default search action
Robert C. Williamson
Person information
- affiliation: Universitaet Tuebingen, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j56]Christian Fröhlich, Rabanus Derr, Robert C. Williamson:
Strictly frequentist imprecise probability. Int. J. Approx. Reason. 168: 109148 (2024) - [j55]Robert C. Williamson, Zac Cranko:
Information Processing Equalities and the Information-Risk Bridge. J. Mach. Learn. Res. 25: 103:1-103:53 (2024) - [j54]Christian Fröhlich, Robert C. Williamson:
Risk Measures and Upper Probabilities: Coherence and Stratification. J. Mach. Learn. Res. 25: 207:1-207:100 (2024) - [c77]Christian Fröhlich, Robert C. Williamson:
Insights From Insurance for Fair Machine Learning. FAccT 2024: 407-421 - [i37]Rabanus Derr, Robert C. Williamson:
Four Facets of Forecast Felicity: Calibration, Predictiveness, Randomness and Regret. CoRR abs/2401.14483 (2024) - [i36]Facundo Mémoli, Brantley Vose, Robert C. Williamson:
Geometry and Stability of Supervised Learning Problems. CoRR abs/2403.01660 (2024) - [i35]Armando J. Cabrera Pacheco, Rabanus Derr, Robert C. Williamson:
An Axiomatic Approach to Loss Aggregation and an Adapted Aggregating Algorithm. CoRR abs/2406.02292 (2024) - [i34]Mina Remeli, Moritz Hardt, Robert C. Williamson:
Limits to Predicting Online Speech Using Large Language Models. CoRR abs/2407.12850 (2024) - [i33]Benedikt Höltgen, Robert C. Williamson:
Causal modelling without counterfactuals and individualised effects. CoRR abs/2407.17385 (2024) - [i32]Benedikt Höltgen, Robert C. Williamson:
Five reasons against assuming a data-generating distribution in Machine Learning. CoRR abs/2407.17395 (2024) - [i31]Christian Fröhlich, Robert C. Williamson:
Scoring Rules and Calibration for Imprecise Probabilities. CoRR abs/2410.23001 (2024) - 2023
- [j53]Rabanus Derr, Robert C. Williamson:
Systems of Precision: Coherent Probabilities on Pre-Dynkin Systems and Coherent Previsions on Linear Subspaces. Entropy 25(9): 1283 (2023) - [j52]Robert C. Williamson, Zac Cranko:
The Geometry and Calculus of Losses. J. Mach. Learn. Res. 24: 342:1-342:72 (2023) - [j51]Christian Fröhlich, Robert C. Williamson:
Tailoring to the Tails: Risk Measures for Fine-Grained Tail Sensitivity. Trans. Mach. Learn. Res. 2023 (2023) - [j50]Armando J. Cabrera Pacheco, Robert C. Williamson:
The Geometry of Mixability. Trans. Mach. Learn. Res. 2023 (2023) - [c76]Benedikt Höltgen, Robert C. Williamson:
On the Richness of Calibration. FAccT 2023: 1124-1138 - [c75]Yishay Mansour, Richard Nock, Robert C. Williamson:
Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice. ICML 2023: 23706-23742 - [c74]Rabanus Derr, Robert C. Williamson:
The set structure of precision. ISIPTA 2023: 165-176 - [c73]Christian Fröhlich, Rabanus Derr, Robert C. Williamson:
Towards a strictly frequentist theory of imprecise probability. ISIPTA 2023: 230-240 - [i30]Benedikt Höltgen, Robert C. Williamson:
On the Richness of Calibration. CoRR abs/2302.04118 (2023) - [i29]Armando J. Cabrera Pacheco, Robert C. Williamson:
The Geometry of Mixability. CoRR abs/2302.11905 (2023) - [i28]Christian Fröhlich, Robert C. Williamson:
Insights From Insurance for Fair Machine Learning: Responsibility, Performativity and Aggregates. CoRR abs/2306.14624 (2023) - [i27]Laura Iacovissi, Nan Lu, Robert C. Williamson:
A General Framework for Learning under Corruption: Label Noise, Attribute Noise, and Beyond. CoRR abs/2307.08643 (2023) - 2022
- [j49]Lachlan McCalman, Daniel Steinberg, Grace Abuhamad, Marc-Etienne Brunet, Robert C. Williamson, Richard S. Zemel:
Assessing AI Fairness in Finance. Computer 55(1): 94-97 (2022) - [i26]Yishay Mansour, Richard Nock, Robert C. Williamson:
What killed the Convex Booster ? CoRR abs/2205.09628 (2022) - [i25]Christian Fröhlich, Robert C. Williamson:
Risk Measures and Upper Probabilities: Coherence and Stratification. CoRR abs/2206.03183 (2022) - [i24]Robert C. Williamson, Zac Cranko:
Information Processing Equalities and the Information-Risk Bridge. CoRR abs/2207.11987 (2022) - [i23]Rabanus Derr, Robert C. Williamson:
Fairness and Randomness in Machine Learning: Statistical Independence and Relativization. CoRR abs/2207.13596 (2022) - [i22]Christian Fröhlich, Robert C. Williamson:
Tailoring to the Tails: Risk Measures for Fine-Grained Tail Sensitivity. CoRR abs/2208.03066 (2022) - [i21]Robert C. Williamson, Zac Cranko:
The Geometry and Calculus of Losses. CoRR abs/2209.00238 (2022) - 2020
- [c72]Zakaria Mhammedi, Benjamin Guedj, Robert C. Williamson:
PAC-Bayesian Bound for the Conditional Value at Risk. NeurIPS 2020 - [i20]Zakaria Mhammedi, Benjamin Guedj, Robert C. Williamson:
PAC-Bayesian Bound for the Conditional Value at Risk. CoRR abs/2006.14763 (2020)
2010 – 2019
- 2019
- [c71]Daniel McNamara, Cheng Soon Ong, Robert C. Williamson:
Costs and Benefits of Fair Representation Learning. AIES 2019: 263-270 - [c70]Richard Nock, Robert C. Williamson:
Lossless or Quantized Boosting with Integer Arithmetic. ICML 2019: 4829-4838 - [c69]Robert C. Williamson, Aditya Krishna Menon:
Fairness risk measures. ICML 2019: 6786-6797 - [c68]Hisham Husain, Richard Nock, Robert C. Williamson:
A Primal-Dual link between GANs and Autoencoders. NeurIPS 2019: 413-422 - [i19]Robert C. Williamson, Aditya Krishna Menon:
Fairness risk measures. CoRR abs/1901.08665 (2019) - [i18]Hisham Husain, Richard Nock, Robert C. Williamson:
Adversarial Networks and Autoencoders: The Primal-Dual Relationship and Generalization Bounds. CoRR abs/1902.00985 (2019) - 2018
- [c67]Aditya Krishna Menon, Robert C. Williamson:
The cost of fairness in binary classification. FAT 2018: 107-118 - [c66]Zakaria Mhammedi, Robert C. Williamson:
Constant Regret, Generalized Mixability, and Mirror Descent. NeurIPS 2018: 7430-7439 - [i17]Zakaria Mhammedi, Robert C. Williamson:
Constant Regret, Generalized Mixability, and Mirror Descent. CoRR abs/1802.06965 (2018) - [i16]Parameswaran Kamalaruban, Robert C. Williamson:
Minimax Lower Bounds for Cost Sensitive Classification. CoRR abs/1805.07723 (2018) - [i15]Parameswaran Kamalaruban, Robert C. Williamson, Xinhua Zhang:
Exp-Concavity of Proper Composite Losses. CoRR abs/1805.07737 (2018) - 2017
- [j48]Brendan van Rooyen, Robert C. Williamson:
A Theory of Learning with Corrupted Labels. J. Mach. Learn. Res. 18: 228:1-228:50 (2017) - [c65]Richard Nock, Zac Cranko, Aditya Krishna Menon, Lizhen Qu, Robert C. Williamson:
f-GANs in an Information Geometric Nutshell. NIPS 2017: 456-464 - [i14]Aditya Krishna Menon, Robert C. Williamson:
The cost of fairness in classification. CoRR abs/1705.09055 (2017) - [i13]Richard Nock, Zac Cranko, Aditya Krishna Menon, Lizhen Qu, Robert C. Williamson:
f-GANs in an Information Geometric Nutshell. CoRR abs/1707.04385 (2017) - [i12]Daniel McNamara, Cheng Soon Ong, Robert C. Williamson:
Provably Fair Representations. CoRR abs/1710.04394 (2017) - 2016
- [j47]Aditya Krishna Menon, Robert C. Williamson:
Bipartite Ranking: a Risk-Theoretic Perspective. J. Mach. Learn. Res. 17: 195:1-195:102 (2016) - [j46]Robert C. Williamson, Elodie Vernet, Mark D. Reid:
Composite Multiclass Losses. J. Mach. Learn. Res. 17: 223:1-223:52 (2016) - [i11]Daniel McNamara, Cheng Soon Ong, Robert C. Williamson:
A Modular Theory of Feature Learning. CoRR abs/1611.03125 (2016) - 2015
- [j45]Tim van Erven, Peter D. Grünwald, Nishant A. Mehta, Mark D. Reid, Robert C. Williamson:
Fast rates in statistical and online learning. J. Mach. Learn. Res. 16: 1793-1861 (2015) - [c64]Parameswaran Kamalaruban, Robert C. Williamson, Xinhua Zhang:
Exp-Concavity of Proper Composite Losses. COLT 2015: 1035-1065 - [c63]Mark D. Reid, Rafael M. Frongillo, Robert C. Williamson, Nishant A. Mehta:
Generalized Mixability via Entropic Duality. COLT 2015: 1501-1522 - [c62]Brendan van Rooyen, Aditya Krishna Menon, Robert C. Williamson:
Learning with Symmetric Label Noise: The Importance of Being Unhinged. NIPS 2015: 10-18 - [i10]Brendan van Rooyen, Robert C. Williamson:
A Theory of Feature Learning. CoRR abs/1504.00083 (2015) - [i9]Brendan van Rooyen, Robert C. Williamson:
Learning in the Presence of Corruption. CoRR abs/1504.00091 (2015) - [i8]Brendan van Rooyen, Aditya Krishna Menon, Robert C. Williamson:
Learning with Symmetric Label Noise: The Importance of Being Unhinged. CoRR abs/1505.07634 (2015) - [i7]Tim van Erven, Peter D. Grünwald, Nishant A. Mehta, Mark D. Reid, Robert C. Williamson:
Fast rates in statistical and online learning. CoRR abs/1507.02592 (2015) - 2014
- [c61]Aditya Krishna Menon, Robert C. Williamson:
Bayes-Optimal Scorers for Bipartite Ranking. COLT 2014: 68-106 - [c60]Ingo Steinwart, Chloé Pasin, Robert C. Williamson, Siyu Zhang:
Elicitation and Identification of Properties. COLT 2014: 482-526 - [c59]Harish G. Ramaswamy, Balaji Srinivasan Babu, Shivani Agarwal, Robert C. Williamson:
On the Consistency of Output Code Based Learning Algorithms for Multiclass Learning Problems. COLT 2014: 885-902 - [c58]Robert C. Williamson:
The Geometry of Losses. COLT 2014: 1078-1108 - [c57]Nishant A. Mehta, Robert C. Williamson:
From Stochastic Mixability to Fast Rates. NIPS 2014: 1197-1205 - [i6]Mark D. Reid, Rafael M. Frongillo, Robert C. Williamson:
Generalised Mixability, Constant Regret, and Bayesian Updating. CoRR abs/1403.2433 (2014) - [i5]Nishant A. Mehta, Robert C. Williamson:
From Stochastic Mixability to Fast Rates. CoRR abs/1406.3781 (2014) - [i4]Mark D. Reid, Rafael M. Frongillo, Robert C. Williamson, Nishant A. Mehta:
Generalized Mixability via Entropic Duality. CoRR abs/1406.6130 (2014) - 2013
- [c56]Robert C. Williamson:
Loss Functions. Empirical Inference 2013: 71-80 - 2012
- [j44]Tim van Erven, Mark D. Reid, Robert C. Williamson:
Mixability is Bayes Risk Curvature Relative to Log Loss. J. Mach. Learn. Res. 13: 1639-1663 (2012) - [c55]Mark D. Reid, Robert C. Williamson, Peng Sun:
The Convexity and Design of Composite Multiclass Losses. ICML 2012 - [c54]Tim van Erven, Peter D. Grünwald, Mark D. Reid, Robert C. Williamson:
Mixability in Statistical Learning. NIPS 2012: 1700-1708 - [c53]Dario García-García, Robert C. Williamson:
Divergences and Risks for Multiclass Experiments. COLT 2012: 28.1-28.20 - [c52]Ulrike von Luxburg, Robert C. Williamson, Isabelle Guyon:
Clustering: Science or Art? ICML Unsupervised and Transfer Learning 2012: 65-80 - [e2]Shie Mannor, Nathan Srebro, Robert C. Williamson:
COLT 2012 - The 25th Annual Conference on Learning Theory, June 25-27, 2012, Edinburgh, Scotland. JMLR Proceedings 23, JMLR.org 2012 [contents] - [i3]Mark D. Reid, Robert C. Williamson, Peng Sun:
The Convexity and Design of Composite Multiclass Losses. CoRR abs/1206.4663 (2012) - [i2]Ayman Ghoneim, Robert C. Williamson:
Strategy-Proof Prediction Markets. CoRR abs/1212.5764 (2012) - 2011
- [j43]Mark D. Reid, Robert C. Williamson:
Information, Divergence and Risk for Binary Experiments. J. Mach. Learn. Res. 12: 731-817 (2011) - [c51]Elodie Vernet, Robert C. Williamson, Mark D. Reid:
Composite Multiclass Losses. NIPS 2011: 1224-1232 - [c50]Tim van Erven, Mark D. Reid, Robert C. Williamson:
Mixability is Bayes Risk Curvature Relative to Log Loss. COLT 2011: 233-252 - 2010
- [j42]Mark D. Reid, Robert C. Williamson:
Composite Binary Losses. J. Mach. Learn. Res. 11: 2387-2422 (2010) - [c49]Mark D. Reid, Robert C. Williamson:
Convexity of Proper Composite Binary Losses. AISTATS 2010: 637-644
2000 – 2009
- 2009
- [c48]Mark D. Reid, Robert C. Williamson:
Generalised Pinsker Inequalities. COLT 2009 - [c47]Mark D. Reid, Robert C. Williamson:
Surrogate regret bounds for proper losses. ICML 2009: 897-904 - [i1]Mark D. Reid, Robert C. Williamson:
Generalised Pinsker Inequalities. CoRR abs/0906.1244 (2009) - 2008
- [j41]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
Correction to "The Importance of Convexity in Learning With Squared Loss". IEEE Trans. Inf. Theory 54(9): 4395 (2008) - 2007
- [j40]Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Léon Bottou, Geoffrey Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Edward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander J. Smola, Pascal Vincent, Jason Weston, Robert C. Williamson:
The Need for Open Source Software in Machine Learning. J. Mach. Learn. Res. 8: 2443-2466 (2007) - 2006
- [j39]Eric A. Lehmann, Robert C. Williamson:
Particle Filter Design Using Importance Sampling for Acoustic Source Localisation and Tracking in Reverberant Environments. EURASIP J. Adv. Signal Process. 2006 (2006) - 2005
- [j38]Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson:
Learning the Kernel with Hyperkernels. J. Mach. Learn. Res. 6: 1043-1071 (2005) - [c46]Omri Guttman, S. V. N. Vishwanathan, Robert C. Williamson:
Learnability of Probabilistic Automata via Oracles. ALT 2005: 171-182 - 2004
- [j37]Jyrki Kivinen, Alexander J. Smola, Robert C. Williamson:
Online learning with kernels. IEEE Trans. Signal Process. 52(8): 2165-2176 (2004) - 2003
- [j36]Darren B. Ward, Eric A. Lehmann, Robert C. Williamson:
Particle filtering algorithms for tracking an acoustic source in a reverberant environment. IEEE Trans. Speech Audio Process. 11(6): 826-836 (2003) - [c45]Eric A. Lehmann, Darren B. Ward, Robert C. Williamson:
Experimental comparison of particle filtering algorithms for acoustic source localization in a reverberant room. ICASSP (5) 2003: 177-180 - [c44]Terence Betlehem, Robert C. Williamson:
Acoustic beamforming exploiting directionality of human speech sources. ICASSP (5) 2003: 365-368 - [c43]Edward Harrington, Jyrki Kivinen, Robert C. Williamson:
Channel equalization and the Bayes point machine. ICASSP (4) 2003: 493-496 - [c42]James A. McGowan, Robert C. Williamson:
Loop removal from LDPC codes. ITW 2003: 230-233 - [c41]Edward Harrington, Ralf Herbrich, Jyrki Kivinen, John C. Platt, Robert C. Williamson:
Online Bayes Point Machines. PAKDD 2003: 241-252 - 2002
- [j35]Ralf Herbrich, Robert C. Williamson:
Algorithmic Luckiness. J. Mach. Learn. Res. 3: 175-212 (2002) - [j34]Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Robert C. Williamson:
Covering numbers for support vector machines. IEEE Trans. Inf. Theory 48(1): 239-250 (2002) - [j33]Richard K. Martin, William A. Sethares, Robert C. Williamson, C. Richard Johnson Jr.:
Exploiting sparsity in adaptive filters. IEEE Trans. Signal Process. 50(8): 1883-1894 (2002) - [c40]Jyrki Kivinen, Alexander J. Smola, Robert C. Williamson:
Large Margin Classification for Moving Targets. ALT 2002: 113-127 - [c39]Shahar Mendelson, Robert C. Williamson:
Agnostic Learning Nonconvex Function Classes. COLT 2002: 1-13 - [c38]Darren B. Ward, Robert C. Williamson:
Particle filter beamforming for acoustic source localization in a reverberant environment. ICASSP 2002: 1777-1780 - [c37]Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson:
Hyperkernels. NIPS 2002: 478-485 - 2001
- [j32]Alexander J. Smola, Sebastian Mika, Bernhard Schölkopf, Robert C. Williamson:
Regularized Principal Manifolds. J. Mach. Learn. Res. 1: 179-209 (2001) - [j31]Robert E. Mahony, Robert C. Williamson:
Prior Knowledge and Preferential Structures in Gradient Descent Learning Algorithms. J. Mach. Learn. Res. 1: 311-355 (2001) - [j30]Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J. Smola, Robert C. Williamson:
Estimating the Support of a High-Dimensional Distribution. Neural Comput. 13(7): 1443-1471 (2001) - [j29]Robert C. Williamson, Alexander J. Smola, Bernhard Schölkopf:
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Trans. Inf. Theory 47(6): 2516-2532 (2001) - [j28]Simon I. Hill, Robert C. Williamson:
Convergence of exponentiated gradient algorithms. IEEE Trans. Signal Process. 49(6): 1208-1215 (2001) - [c36]Marshall Shepard, Robert C. Williamson:
Very low voltage power conversion. ISCAS (3) 2001: 289-292 - [c35]Ralf Herbrich, Robert C. Williamson:
Algorithmic Luckiness. NIPS 2001: 391-397 - [c34]Adam Kowalczyk, Alexander J. Smola, Robert C. Williamson:
Kernel Machines and Boolean Functions. NIPS 2001: 439-446 - [c33]Jyrki Kivinen, Alexander J. Smola, Robert C. Williamson:
Online Learning with Kernels. NIPS 2001: 785-792 - [p1]Darren B. Ward, Rodney A. Kennedy, Robert C. Williamson:
Constant Directivity Beamforming. Microphone Arrays 2001: 3-17 - [e1]David P. Helmbold, Robert C. Williamson:
Computational Learning Theory, 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amsterdam, The Netherlands, July 16-19, 2001, Proceedings. Lecture Notes in Computer Science 2111, Springer 2001, ISBN 3-540-42343-5 [contents] - 2000
- [j27]Bernhard Schölkopf, Alexander J. Smola, Robert C. Williamson, Peter L. Bartlett:
New Support Vector Algorithms. Neural Comput. 12(5): 1207-1245 (2000) - [j26]Biljana D. Radlovic, Robert C. Williamson, Rodney A. Kennedy:
Equalization in an acoustic reverberant environment: robustness results. IEEE Trans. Speech Audio Process. 8(3): 311-319 (2000) - [c32]Robert C. Williamson, Alexander J. Smola, Bernhard Schölkopf:
Entropy Numbers of Linear Function Classes. COLT 2000: 309-319 - [c31]Paul D. Teal, Robert C. Williamson, Rodney A. Kennedy:
Error performance of a channel of known impulse response. ICASSP 2000: 2733-2736 - [c30]Thore Graepel, Ralf Herbrich, Robert C. Williamson:
From Margin to Sparsity. NIPS 2000: 210-216 - [c29]Alexander J. Smola, Zoltán L. Óvári, Robert C. Williamson:
Regularization with Dot-Product Kernels. NIPS 2000: 308-314
1990 – 1999
- 1999
- [j25]Thushara D. Abhayapala, Rodney A. Kennedy, Robert C. Williamson:
Noise modeling for nearfield array optimization. IEEE Signal Process. Lett. 6(8): 210-212 (1999) - [j24]Erik Weyer, Robert C. Williamson, Iven M. Y. Mareels:
Finite sample properties of linear model identification. IEEE Trans. Autom. Control. 44(7): 1370-1383 (1999) - [c28]Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Robert C. Williamson:
Covering Numbers for Support Vector Machines. COLT 1999: 267-277 - [c27]Alexander J. Smola, Robert C. Williamson, Sebastian Mika, Bernhard Schölkopf:
Regularized Principal Manifolds. EuroCOLT 1999: 214-229 - [c26]Robert C. Williamson, Alexander J. Smola, Bernhard Schölkopf:
Entropy Numbers, Operators and Support Vector Kernels. EuroCOLT 1999: 285-299 - [c25]Biljana D. Radlovic, Robert C. Williamson, Rodney A. Kennedy:
On the poor robustness of sound equalization in reverberant environments. ICASSP 1999: 881-884 - [c24]Simon I. Hill, Robert C. Williamson:
An analysis of the exponentiated gradient descent algorithm. ISSPA 1999: 379-382 - [c23]Thushara D. Abhayapala, Rodney A. Kennedy, Robert C. Williamson, Darren B. Ward:
Nearfield broadband adaptive beamforming. ISSPA 1999: 839-842 - [c22]Darren B. Ward, Robert C. Williamson:
Beamforming for a source located in the interior of a sensor array. ISSPA 1999: 873-876 - [c21]Alexander J. Smola, John Shawe-Taylor, Bernhard Schölkopf, Robert C. Williamson:
The Entropy Regularization Information Criterion. NIPS 1999: 342-348 - [c20]Bernhard Schölkopf, Robert C. Williamson, Alexander J. Smola, John Shawe-Taylor, John C. Platt:
Support Vector Method for Novelty Detection. NIPS 1999: 582-588 - 1998
- [j23]Erik Weyer, Robert C. Williamson, Iven M. Y. Mareels:
On the Relationship Between Behavioural and Standard Methods for System Identification. Autom. 34(6): 801-804 (1998) - [j22]John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, Martin Anthony:
Structural Risk Minimization Over Data-Dependent Hierarchies. IEEE Trans. Inf. Theory 44(5): 1926-1940 (1998) - [j21]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
The Importance of Convexity in Learning with Squared Loss. IEEE Trans. Inf. Theory 44(5): 1974-1980 (1998) - [c19]Thushara D. Abhayapala, Rodney A. Kennedy, Robert C. Williamson:
Broadband beamforming using elementary shape invariant beampatterns. ICASSP 1998: 2041-2044 - [c18]Bernhard Schölkopf, Peter L. Bartlett, Alexander J. Smola, Robert C. Williamson:
Shrinking the Tube: A New Support Vector Regression Algorithm. NIPS 1998: 330-336 - 1997
- [j20]Kim L. Blackmore, Robert C. Williamson, Iven M. Y. Mareels, William A. Sethares:
Online learning via congregational gradient descent. Math. Control. Signals Syst. 10(4): 331-363 (1997) - [j19]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
Correction to 'Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes'. Neural Comput. 9(4): 765-769 (1997) - [j18]Jennifer A. Fulton, Robert R. Bitmead, Robert C. Williamson:
Sampling rate versus quantisation in speech coders. Signal Process. 56(3): 209-218 (1997) - [j17]Kim L. Blackmore, Robert C. Williamson, Iven M. Y. Mareels:
Decision region approximation by polynomials or neural networks. IEEE Trans. Inf. Theory 43(3): 903-907 (1997) - [c17]John Shawe-Taylor, Robert C. Williamson:
A PAC Analysis of a Bayesian Estimator. COLT 1997: 2-9 - [c16]Darren B. Ward, Rodney A. Kennedy, Robert C. Williamson:
An adaptive algorithm for broadband frequency invariant beamforming. ICASSP 1997: 3737-3740 - 1996
- [j16]Peter L. Bartlett, Philip M. Long, Robert C. Williamson:
Fat-Shattering and the Learnability of Real-Valued Functions. J. Comput. Syst. Sci. 52(3): 434-452 (1996) - [j15]Peter L. Bartlett, Robert C. Williamson:
The VC Dimension and Pseudodimension of Two-Layer Neural Networks with Discrete Inputs. Neural Comput. 8(3): 625-628 (1996) - [j14]Darren B. Ward, Rodney A. Kennedy, Robert C. Williamson:
FIR filter design for frequency invariant beamformers. IEEE Signal Process. Lett. 3(3): 69-71 (1996) - [j13]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
Efficient agnostic learning of neural networks with bounded fan-in. IEEE Trans. Inf. Theory 42(6): 2118-2132 (1996) - [c15]John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, Martin Anthony:
A Framework for Structural Risk Minimisation. COLT 1996: 68-76 - [c14]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
The Importance of Convexity in Learning with Squared Loss. COLT 1996: 140-146 - [c13]Rodney A. Kennedy, Thushara D. Abhayapala, Darren B. Ward, Robert C. Williamson:
Nearfield broadband frequency invariant beamforming. ICASSP 1996: 905-908 - 1995
- [j12]Uwe Helmke, Robert C. Williamson:
Neural networks, rational functions, and realization theory. Math. Control. Signals Syst. 8(1): 27-49 (1995) - [j11]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
Lower Bounds on the VC Dimension of Smoothly Parameterized Function Classes. Neural Comput. 7(5): 1040-1053 (1995) - [j10]Robert C. Williamson, Uwe Helmke:
Existence and uniqueness results for neural network approximations. IEEE Trans. Neural Networks 6(1): 2-13 (1995) - [j9]Ben James, Brian D. O. Anderson, Robert C. Williamson:
Characterization of threshold for single tone maximum likelihood frequency estimation. IEEE Trans. Signal Process. 43(4): 817-821 (1995) - [j8]Mehmet Karan, Brian D. O. Anderson, Robert C. Williamson:
An efficient calculation of the moments of matched and mismatched hidden Markov models. IEEE Trans. Signal Process. 43(10): 2422-2425 (1995) - [c12]Kim L. Blackmore, Robert C. Williamson, Iven M. Y. Mareels, William A. Sethares:
Online Learning via Congregational Gradient Descent. COLT 1995: 265-272 - [c11]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
On Efficient Agnostic Learning of Linear Combinations of Basis Functions. COLT 1995: 369-376 - [c10]Adam Kowalczyk, J. Szymariski, Robert C. Williamson:
Learning curves from a modified VC-formalism: a case study. ICNN 1995: 2939-2943 - [c9]Adam Kowalczyk, Jacek Szymanski, Peter L. Bartlett, Robert C. Williamson:
Examples of learning curves from a modified VC-formalism. NIPS 1995: 344-350 - 1994
- [j7]Robert C. Williamson, Ben James, Brian D. O. Anderson, Peter J. Kootsookos:
Threshold effects in multiharmonic maximum likelihood frequency estimation. Signal Process. 37(3): 309-331 (1994) - [j6]Ben James, Brian D. O. Anderson, Robert C. Williamson:
Conditional mean and maximum likelihood approaches to multiharmonic frequency estimation. IEEE Trans. Signal Process. 42(6): 1366-1375 (1994) - [j5]Mehmet Karan, Robert C. Williamson, Brian D. O. Anderson:
Performance of the maximum likelihood constant frequency estimator for frequency tracking. IEEE Trans. Signal Process. 42(10): 2749-2757 (1994) - [c8]Peter L. Bartlett, Philip M. Long, Robert C. Williamson:
Fat-Shattering and the Learnability of Real-Valued Functions. COLT 1994: 299-310 - [c7]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes. COLT 1994: 362-367 - [c6]Mehmet Karan, Brian D. O. Anderson, Robert C. Williamson:
A simple calculation of the joint moments of hidden Markov models. ICASSP (4) 1994: 333-336 - 1993
- [j4]Brian C. Lovell, Robert C. Williamson, Boualem Boashash:
The relationship between instantaneous frequency and time-frequency representations. IEEE Trans. Signal Process. 41(3): 1458-1461 (1993) - 1992
- [j3]Brian C. Lovell, Robert C. Williamson:
The statistical performance of some instantaneous frequency estimators. IEEE Trans. Signal Process. 40(7): 1708-1723 (1992) - [c5]Uwe Helmke, Robert C. Williamson:
Rational Parametrizations of Neural Networks. NIPS 1992: 623-630 - 1991
- [j2]Robert C. Williamson:
An extreme limit theorem for dependency bounds of normalized sums of random variables. Inf. Sci. 56(1-3): 113-141 (1991) - [c4]Peter L. Bartlett, Robert C. Williamson:
Investigating the Distribution Assumptions in the Pac Learning Model. COLT 1991: 24-32 - [c3]Brian C. Lovell, Peter J. Kootsookos, Robert C. Williamson:
The circular nature of discrete-time frequency estimates. ICASSP 1991: 3369-3372 - [c2]Robert C. Williamson, Peter L. Bartlett:
Splines, Rational Functions and Neural Networks. NIPS 1991: 1040-1047 - 1990
- [b1]Robert C. Williamson:
Probabilistic arithmetic. University of Queensland, Australia, 1990 - [j1]Robert C. Williamson, Tom Downs:
Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds. Int. J. Approx. Reason. 4(2): 89-158 (1990) - [c1]Robert C. Williamson:
epsilon-Entropy and the Complexity of Feedforward Neural Networks. NIPS 1990: 946-952
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 01:14 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint