium on VLSI 2009: 269-274 - [c46]Mao Nakajima, Minoru Watanabe:
A 13.75 ns Holographic Reconfiguration of an Optically Differential Reconfigurable Gate Array. IIH-MSP 2009: 852-855 - [c45]Mao Nakajima, Minoru Watanabe:
Fast Reconfiguration Experiments of an Optically Differential Reconfigurable Gate Array with Nine Configuration Contexts. ISCAS 2009: 2013-2016 - [c44]Shinichi Kato, Minoru Watanabe:
Inversion/Non-inversion Implementation for an 11, 424 Gate-Count Dynamic Optically Reconfigurable Gate Array VLSI. SAMOS 2009: 139-148 - 2008
- [c43]Kouhi Shinohara, Minoru Watanabe:
A Double or Triple Module Redundancy Model Exploiting Dynamic Reconfigurations. AHS 2008: 114-121 - [c42]Mao Nakajima, Minoru Watanabe:
Dynamic holographic reconfiguration on a four-context ODRGA. ASAP 2008: 173-178 - [c41]Fuminori Kobayashi, Yasuyuki Morikawa, Minoru Watanabe:
MISC: Mono Instruction-Set Computer based on Dynamic Reconfiguration - a 6502 Perspective. ERSA 2008: 222-228 - [c40]Mao Nakajima, Minoru Watanabe:
A 770ns Holographic Reconfiguration of a Four-Context DORGA. ERSA 2008: 289-292 - [c39]Takayuki Mabuchi, Minoru Watanabe:
An analog reconfiguration-period adjustment technique for optically reconfigurable gate arrays. FPT 2008: 289-292 - [c38]Mao Nakajima, Minoru Watanabe:
An 11, 424-gate dynamic optically reconfigurable gate array VLSI. FPT 2008: 293-296 - [c37]Shinichi Kato, Minoru Watanabe:
Inversion/non-inversion zero-overhead dynamic optically reconfigurable gate array VLSI. FPT 2008: 377-380 - [c36]Mao Nakajima, Daisaku Seto, Minoru Watanabe:
A 937.5 ns multi-context holographic configuration with a 30.75 mus retention time. IPDPS 2008: 1-6 - [c35]Kouhi Shinohara, Minoru Watanabe:
Defect tolerance of holographic configurations in ORGAs. IPDPS 2008: 1-8 - [c34]Daisaku Seto, Minoru Watanabe:
A Dynamic Optically Reconfigurable Gate Array with a Silver-Halide Holographic Memory. ISVLSI 2008: 511-514 - [c33]Daisaku Seto, Minoru Watanabe:
Analysis of retention time under multi-configuration on a DORGA. SoCC 2008: 131-134 - [c32]Naoki Yamaguchi, Minoru Watanabe:
An Optical Reconfiguration System with Four Contexts. VLSI Design 2008: 601-606 - [c31]Minoru Watanabe, Naoki Yamaguchi:
An Acceleration and Optimization Method for Optical Reconfiguration. VLSI Design 2008: 607-612 - 2007
- [c30]Minoru Watanabe, Fuminori Kobayashi:
A 0.35um CMOS 1, 632-gate-count Zero-Overhead Dynamic Optically Reconfigurable Gate Array VLSI. ASP-DAC 2007: 124-125 - [c29]Minoru Watanabe, Takenori Shiki, Fuminori Kobayashi:
272 Gate Count Optically Differential Reconfigurable Gate Array VLSI. ERSA 2007: 259-264 - [c28]Minoru Watanabe:
Optimization of Reconfiguration-speed Control Bits for an Optically Reconfigurable Gate Array. ERSA 2007: 291-294 - [c27]Daisaku Seto, Minoru Watanabe:
Reconfiguration performance analysis of a dynamic optically reconfigurable gate array architecture. FPT 2007: 265-268 - [c26]Mao Nakajima, Minoru Watanabe:
A 62.5 ns holographic reconfiguration of an optically differential reconfigurable gate array. FPT 2007: 297-300 - [c25]Rio Miyazaki, Minoru Watanabe, Fuminori Kobayashi:
A multi-context holographic memory recording system for Optically Reconfigurable Gate Arrays. IPDPS 2007: 1-7 - [c24]Minoru Watanabe, Fuminori Kobayashi:
Holographic memory reconfigurable VLSI. ISCAS 2007: 401-404 - [c23]Minoru Watanabe:
An 11, 424 gate-count zero-overhead dynamic optically reconfigurable gate array VLSI. SoCC 2007: 75-78 - 2006
- [c22]Minoru Watanabe, Fuminori Kobayashi:
Optically Reconfigurable Gate Arrays vs. ASICs. APCCAS 2006: 1164-1167 - [c21]Minoru Watanabe, Fuminori Kobayashi:
A 1, 632 Gate-Count Zero-Overhead Dynamic Optically Reconfigurable Gate Array VLSI. ARC 2006: 268-273 - [c20]Minoru Watanabe, Fuminori Kobayashi:
A 476-gate-count dynamic optically reconfigurable gate array VLSI chip in a standard 0.35 micrometer CMOS technology. ASP-DAC 2006: 108-109 - [c19]Minoru Watanabe, Mototsugu Miyano, Fuminori Kobayashi:
Differential Reconfiguration Architecture suitable for a Holographic Memory. ERSA 2006: 198-206 - [c18]Minoru Watanabe, Fuminori Kobayashi:
Logic Synthesis and Place-and-Route Environment for ORGAs. ERSA 2006: 237-238 - [c17]Minoru Watanabe, Fuminori Kobayashi:
Shield Effect Analysis for a Gate Array on An Optically Reconfigurable Gate Array. ERSA 2006: 239-240 - [c16]Minoru Watanabe, Fuminori Kobayashi:
A Reconfiguration Speed Adjustment Technique for ORGAs with a Holographic Memory. FPL 2006: 1-6 - [c15]Minoru Watanabe, Fuminori Kobayashi:
Power consumption advantage of a dynamic optically reconfigurable gate array. IPDPS 2006 - [c14]Minoru Watanabe, Mototsugu Miyano, Fuminori Kobayashi:
An optically differential reconfigurable gate array with a holographic memory. IPDPS 2006 - 2005
- [c13]Mototsugu Miyano, Minoru Watanabe, Fuminori Kobayashi:
Rapid Reconfiguration of an Optically Differential Reconfigurable Gate Array with Pulse Lasers. FPT 2005: 287-288 - [c12]Minoru Watanabe, Fuminori Kobayashi:
A Zero-Overhead Dynamic Optically Reconfigurable Gate Array. FPT 2005: 297-298 - [c11]Minoru Watanabe, Fuminori Kobayashi:
An Optically Differential Reconfigurable Gate Array VLSI Chip with a Dynamic Reconfiguration Circuit. IPDPS 2005 - [c10]Minoru Watanabe, Fuminori Kobayashi:
A 16, 000-gate-count optically reconfigurable gate array in a standard 0.35µm CMOS technology. ISCAS (2) 2005: 1214-1217 - [c9]Minoru Watanabe, Fuminori Kobayashi:
An Improved Dynamic Optically Reconfigurable Gate Array. ISVLSI 2005: 136-141 - [c8]Mototsugu Miyano, Minoru Watanabe, Fuminori Kobayashi:
Optically Differential Reconfigurable Gate Array Using an Optical System with VCSELs. ISVLSI 2005: 274-275 - 2004
- [c7]Minoru Watanabe, Fuminori Kobayashi:
Testing Method for Optical Connections Using Gate Array Structure in ORGAs. ERSA 2004: 299-302 - [c6]Minoru Watanabe, Fuminori Kobayashi:
Timing Analysis of an Optically Differential Reconfigurable Gate Array for Dynamically Reconfigurable Processors. ERSA 2004: 311 - [c5]Minoru Watanabe, Fuminori Kobayashi:
A High-Density Optically Reconfigurable Gate Array Using Dynamic Method. FPL 2004: 261-269 - [c4]Minoru Watanabe, Fuminori Kobayashi:
An optically differential reconfigurable gate array using a 0.18 μm CMOS process. SoCC 2004: 281-284 - [c3]Minoru Watanabe, Fuminori Kobayashi:
An Optically Differential Reconfigurable Gate Array with a partial reconfiguration optical system and its power consumption estimation. VLSI Design 2004: 735- - 2003
- [j1]Takashi Sotohebo, Minoru Watanabe, Funtinori Kobayashi:
An FPGA Implementation of Finite Physical Quantity Neural Network. J. Robotics Mechatronics 15(2): 136-142 (2003) - [c2]Minoru Watanabe, Fuminori Kobayashi:
An Optically Differential Reconfigurable Gate Array with a Dynamic Reconfiguration Circuit. IPDPS 2003: 188 - 2002
- [c1]Minoru Watanabe, Fuminori Kobayashi:
An optically differential reconfigurable gate array and its power consumption estimation. FPT 2002: 197-202
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:28 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint