default search action
Peter L. Bartlett
Person information
- affiliation: University of California at Berkeley, Department of Statistics, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j65]Peter L. Bartlett, Philip M. Long:
Corrigendum to "Prediction, learning, uniform convergence, and scale-sensitive dimensions" [J. Comput. Syst. Sci. 56 (2) (1998) 174-190]. J. Comput. Syst. Sci. 140: 103465 (2024) - [j64]Ruiqi Zhang, Spencer Frei, Peter L. Bartlett:
Trained Transformers Learn Linear Models In-Context. J. Mach. Learn. Res. 25: 49:1-49:55 (2024) - [j63]Philip M. Long, Peter L. Bartlett:
Sharpness-Aware Minimization and the Edge of Stability. J. Mach. Learn. Res. 25: 179:1-179:20 (2024) - [j62]Wenlong Mou, Nhat Ho, Martin J. Wainwright, Peter L. Bartlett, Michael I. Jordan:
A Diffusion Process Perspective on Posterior Contraction Rates for Parameters. SIAM J. Math. Data Sci. 6(2): 553-577 (2024) - [c142]Jingfeng Wu, Peter L. Bartlett, Matus Telgarsky, Bin Yu:
Large Stepsize Gradient Descent for Logistic Loss: Non-Monotonicity of the Loss Improves Optimization Efficiency. COLT 2024: 5019-5073 - [c141]Saptarshi Chakraborty, Peter L. Bartlett:
A Statistical Analysis of Wasserstein Autoencoders for Intrinsically Low-dimensional Data. ICLR 2024 - [c140]Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, Peter L. Bartlett:
How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression? ICLR 2024 - [c139]Gautam Goel, Peter L. Bartlett:
Can a transformer represent a Kalman filter? L4DC 2024: 1502-1512 - [i103]Aldo Pacchiano, Mohammad Ghavamzadeh, Peter L. Bartlett:
Contextual Bandits with Stage-wise Constraints. CoRR abs/2401.08016 (2024) - [i102]Saptarshi Chakraborty, Peter L. Bartlett:
On the Statistical Properties of Generative Adversarial Models for Low Intrinsic Data Dimension. CoRR abs/2401.15801 (2024) - [i101]Ruiqi Zhang, Jingfeng Wu, Peter L. Bartlett:
In-Context Learning of a Linear Transformer Block: Benefits of the MLP Component and One-Step GD Initialization. CoRR abs/2402.14951 (2024) - [i100]Saptarshi Chakraborty, Peter L. Bartlett:
A Statistical Analysis of Wasserstein Autoencoders for Intrinsically Low-dimensional Data. CoRR abs/2402.15710 (2024) - [i99]Jingfeng Wu, Peter L. Bartlett, Matus Telgarsky, Bin Yu:
Large Stepsize Gradient Descent for Logistic Loss: Non-Monotonicity of the Loss Improves Optimization Efficiency. CoRR abs/2402.15926 (2024) - [i98]Licong Lin, Jingfeng Wu, Sham M. Kakade, Peter L. Bartlett, Jason D. Lee:
Scaling Laws in Linear Regression: Compute, Parameters, and Data. CoRR abs/2406.08466 (2024) - [i97]Yuhang Cai, Jingfeng Wu, Song Mei, Michael Lindsey, Peter L. Bartlett:
Large Stepsize Gradient Descent for Non-Homogeneous Two-Layer Networks: Margin Improvement and Fast Optimization. CoRR abs/2406.08654 (2024) - [i96]Naman Agarwal, Xinyi Chen, Evan Dogariu, Vladimir Feinberg, Daniel Suo, Peter L. Bartlett, Elad Hazan:
FutureFill: Fast Generation from Convolutional Sequence Models. CoRR abs/2410.03766 (2024) - [i95]Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter L. Bartlett, Andrea Zanette:
Fast Best-of-N Decoding via Speculative Rejection. CoRR abs/2410.20290 (2024) - [i94]Saptarshi Chakraborty, Peter L. Bartlett:
A Statistical Analysis of Deep Federated Learning for Intrinsically Low-dimensional Data. CoRR abs/2410.20659 (2024) - 2023
- [j61]Alexander Tsigler, Peter L. Bartlett:
Benign overfitting in ridge regression. J. Mach. Learn. Res. 24: 123:1-123:76 (2023) - [j60]Juan C. Perdomo, Akshay Krishnamurthy, Peter L. Bartlett, Sham M. Kakade:
A Complete Characterization of Linear Estimators for Offline Policy Evaluation. J. Mach. Learn. Res. 24: 284:1-284:50 (2023) - [j59]Spencer Frei, Niladri S. Chatterji, Peter L. Bartlett:
Random Feature Amplification: Feature Learning and Generalization in Neural Networks. J. Mach. Learn. Res. 24: 303:1-303:49 (2023) - [j58]Peter L. Bartlett, Philip M. Long, Olivier Bousquet:
The Dynamics of Sharpness-Aware Minimization: Bouncing Across Ravines and Drifting Towards Wide Minima. J. Mach. Learn. Res. 24: 316:1-316:36 (2023) - [c138]Aldo Pacchiano, Peter L. Bartlett, Michael I. Jordan:
An Instance-Dependent Analysis for the Cooperative Multi-Player Multi-Armed Bandit. ALT 2023: 1166-1215 - [c137]Spencer Frei, Gal Vardi, Peter L. Bartlett, Nathan Srebro:
Benign Overfitting in Linear Classifiers and Leaky ReLU Networks from KKT Conditions for Margin Maximization. COLT 2023: 3173-3228 - [c136]Spencer Frei, Gal Vardi, Peter L. Bartlett, Nathan Srebro, Wei Hu:
Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data. ICLR 2023 - [c135]Spencer Frei, Gal Vardi, Peter L. Bartlett, Nati Srebro:
The Double-Edged Sword of Implicit Bias: Generalization vs. Robustness in ReLU Networks. NeurIPS 2023 - [i93]Spencer Frei, Gal Vardi, Peter L. Bartlett, Nathan Srebro:
The Double-Edged Sword of Implicit Bias: Generalization vs. Robustness in ReLU Networks. CoRR abs/2303.01456 (2023) - [i92]Spencer Frei, Gal Vardi, Peter L. Bartlett, Nathan Srebro:
Benign Overfitting in Linear Classifiers and Leaky ReLU Networks from KKT Conditions for Margin Maximization. CoRR abs/2303.01462 (2023) - [i91]Peter L. Bartlett, Philip M. Long:
Prediction, Learning, Uniform Convergence, and Scale-sensitive Dimensions. CoRR abs/2304.11059 (2023) - [i90]Ruiqi Zhang, Spencer Frei, Peter L. Bartlett:
Trained Transformers Learn Linear Models In-Context. CoRR abs/2306.09927 (2023) - [i89]Philip M. Long, Peter L. Bartlett:
Sharpness-Aware Minimization and the Edge of Stability. CoRR abs/2309.12488 (2023) - [i88]Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, Peter L. Bartlett:
How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression? CoRR abs/2310.08391 (2023) - [i87]Gautam Goel, Peter L. Bartlett:
Can a Transformer Represent a Kalman Filter? CoRR abs/2312.06937 (2023) - 2022
- [j57]Wenlong Mou, Nicolas Flammarion, Martin J. Wainwright, Peter L. Bartlett:
An Efficient Sampling Algorithm for Non-smooth Composite Potentials. J. Mach. Learn. Res. 23: 233:1-233:50 (2022) - [j56]Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett:
The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer Linear Networks. J. Mach. Learn. Res. 23: 263:1-263:48 (2022) - [c134]Yeshwanth Cherapanamjeri, Nilesh Tripuraneni, Peter L. Bartlett, Michael I. Jordan:
Optimal Mean Estimation without a Variance. COLT 2022: 356-357 - [c133]Peter L. Bartlett, Piotr Indyk, Tal Wagner:
Generalization Bounds for Data-Driven Numerical Linear Algebra. COLT 2022: 2013-2040 - [c132]Wenlong Mou, Ashwin Pananjady, Martin J. Wainwright, Peter L. Bartlett:
Optimal and instance-dependent guarantees for Markovian linear stochastic approximation. COLT 2022: 2060-2061 - [c131]Spencer Frei, Niladri S. Chatterji, Peter L. Bartlett:
Benign Overfitting without Linearity: Neural Network Classifiers Trained by Gradient Descent for Noisy Linear Data. COLT 2022: 2668-2703 - [i86]Wenlong Mou, Koulik Khamaru, Martin J. Wainwright, Peter L. Bartlett, Michael I. Jordan:
Optimal variance-reduced stochastic approximation in Banach spaces. CoRR abs/2201.08518 (2022) - [i85]Spencer Frei, Niladri S. Chatterji, Peter L. Bartlett:
Benign Overfitting without Linearity: Neural Network Classifiers Trained by Gradient Descent for Noisy Linear Data. CoRR abs/2202.05928 (2022) - [i84]Spencer Frei, Niladri S. Chatterji, Peter L. Bartlett:
Random Feature Amplification: Feature Learning and Generalization in Neural Networks. CoRR abs/2202.07626 (2022) - [i83]Juan C. Perdomo, Akshay Krishnamurthy, Peter L. Bartlett, Sham M. Kakade:
A Sharp Characterization of Linear Estimators for Offline Policy Evaluation. CoRR abs/2203.04236 (2022) - [i82]Peter L. Bartlett, Piotr Indyk, Tal Wagner:
Generalization Bounds for Data-Driven Numerical Linear Algebra. CoRR abs/2206.07886 (2022) - [i81]Aldo Pacchiano, Ofir Nachum, Nilesh Tripuraneni, Peter L. Bartlett:
Joint Representation Training in Sequential Tasks with Shared Structure. CoRR abs/2206.12441 (2022) - [i80]Wenlong Mou, Martin J. Wainwright, Peter L. Bartlett:
Off-policy estimation of linear functionals: Non-asymptotic theory for semi-parametric efficiency. CoRR abs/2209.13075 (2022) - [i79]Peter L. Bartlett, Philip M. Long, Olivier Bousquet:
The Dynamics of Sharpness-Aware Minimization: Bouncing Across Ravines and Drifting Towards Wide Minima. CoRR abs/2210.01513 (2022) - [i78]Spencer Frei, Gal Vardi, Peter L. Bartlett, Nathan Srebro, Wei Hu:
Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data. CoRR abs/2210.07082 (2022) - 2021
- [j55]Peter L. Bartlett, Andrea Montanari, Alexander Rakhlin:
Deep learning: a statistical viewpoint. Acta Numer. 30: 87-201 (2021) - [j54]Wenlong Mou, Yi-An Ma, Martin J. Wainwright, Peter L. Bartlett, Michael I. Jordan:
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm. J. Mach. Learn. Res. 22: 42:1-42:41 (2021) - [j53]Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett:
When Does Gradient Descent with Logistic Loss Find Interpolating Two-Layer Networks? J. Mach. Learn. Res. 22: 159:1-159:48 (2021) - [j52]Peter L. Bartlett, Philip M. Long:
Failures of Model-dependent Generalization Bounds for Least-norm Interpolation. J. Mach. Learn. Res. 22: 204:1-204:15 (2021) - [c130]Aldo Pacchiano, Mohammad Ghavamzadeh, Peter L. Bartlett, Heinrich Jiang:
Stochastic Bandits with Linear Constraints. AISTATS 2021: 2827-2835 - [c129]Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett:
When does gradient descent with logistic loss interpolate using deep networks with smoothed ReLU activations? COLT 2021: 927-1027 - [c128]Juan C. Perdomo, Max Simchowitz, Alekh Agarwal, Peter L. Bartlett:
Towards a Dimension-Free Understanding of Adaptive Linear Control. COLT 2021: 3681-3770 - [c127]Raman Arora, Peter L. Bartlett, Poorya Mianjy, Nathan Srebro:
Dropout: Explicit Forms and Capacity Control. ICML 2021: 351-361 - [c126]Kush Bhatia, Peter L. Bartlett, Anca D. Dragan, Jacob Steinhardt:
Agnostic Learning with Unknown Utilities. ITCS 2021: 55:1-55:20 - [c125]Aldo Pacchiano, Jonathan N. Lee, Peter L. Bartlett, Ofir Nachum:
Near Optimal Policy Optimization via REPS. NeurIPS 2021: 1100-1110 - [c124]Niladri S. Chatterji, Aldo Pacchiano, Peter L. Bartlett, Michael I. Jordan:
On the Theory of Reinforcement Learning with Once-per-Episode Feedback. NeurIPS 2021: 3401-3412 - [c123]Peter L. Bartlett, Sébastien Bubeck, Yeshwanth Cherapanamjeri:
Adversarial Examples in Multi-Layer Random ReLU Networks. NeurIPS 2021: 9241-9252 - [i77]Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett:
When does gradient descent with logistic loss interpolate using deep networks with smoothed ReLU activations? CoRR abs/2102.04998 (2021) - [i76]Peter L. Bartlett, Andrea Montanari, Alexander Rakhlin:
Deep learning: a statistical viewpoint. CoRR abs/2103.09177 (2021) - [i75]Aldo Pacchiano, Jonathan N. Lee, Peter L. Bartlett, Ofir Nachum:
Near Optimal Policy Optimization via REPS. CoRR abs/2103.09756 (2021) - [i74]Lin Chen, Bruno Scherrer, Peter L. Bartlett:
Infinite-Horizon Offline Reinforcement Learning with Linear Function Approximation: Curse of Dimensionality and Algorithm. CoRR abs/2103.09847 (2021) - [i73]Juan C. Perdomo, Max Simchowitz, Alekh Agarwal, Peter L. Bartlett:
Towards a Dimension-Free Understanding of Adaptive Linear Control. CoRR abs/2103.10620 (2021) - [i72]Kush Bhatia, Peter L. Bartlett, Anca D. Dragan, Jacob Steinhardt:
Agnostic learning with unknown utilities. CoRR abs/2104.08482 (2021) - [i71]Kush Bhatia, Ashwin Pananjady, Peter L. Bartlett, Anca D. Dragan, Martin J. Wainwright:
Preference learning along multiple criteria: A game-theoretic perspective. CoRR abs/2105.01850 (2021) - [i70]Jeffrey Chan, Aldo Pacchiano, Nilesh Tripuraneni, Yun S. Song, Peter L. Bartlett, Michael I. Jordan:
Parallelizing Contextual Linear Bandits. CoRR abs/2105.10590 (2021) - [i69]Niladri S. Chatterji, Aldo Pacchiano, Peter L. Bartlett, Michael I. Jordan:
On the Theory of Reinforcement Learning with Once-per-Episode Feedback. CoRR abs/2105.14363 (2021) - [i68]Peter L. Bartlett, Sébastien Bubeck, Yeshwanth Cherapanamjeri:
Adversarial Examples in Multi-Layer Random ReLU Networks. CoRR abs/2106.12611 (2021) - [i67]Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett:
The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer Linear Networks. CoRR abs/2108.11489 (2021) - [i66]Aldo Pacchiano, Peter L. Bartlett, Michael I. Jordan:
An Instance-Dependent Analysis for the Cooperative Multi-Player Multi-Armed Bandit. CoRR abs/2111.04873 (2021) - [i65]Wenlong Mou, Ashwin Pananjady, Martin J. Wainwright, Peter L. Bartlett:
Optimal and instance-dependent guarantees for Markovian linear stochastic approximation. CoRR abs/2112.12770 (2021) - 2020
- [j51]Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L. Bartlett, Martin J. Wainwright:
Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems. J. Mach. Learn. Res. 21: 21:1-21:51 (2020) - [c122]Niladri S. Chatterji, Jelena Diakonikolas, Michael I. Jordan, Peter L. Bartlett:
Langevin Monte Carlo without smoothness. AISTATS 2020: 1716-1726 - [c121]Niladri S. Chatterji, Vidya Muthukumar, Peter L. Bartlett:
OSOM: A simultaneously optimal algorithm for multi-armed and linear contextual bandits. AISTATS 2020: 1844-1854 - [c120]Wenlong Mou, Chris Junchi Li, Martin J. Wainwright, Peter L. Bartlett, Michael I. Jordan:
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration. COLT 2020: 2947-2997 - [c119]Xiang Cheng, Dong Yin, Peter L. Bartlett, Michael I. Jordan:
Stochastic Gradient and Langevin Processes. ICML 2020: 1810-1819 - [c118]Jonathan N. Lee, Aldo Pacchiano, Peter L. Bartlett, Michael I. Jordan:
Accelerated Message Passing for Entropy-Regularized MAP Inference. ICML 2020: 5736-5746 - [c117]Eric Mazumdar, Aldo Pacchiano, Yi-An Ma, Michael I. Jordan, Peter L. Bartlett:
On Approximate Thompson Sampling with Langevin Algorithms. ICML 2020: 6797-6807 - [c116]Thanh Tan Nguyen, Nan Ye, Peter L. Bartlett:
Greedy Convex Ensemble. IJCAI 2020: 3101-3107 - [c115]Kush Bhatia, Ashwin Pananjady, Peter L. Bartlett, Anca D. Dragan, Martin J. Wainwright:
Preference learning along multiple criteria: A game-theoretic perspective. NeurIPS 2020 - [c114]Hossein Mobahi, Mehrdad Farajtabar, Peter L. Bartlett:
Self-Distillation Amplifies Regularization in Hilbert Space. NeurIPS 2020 - [i64]Niladri S. Chatterji, Peter L. Bartlett, Philip M. Long:
Oracle lower bounds for stochastic gradient sampling algorithms. CoRR abs/2002.00291 (2020) - [i63]Hossein Mobahi, Mehrdad Farajtabar, Peter L. Bartlett:
Self-Distillation Amplifies Regularization in Hilbert Space. CoRR abs/2002.05715 (2020) - [i62]Eric Mazumdar, Aldo Pacchiano, Yi-An Ma, Peter L. Bartlett, Michael I. Jordan:
On Thompson Sampling with Langevin Algorithms. CoRR abs/2002.10002 (2020) - [i61]Raman Arora, Peter L. Bartlett, Poorya Mianjy, Nathan Srebro:
Dropout: Explicit Forms and Capacity Control. CoRR abs/2003.03397 (2020) - [i60]Wenlong Mou, Chris Junchi Li, Martin J. Wainwright, Peter L. Bartlett, Michael I. Jordan:
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration. CoRR abs/2004.04719 (2020) - [i59]Aldo Pacchiano, Mohammad Ghavamzadeh, Peter L. Bartlett, Heinrich Jiang:
Stochastic Bandits with Linear Constraints. CoRR abs/2006.10185 (2020) - [i58]Jonathan N. Lee, Aldo Pacchiano, Peter L. Bartlett, Michael I. Jordan:
Accelerated Message Passing for Entropy-Regularized MAP Inference. CoRR abs/2007.00699 (2020) - [i57]Yeshwanth Cherapanamjeri, Efe Aras, Nilesh Tripuraneni, Michael I. Jordan, Nicolas Flammarion, Peter L. Bartlett:
Optimal Robust Linear Regression in Nearly Linear Time. CoRR abs/2007.08137 (2020) - [i56]Peter L. Bartlett, Philip M. Long:
Failures of model-dependent generalization bounds for least-norm interpolation. CoRR abs/2010.08479 (2020) - [i55]Yeshwanth Cherapanamjeri, Nilesh Tripuraneni, Peter L. Bartlett, Michael I. Jordan:
Optimal Mean Estimation without a Variance. CoRR abs/2011.12433 (2020) - [i54]Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett:
When does gradient descent with logistic loss find interpolating two-layer networks? CoRR abs/2012.02409 (2020) - [i53]Aldo Pacchiano, Christoph Dann, Claudio Gentile, Peter L. Bartlett:
Regret Bound Balancing and Elimination for Model Selection in Bandits and RL. CoRR abs/2012.13045 (2020)
2010 – 2019
- 2019
- [j50]Peter L. Bartlett, Nick Harvey, Christopher Liaw, Abbas Mehrabian:
Nearly-tight VC-dimension and Pseudodimension Bounds for Piecewise Linear Neural Networks. J. Mach. Learn. Res. 20: 63:1-63:17 (2019) - [j49]Peter L. Bartlett, David P. Helmbold, Philip M. Long:
Gradient Descent with Identity Initialization Efficiently Learns Positive-Definite Linear Transformations by Deep Residual Networks. Neural Comput. 31(3) (2019) - [c113]Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L. Bartlett, Martin J. Wainwright:
Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems. AISTATS 2019: 2916-2925 - [c112]Vidya Muthukumar, Mitas Ray, Anant Sahai, Peter L. Bartlett:
Best of many worlds: Robust model selection for online supervised learning. AISTATS 2019: 3177-3186 - [c111]Peter L. Bartlett, Victor Gabillon, Michal Valko:
A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumption. ALT 2019: 184-206 - [c110]Yeshwanth Cherapanamjeri, Peter L. Bartlett:
Testing Symmetric Markov Chains Without Hitting. COLT 2019: 758-785 - [c109]Yeshwanth Cherapanamjeri, Nicolas Flammarion, Peter L. Bartlett:
Fast Mean Estimation with Sub-Gaussian Rates. COLT 2019: 786-806 - [c108]Peter L. Bartlett, Victor Gabillon, Jennifer Healey, Michal Valko:
Scale-free adaptive planning for deterministic dynamics & discounted rewards. ICML 2019: 495-504 - [c107]Niladri S. Chatterji, Aldo Pacchiano, Peter L. Bartlett:
Online learning with kernel losses. ICML 2019: 971-980 - [c106]Yasin Abbasi-Yadkori, Peter L. Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvári, Gellért Weisz:
POLITEX: Regret Bounds for Policy Iteration using Expert Prediction. ICML 2019: 3692-3702 - [c105]Dong Yin, Yudong Chen, Kannan Ramchandran, Peter L. Bartlett:
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning. ICML 2019: 7074-7084 - [c104]Dong Yin, Kannan Ramchandran, Peter L. Bartlett:
Rademacher Complexity for Adversarially Robust Generalization. ICML 2019: 7085-7094 - [i52]Yasin Abbasi-Yadkori, Peter L. Bartlett, Xi Chen, Alan Malek:
Large-Scale Markov Decision Problems via the Linear Programming Dual. CoRR abs/1901.01992 (2019) - [i51]Xiang Cheng, Peter L. Bartlett, Michael I. Jordan:
Quantitative Central Limit Theorems for Discrete Stochastic Processes. CoRR abs/1902.00832 (2019) - [i50]Yi-An Ma, Niladri S. Chatterji, Xiang Cheng, Nicolas Flammarion, Peter L. Bartlett, Michael I. Jordan:
Is There an Analog of Nesterov Acceleration for MCMC? CoRR abs/1902.00996 (2019) - [i49]Yeshwanth Cherapanamjeri, Nicolas Flammarion, Peter L. Bartlett:
Fast Mean Estimation with Sub-Gaussian Rates. CoRR abs/1902.01998 (2019) - [i48]Yeshwanth Cherapanamjeri, Peter L. Bartlett:
Testing Markov Chains without Hitting. CoRR abs/1902.01999 (2019) - [i47]Niladri S. Chatterji, Vidya Muthukumar, Peter L. Bartlett:
OSOM: A Simultaneously Optimal Algorithm for Multi-Armed and Linear Contextual Bandits. CoRR abs/1905.10040 (2019) - [i46]Niladri S. Chatterji, Jelena Diakonikolas, Michael I. Jordan, Peter L. Bartlett:
Langevin Monte Carlo without Smoothness. CoRR abs/1905.13285 (2019) - [i45]Peter L. Bartlett, Philip M. Long, Gábor Lugosi, Alexander Tsigler:
Benign Overfitting in Linear Regression. CoRR abs/1906.11300 (2019) - [i44]Xiang Cheng, Dong Yin, Peter L. Bartlett, Michael I. Jordan:
Quantitative W1 Convergence of Langevin-Like Stochastic Processes with Non-Convex Potential State-Dependent Noise. CoRR abs/1907.03215 (2019) - [i43]Kush Bhatia, Yi-An Ma, Anca D. Dragan, Peter L. Bartlett, Michael I. Jordan:
Bayesian Robustness: A Nonasymptotic Viewpoint. CoRR abs/1907.11826 (2019) - [i42]Wenlong Mou, Yi-An Ma, Martin J. Wainwright, Peter L. Bartlett, Michael I. Jordan:
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm. CoRR abs/1908.10859 (2019) - [i41]Wenlong Mou, Nicolas Flammarion, Martin J. Wainwright, Peter L. Bartlett:
An Efficient Sampling Algorithm for Non-smooth Composite Potentials. CoRR abs/1910.00551 (2019) - [i40]Tan M. Nguyen, Nan Ye, Peter L. Bartlett:
Learning Near-optimal Convex Combinations of Basis Models with Generalization Guarantees. CoRR abs/1910.03742 (2019) - [i39]Peter L. Bartlett, Jonathan Baxter:
Hebbian Synaptic Modifications in Spiking Neurons that Learn. CoRR abs/1911.07247 (2019) - [i38]Wenlong Mou, Nhat Ho, Martin J. Wainwright, Peter L. Bartlett, Michael I. Jordan:
Sampling for Bayesian Mixture Models: MCMC with Polynomial-Time Mixing. CoRR abs/1912.05153 (2019) - 2018
- [c103]Xiang Cheng, Fred (Farbod) Roosta, Stefan Palombo, Peter L. Bartlett, Michael W. Mahoney:
FLAG n' FLARE: Fast Linearly-Coupled Adaptive Gradient Methods. AISTATS 2018: 404-414 - [c102]Dong Yin, Ashwin Pananjady, Maximilian Lam, Dimitris S. Papailiopoulos, Kannan Ramchandran, Peter L. Bartlett:
Gradient Diversity: a Key Ingredient for Scalable Distributed Learning. AISTATS 2018: 1998-2007 - [c101]Xiang Cheng, Peter L. Bartlett:
Convergence of Langevin MCMC in KL-divergence. ALT 2018: 186-211 - [c100]Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, Michael I. Jordan:
Underdamped Langevin MCMC: A non-asymptotic analysis. COLT 2018: 300-323 - [c99]Yasin Abbasi-Yadkori, Peter L. Bartlett, Victor Gabillon, Alan Malek, Michal Valko:
Best of both worlds: Stochastic & adversarial best-arm identification. COLT 2018: 918-949 - [c98]Martin Péron, Peter L. Bartlett, Kai Helge Becker, Kate J. Helmstedt, Iadine Chadès:
Two Approximate Dynamic Programming Algorithms for Managing Complete SIS Networks. COMPASS 2018: 8:1-8:10 - [c97]Peter L. Bartlett, David P. Helmbold, Philip M. Long:
Gradient descent with identity initialization efficiently learns positive definite linear transformations. ICML 2018: 520-529 - [c96]Niladri S. Chatterji, Nicolas Flammarion, Yi-An Ma, Peter L. Bartlett, Michael I. Jordan:
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo. ICML 2018: 763-772 - [c95]Dong Yin, Yudong Chen, Kannan Ramchandran, Peter L. Bartlett:
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. ICML 2018: 5636-5645 - [c94]Alan Malek, Peter L. Bartlett:
Horizon-Independent Minimax Linear Regression. NeurIPS 2018: 5264-5273 - [c93]Kush Bhatia, Aldo Pacchiano, Nicolas Flammarion, Peter L. Bartlett, Michael I. Jordan:
Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation. NeurIPS 2018: 7016-7025 - [i37]Niladri S. Chatterji, Nicolas Flammarion, Yi-An Ma, Peter L. Bartlett, Michael I. Jordan:
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo. CoRR abs/1802.05431 (2018) - [i36]Peter L. Bartlett, David P. Helmbold, Philip M. Long:
Gradient descent with identity initialization efficiently learns positive definite linear transformations by deep residual networks. CoRR abs/1802.06093 (2018) - [i35]Aldo Pacchiano, Niladri S. Chatterji, Peter L. Bartlett:
Online learning with kernel losses. CoRR abs/1802.09732 (2018) - [i34]Dong Yin, Yudong Chen, Kannan Ramchandran, Peter L. Bartlett:
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. CoRR abs/1803.01498 (2018) - [i33]Peter L. Bartlett, Steven N. Evans, Philip M. Long:
Representing smooth functions as compositions of near-identity functions with implications for deep network optimization. CoRR abs/1804.05012 (2018) - [i32]Xiang Cheng, Niladri S. Chatterji, Yasin Abbasi-Yadkori, Peter L. Bartlett, Michael I. Jordan:
Sharp Convergence Rates for Langevin Dynamics in the Nonconvex Setting. CoRR abs/1805.01648 (2018) - [i31]Vidya Muthukumar, Mitas Ray, Anant Sahai, Peter L. Bartlett:
Best of many worlds: Robust model selection for online supervised learning. CoRR abs/1805.08562 (2018) - [i30]Dong Yin, Yudong Chen, Kannan Ramchandran, Peter L. Bartlett:
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning. CoRR abs/1806.05358 (2018) - [i29]Peter L. Bartlett, Victor Gabillon, Michal Valko:
A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumption. CoRR abs/1810.00997 (2018) - [i28]Dong Yin, Kannan Ramchandran, Peter L. Bartlett:
Rademacher Complexity for Adversarially Robust Generalization. CoRR abs/1810.11914 (2018) - [i27]Kush Bhatia, Aldo Pacchiano, Nicolas Flammarion, Peter L. Bartlett, Michael I. Jordan:
Gen-Oja: A Simple and Efficient Algorithm for Streaming Generalized Eigenvector Computation. CoRR abs/1811.08393 (2018) - [i26]Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L. Bartlett, Martin J. Wainwright:
Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems. CoRR abs/1812.08305 (2018) - 2017
- [j48]Fares Hedayati, Peter L. Bartlett:
Exchangeability Characterizes Optimality of Sequential Normalized Maximum Likelihood and Bayesian Prediction. IEEE Trans. Inf. Theory 63(10): 6767-6773 (2017) - [c92]Martin Péron, Kai Helge Becker, Peter L. Bartlett, Iadine Chades:
Fast-Tracking Stationary MOMDPs for Adaptive Management Problems. AAAI 2017: 4531-4537 - [c91]Yasin Abbasi-Yadkori, Peter L. Bartlett, Victor Gabillon, Alan Malek:
Hit-and-Run for Sampling and Planning in Non-Convex Spaces. AISTATS 2017: 888-895 - [c90]Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, Inderjit S. Dhillon:
Recovery Guarantees for One-hidden-layer Neural Networks. ICML 2017: 4140-4149 - [c89]Niladri S. Chatterji, Peter L. Bartlett:
Alternating minimization for dictionary learning with random initialization. NIPS 2017: 1997-2006 - [c88]Yasin Abbasi-Yadkori, Peter L. Bartlett, Victor Gabillon:
Near Minimax Optimal Players for the Finite-Time 3-Expert Prediction Problem. NIPS 2017: 3033-3042 - [c87]Peter L. Bartlett, Dylan J. Foster, Matus Telgarsky:
Spectrally-normalized margin bounds for neural networks. NIPS 2017: 6240-6249 - [c86]Walid Krichene, Peter L. Bartlett:
Acceleration and Averaging in Stochastic Descent Dynamics. NIPS 2017: 6796-6806 - [i25]Nan Ye, Peter L. Bartlett:
Approximate and Stochastic Greedy Optimization. CoRR abs/1705.09396 (2017) - [i24]Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, Inderjit S. Dhillon:
Recovery Guarantees for One-hidden-layer Neural Networks. CoRR abs/1706.03175 (2017) - [i23]Dong Yin, Ashwin Pananjady, Maximilian Lam, Dimitris S. Papailiopoulos, Kannan Ramchandran, Peter L. Bartlett:
Gradient Diversity Empowers Distributed Learning. CoRR abs/1706.05699 (2017) - [i22]Peter L. Bartlett, Dylan J. Foster, Matus Telgarsky:
Spectrally-normalized margin bounds for neural networks. CoRR abs/1706.08498 (2017) - [i21]Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, Michael I. Jordan:
Underdamped Langevin MCMC: A non-asymptotic analysis. CoRR abs/1707.03663 (2017) - [i20]Niladri S. Chatterji, Peter L. Bartlett:
Alternating minimization for dictionary learning with random initialization. CoRR abs/1711.03634 (2017) - 2016
- [c85]Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Ronald Ortner, Peter L. Bartlett:
Improved Learning Complexity in Combinatorial Pure Exploration Bandits. AISTATS 2016: 1004-1012 - [c84]Yasin Abbasi-Yadkori, Peter L. Bartlett, Stephen J. Wright:
A Fast and Reliable Policy Improvement Algorithm. AISTATS 2016: 1338-1346 - [c83]Walid Krichene, Alexandre M. Bayen, Peter L. Bartlett:
Adaptive Averaging in Accelerated Descent Dynamics. NIPS 2016: 2991-2999 - [i19]Xiang Cheng, Farbod Roosta-Khorasani, Peter L. Bartlett, Michael W. Mahoney:
FLAG: Fast Linearly-Coupled Adaptive Gradient Method. CoRR abs/1605.08108 (2016) - [i18]Yasin Abbasi-Yadkori, Peter L. Bartlett, Victor Gabillon, Alan Malek:
Hit-and-Run for Sampling and Planning in Non-Convex Spaces. CoRR abs/1610.08865 (2016) - [i17]Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, Pieter Abbeel:
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning. CoRR abs/1611.02779 (2016) - 2015
- [c82]Peter L. Bartlett, Wouter M. Koolen, Alan Malek, Eiji Takimoto, Manfred K. Warmuth:
Minimax Fixed-Design Linear Regression. COLT 2015: 226-239 - [c81]Yasin Abbasi-Yadkori, Peter L. Bartlett, Xi Chen, Alan Malek:
Large-Scale Markov Decision Problems with KL Control Cost and its Application to Crowdsourcing. ICML 2015: 1053-1062 - [c80]Wouter M. Koolen, Alan Malek, Peter L. Bartlett, Yasin Abbasi-Yadkori:
Minimax Time Series Prediction. NIPS 2015: 2557-2565 - [c79]Walid Krichene, Alexandre M. Bayen, Peter L. Bartlett:
Accelerated Mirror Descent in Continuous and Discrete Time. NIPS 2015: 2845-2853 - 2014
- [c78]Yevgeny Seldin, Peter L. Bartlett, Koby Crammer, Yasin Abbasi-Yadkori:
Prediction with Limited Advice and Multiarmed Bandits with Paid Observations. ICML 2014: 280-287 - [c77]Yasin Abbasi-Yadkori, Peter L. Bartlett, Varun Kanade:
Tracking Adversarial Targets. ICML 2014: 369-377 - [c76]Alan Malek, Yasin Abbasi-Yadkori, Peter L. Bartlett:
Linear Programming for Large-Scale Markov Decision Problems. ICML 2014: 496-504 - [c75]Wouter M. Koolen, Alan Malek, Peter L. Bartlett:
Efficient Minimax Strategies for Square Loss Games. NIPS 2014: 3230-3238 - [c74]Alex Kantchelian, Michael Carl Tschantz, Ling Huang, Peter L. Bartlett, Anthony D. Joseph, J. Doug Tygar:
Large-Margin Convex Polytope Machine. NIPS 2014: 3248-3256 - [i16]J. Hyam Rubinstein, Benjamin I. P. Rubinstein, Peter L. Bartlett:
Bounding Embeddings of VC Classes into Maximum Classes. CoRR abs/1401.7388 (2014) - [i15]Yasin Abbasi-Yadkori, Peter L. Bartlett, Alan Malek:
Linear Programming for Large-Scale Markov Decision Problems. CoRR abs/1402.6763 (2014) - 2013
- [c73]Peter L. Bartlett, Peter Grünwald, Peter Harremoës, Fares Hedayati, Wojciech Kotlowski:
Horizon-Independent Optimal Prediction with Log-Loss in Exponential Families. COLT 2013: 639-661 - [c72]Yevgeny Seldin, Koby Crammer, Peter L. Bartlett:
Open Problem: Adversarial Multiarmed Bandits with Limited Advice. COLT 2013: 1067-1072 - [c71]Jacob D. Abernethy, Peter L. Bartlett, Rafael M. Frongillo, Andre Wibisono:
How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal. NIPS 2013: 2346-2354 - [c70]Yasin Abbasi-Yadkori, Peter L. Bartlett, Varun Kanade, Yevgeny Seldin, Csaba Szepesvári:
Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions. NIPS 2013: 2508-2516 - [i14]Yasin Abbasi-Yadkori, Peter L. Bartlett, Csaba Szepesvári:
Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions. CoRR abs/1303.3055 (2013) - [i13]Yevgeny Seldin, Peter L. Bartlett, Koby Crammer:
Advice-Efficient Prediction with Expert Advice. CoRR abs/1304.3708 (2013) - [i12]Peter L. Bartlett, Peter Grunwald, Peter Harremoës, Fares Hedayati, Wojciech Kotlowski:
Horizon-Independent Optimal Prediction with Log-Loss in Exponential Families. CoRR abs/1305.4324 (2013) - 2012
- [j47]Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, Nina Taft:
Learning in a Large Function Space: Privacy-Preserving Mechanisms for SVM Learning. J. Priv. Confidentiality 4(1) (2012) - [j46]John C. Duchi, Peter L. Bartlett, Martin J. Wainwright:
Randomized Smoothing for Stochastic Optimization. SIAM J. Optim. 22(2): 674-701 (2012) - [j45]Adam Barth, Benjamin I. P. Rubinstein, Mukund Sundararajan, John C. Mitchell, Dawn Song, Peter L. Bartlett:
A Learning-Based Approach to Reactive Security. IEEE Trans. Dependable Secur. Comput. 9(4): 482-493 (2012) - [j44]Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, Martin J. Wainwright:
Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization. IEEE Trans. Inf. Theory 58(5): 3235-3249 (2012) - [c69]John C. Duchi, Peter L. Bartlett, Martin J. Wainwright:
Randomized smoothing for (parallel) stochastic optimization. CDC 2012: 5442-5444 - [c68]Fares Hedayati, Peter L. Bartlett:
The Optimality of Jeffreys Prior for Online Density Estimation and the Asymptotic Normality of Maximum Likelihood Estimators. COLT 2012: 7.1-7.13 - [c67]Fares Hedayati, Peter L. Bartlett:
Exchangeability Characterizes Optimality of Sequential Normalized Maximum Likelihood and Bayesian Prediction with Jeffreys Prior. AISTATS 2012: 504-510 - [e3]Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, Kilian Q. Weinberger:
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. 2012 [contents] - [i11]Peter L. Bartlett, Ambuj Tewari:
REGAL: A Regularization based Algorithm for Reinforcement Learning in Weakly Communicating MDPs. CoRR abs/1205.2661 (2012) - [i10]Alekh Agarwal, Peter L. Bartlett, John C. Duchi:
Oracle inequalities for computationally adaptive model selection. CoRR abs/1208.0129 (2012) - 2011
- [c66]Afshin Rostamizadeh, Alekh Agarwal, Peter L. Bartlett:
Learning with Missing Features. UAI 2011: 635-642 - [c65]Jacob D. Abernethy, Peter L. Bartlett, Elad Hazan:
Blackwell Approachability and No-Regret Learning are Equivalent. COLT 2011: 27-46 - [c64]Alekh Agarwal, John C. Duchi, Peter L. Bartlett, Clément Levrard:
Oracle inequalities for computationally budgeted model selection. COLT 2011: 69-86 - [e2]John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, Kilian Q. Weinberger:
Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain. 2011 [contents] - [i9]Afshin Rostamizadeh, Alekh Agarwal, Peter L. Bartlett:
Online and Batch Learning Algorithms for Data with Missing Features. CoRR abs/1104.0729 (2011) - [i8]Peter L. Bartlett, Jonathan Baxter:
Infinite-Horizon Policy-Gradient Estimation. CoRR abs/1106.0665 (2011) - [i7]Peter L. Bartlett, Jonathan Baxter, Lex Weaver:
Experiments with Infinite-Horizon, Policy-Gradient Estimation. CoRR abs/1106.0666 (2011) - 2010
- [j43]Peter L. Bartlett:
Learning to act in uncertain environments: technical perspective. Commun. ACM 53(5): 98 (2010) - [j42]Benjamin I. P. Rubinstein, Peter L. Bartlett, J. Hyam Rubinstein:
Corrigendum to "Shifting: One-inclusion mistake bounds and sample compression" [J. Comput. System Sci 75 (1) (2009) 37-59]. J. Comput. Syst. Sci. 76(3-4): 278-280 (2010) - [c63]Peter L. Bartlett:
Optimal Online Prediction in Adversarial Environments. ALT 2010: 34 - [c62]Jacob D. Abernethy, Peter L. Bartlett, Niv Buchbinder, Isabelle Stanton:
A Regularization Approach to Metrical Task Systems. ALT 2010: 270-284 - [c61]Peter L. Bartlett:
Optimal Online Prediction in Adversarial Environments. Discovery Science 2010: 371 - [c60]Adam Barth, Benjamin I. P. Rubinstein, Mukund Sundararajan, John C. Mitchell, Dawn Song, Peter L. Bartlett:
A Learning-Based Approach to Reactive Security. Financial Cryptography 2010: 192-206 - [c59]Brian Kulis, Peter L. Bartlett:
Implicit Online Learning. ICML 2010: 575-582 - [c58]Marius Kloft, Ulrich Rückert, Peter L. Bartlett:
A Unifying View of Multiple Kernel Learning. ECML/PKDD (2) 2010: 66-81 - [c57]Alekh Agarwal, Peter L. Bartlett, Max Dama:
Optimal Allocation Strategies for the Dark Pool Problem. AISTATS 2010: 9-16 - [i6]Marius Kloft, Ulrich Rückert, Peter L. Bartlett:
A Unifying View of Multiple Kernel Learning. CoRR abs/1005.0437 (2010) - [i5]Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, Martin J. Wainwright:
Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. CoRR abs/1009.0571 (2010) - [i4]Jacob D. Abernethy, Peter L. Bartlett, Elad Hazan:
Blackwell Approachability and Low-Regret Learning are Equivalent. CoRR abs/1011.1936 (2010)
2000 – 2009
- 2009
- [j41]Benjamin I. P. Rubinstein, Peter L. Bartlett, J. Hyam Rubinstein:
Shifting: One-inclusion mistake bounds and sample compression. J. Comput. Syst. Sci. 75(1): 37-59 (2009) - [j40]David S. Rosenberg, Vikas Sindhwani, Peter L. Bartlett, Partha Niyogi:
Multiview point cloud kernels for semisupervised learning [Lecture Notes]. IEEE Signal Process. Mag. 26(5): 145-150 (2009) - [c56]Jacob D. Abernethy, Alekh Agarwal, Peter L. Bartlett, Alexander Rakhlin:
A Stochastic View of Optimal Regret through Minimax Duality. COLT 2009 - [c55]Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, Martin J. Wainwright:
Information-theoretic lower bounds on the oracle complexity of convex optimization. NIPS 2009: 1-9 - [c54]Peter L. Bartlett, Ambuj Tewari:
REGAL: A Regularization based Algorithm for Reinforcement Learning in Weakly Communicating MDPs. UAI 2009: 35-42 - [i3]Jacob D. Abernethy, Alekh Agarwal, Peter L. Bartlett, Alexander Rakhlin:
A Stochastic View of Optimal Regret through Minimax Duality. CoRR abs/0903.5328 (2009) - [i2]Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, Nina Taft:
Learning in a Large Function Space: Privacy-Preserving Mechanisms for SVM Learning. CoRR abs/0911.5708 (2009) - [i1]Adam Barth, Benjamin I. P. Rubinstein, Mukund Sundararajan, John C. Mitchell, Dawn Xiaodong Song, Peter L. Bartlett:
A Learning-Based Approach to Reactive Security. CoRR abs/0912.1155 (2009) - 2008
- [j39]Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, Peter L. Bartlett:
Exponentiated Gradient Algorithms for Conditional Random Fields and Max-Margin Markov Networks. J. Mach. Learn. Res. 9: 1775-1822 (2008) - [j38]Peter L. Bartlett, Marten H. Wegkamp:
Classification with a Reject Option using a Hinge Loss. J. Mach. Learn. Res. 9: 1823-1840 (2008) - [j37]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
Correction to "The Importance of Convexity in Learning With Squared Loss". IEEE Trans. Inf. Theory 54(9): 4395 (2008) - [c53]Marco Barreno, Peter L. Bartlett, Fuching Jack Chi, Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein, Udam Saini, J. Doug Tygar:
Open problems in the security of learning. AISec 2008: 19-26 - [c52]Peter L. Bartlett, Varsha Dani, Thomas P. Hayes, Sham M. Kakade, Alexander Rakhlin, Ambuj Tewari:
High-Probability Regret Bounds for Bandit Online Linear Optimization. COLT 2008: 335-342 - [c51]Jacob D. Abernethy, Peter L. Bartlett, Alexander Rakhlin, Ambuj Tewari:
Optimal Stragies and Minimax Lower Bounds for Online Convex Games. COLT 2008: 415-424 - 2007
- [j36]Peter L. Bartlett, Ambuj Tewari:
Sparseness vs Estimating Conditional Probabilities: Some Asymptotic Results. J. Mach. Learn. Res. 8: 775-790 (2007) - [j35]Ambuj Tewari, Peter L. Bartlett:
On the Consistency of Multiclass Classification Methods. J. Mach. Learn. Res. 8: 1007-1025 (2007) - [j34]Peter L. Bartlett, Mikhail Traskin:
AdaBoost is Consistent. J. Mach. Learn. Res. 8: 2347-2368 (2007) - [c50]Ambuj Tewari, Peter L. Bartlett:
Bounded Parameter Markov Decision Processes with Average Reward Criterion. COLT 2007: 263-277 - [c49]Jacob D. Abernethy, Peter L. Bartlett, Alexander Rakhlin:
Multitask Learning with Expert Advice. COLT 2007: 484-498 - [c48]Alexander Rakhlin, Jacob D. Abernethy, Peter L. Bartlett:
Online discovery of similarity mappings. ICML 2007: 767-774 - [c47]Peter L. Bartlett, Elad Hazan, Alexander Rakhlin:
Adaptive Online Gradient Descent. NIPS 2007: 65-72 - [c46]Ambuj Tewari, Peter L. Bartlett:
Optimistic Linear Programming gives Logarithmic Regret for Irreducible MDPs. NIPS 2007: 1505-1512 - [c45]David S. Rosenberg, Peter L. Bartlett:
The Rademacher Complexity of Co-Regularized Kernel Classes. AISTATS 2007: 396-403 - 2006
- [c44]Peter L. Bartlett, Ambuj Tewari:
Sample Complexity of Policy Search with Known Dynamics. NIPS 2006: 97-104 - [c43]Peter L. Bartlett, Mikhail Traskin:
AdaBoost is Consistent. NIPS 2006: 105-112 - [c42]Benjamin I. P. Rubinstein, Peter L. Bartlett, J. Hyam Rubinstein:
Shifting, One-Inclusion Mistake Bounds and Tight Multiclass Expected Risk Bounds. NIPS 2006: 1193-1200 - 2005
- [c41]Ambuj Tewari, Peter L. Bartlett:
On the Consistency of Multiclass Classification Methods. COLT 2005: 143-157 - 2004
- [j33]Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, Michael I. Jordan:
Learning the Kernel Matrix with Semidefinite Programming. J. Mach. Learn. Res. 5: 27-72 (2004) - [j32]Evan Greensmith, Peter L. Bartlett, Jonathan Baxter:
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning. J. Mach. Learn. Res. 5: 1471-1530 (2004) - [c40]Peter L. Bartlett, Shahar Mendelson, Petra Philips:
Local Complexities for Empirical Risk Minimization. COLT 2004: 270-284 - [c39]Peter L. Bartlett, Ambuj Tewari:
Sparseness Versus Estimating Conditional Probabilities: Some Asymptotic Results. COLT 2004: 564-578 - [c38]Peter L. Bartlett, Michael Collins, Benjamin Taskar, David A. McAllester:
Exponentiated Gradient Algorithms for Large-margin Structured Classification. NIPS 2004: 113-120 - 2003
- [c37]Peter L. Bartlett, Michael I. Jordan, Jon D. McAuliffe:
Large Margin Classifiers: Convex Loss, Low Noise, and Convergence Rates. NIPS 2003: 1173-1180 - 2002
- [b2]Martin Anthony, Peter L. Bartlett:
Neural Network Learning - Theoretical Foundations. Cambridge University Press 2002, ISBN 978-0-521-57353-5, pp. I-XIV, 1-389 - [j31]Peter L. Bartlett, Paul Fischer, Klaus-Uwe Höffgen:
Exploiting Random Walks for Learning. Inf. Comput. 176(2): 121-135 (2002) - [j30]Peter L. Bartlett, Jonathan Baxter:
Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning. J. Comput. Syst. Sci. 64(1): 133-150 (2002) - [j29]Llew Mason, Peter L. Bartlett, Mostefa Golea:
Generalization Error of Combined Classifiers. J. Comput. Syst. Sci. 65(2): 415-438 (2002) - [j28]Peter L. Bartlett, Shahar Mendelson:
Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. J. Mach. Learn. Res. 3: 463-482 (2002) - [j27]Peter L. Bartlett, Stéphane Boucheron, Gábor Lugosi:
Model Selection and Error Estimation. Mach. Learn. 48(1-3): 85-113 (2002) - [j26]Peter L. Bartlett, Shai Ben-David:
Hardness results for neural network approximation problems. Theor. Comput. Sci. 284(1): 53-66 (2002) - [j25]Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Robert C. Williamson:
Covering numbers for support vector machines. IEEE Trans. Inf. Theory 48(1): 239-250 (2002) - [c36]Peter L. Bartlett, Olivier Bousquet, Shahar Mendelson:
Localized Rademacher Complexities. COLT 2002: 44-58 - [c35]Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, Michael I. Jordan:
Learning the Kernel Matrix with Semi-Definite Programming. ICML 2002: 323-330 - [c34]Peter L. Bartlett:
An Introduction to Reinforcement Learning Theory: Value Function Methods. Machine Learning Summer School 2002: 184-202 - 2001
- [j24]Jonathan Baxter, Peter L. Bartlett:
Infinite-Horizon Policy-Gradient Estimation. J. Artif. Intell. Res. 15: 319-350 (2001) - [j23]Jonathan Baxter, Peter L. Bartlett, Lex Weaver:
Experiments with Infinite-Horizon, Policy-Gradient Estimation. J. Artif. Intell. Res. 15: 351-381 (2001) - [c33]Peter L. Bartlett, Shahar Mendelson:
Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. COLT/EuroCOLT 2001: 224-240 - [c32]Evan Greensmith, Peter L. Bartlett, Jonathan Baxter:
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning. NIPS 2001: 1507-1514 - 2000
- [j22]Leonardo C. Kammer, Robert R. Bitmead, Peter L. Bartlett:
Direct iterative tuning via spectral analysis. Autom. 36(9): 1301-1307 (2000) - [j21]Martin Anthony, Peter L. Bartlett:
Function Learning From Interpolation. Comb. Probab. Comput. 9(3): 213-225 (2000) - [j20]Sri Parameswaran, Matthew F. Parkinson, Peter L. Bartlett:
Profiling in the ASP codesign environment. J. Syst. Archit. 46(14): 1263-1274 (2000) - [j19]Llew Mason, Peter L. Bartlett, Jonathan Baxter:
Improved Generalization Through Explicit Optimization of Margins. Mach. Learn. 38(3): 243-255 (2000) - [j18]Peter L. Bartlett, Shai Ben-David, Sanjeev R. Kulkarni:
Learning Changing Concepts by Exploiting the Structure of Change. Mach. Learn. 41(2): 153-174 (2000) - [j17]Bernhard Schölkopf, Alexander J. Smola, Robert C. Williamson, Peter L. Bartlett:
New Support Vector Algorithms. Neural Comput. 12(5): 1207-1245 (2000) - [c31]Peter L. Bartlett, Jonathan Baxter:
Stochastic optimization of controlled partially observable Markov decision processes. CDC 2000: 124-129 - [c30]Peter L. Bartlett, Jonathan Baxter:
Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning. COLT 2000: 133-141 - [c29]Peter L. Bartlett, Stéphane Boucheron, Gábor Lugosi:
Model Selection and Error Estimation. COLT 2000: 286-297 - [c28]Jonathan Baxter, Peter L. Bartlett:
Reinforcement Learning in POMDP's via Direct Gradient Ascent. ICML 2000: 41-48 - [c27]Jonathan Baxter, Peter L. Bartlett:
Direct gradient-based reinforcement learning. ISCAS 2000: 271-274 - [c26]Alexander J. Smola, Peter L. Bartlett:
Sparse Greedy Gaussian Process Regression. NIPS 2000: 619-625
1990 – 1999
- 1999
- [c25]Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Robert C. Williamson:
Covering Numbers for Support Vector Machines. COLT 1999: 267-277 - [c24]Peter L. Bartlett, Shai Ben-David:
Hardness Results for Neural Network Approximation Problems. EuroCOLT 1999: 50-62 - [c23]Llew Mason, Jonathan Baxter, Peter L. Bartlett, Marcus R. Frean:
Boosting Algorithms as Gradient Descent. NIPS 1999: 512-518 - 1998
- [j16]Leonardo C. Kammer, Robert R. Bitmead, Peter L. Bartlett:
Optimal controller properties from closed-loop experiments. Autom. 34(1): 83-91 (1998) - [j15]Peter L. Bartlett, Philip M. Long:
Prediction, Learning, Uniform Convergence, and Scale-Sensitive Dimensions. J. Comput. Syst. Sci. 56(2): 174-190 (1998) - [j14]Peter L. Bartlett, Vitaly Maiorov, Ron Meir:
Almost Linear VC-Dimension Bounds for Piecewise Polynomial Networks. Neural Comput. 10(8): 2159-2173 (1998) - [j13]Peter L. Bartlett:
The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights is More Important than the Size of the Network. IEEE Trans. Inf. Theory 44(2): 525-536 (1998) - [j12]Peter L. Bartlett, Tamás Linder, Gábor Lugosi:
The Minimax Distortion Redundancy in Empirical Quantizer Design. IEEE Trans. Inf. Theory 44(5): 1802-1813 (1998) - [j11]John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, Martin Anthony:
Structural Risk Minimization Over Data-Dependent Hierarchies. IEEE Trans. Inf. Theory 44(5): 1926-1940 (1998) - [j10]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
The Importance of Convexity in Learning with Squared Loss. IEEE Trans. Inf. Theory 44(5): 1974-1980 (1998) - [c22]Peter L. Bartlett, Vitaly Maiorov, Ron Meir:
Almost Linear VC Dimension Bounds for Piecewise Polynomial Networks. NIPS 1998: 190-196 - [c21]Llew Mason, Peter L. Bartlett, Jonathan Baxter:
Direct Optimization of Margins Improves Generalization in Combined Classifiers. NIPS 1998: 288-294 - [c20]Bernhard Schölkopf, Peter L. Bartlett, Alexander J. Smola, Robert C. Williamson:
Shrinking the Tube: A New Support Vector Regression Algorithm. NIPS 1998: 330-336 - [e1]Peter L. Bartlett, Yishay Mansour:
Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998, Madison, Wisconsin, USA, July 24-26, 1998. ACM 1998, ISBN 1-58113-057-0 [contents] - 1997
- [j9]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
Correction to 'Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes'. Neural Comput. 9(4): 765-769 (1997) - [j8]Peter L. Bartlett, Sanjeev R. Kulkarni, S. E. Posner:
Covering numbers for real-valued function classes. IEEE Trans. Inf. Theory 43(5): 1721-1724 (1997) - [c19]Peter L. Bartlett, Tamás Linder, Gábor Lugosi:
A Minimax Lower Bound for Empirical Quantizer Design. EuroCOLT 1997: 210-222 - [c18]Jonathan Baxter, Peter L. Bartlett:
A Result Relating Convex n-Widths to Covering Numbers with some Applications to Neural Networks. EuroCOLT 1997: 251-259 - [c17]Jonathan Baxter, Peter L. Bartlett:
The Canonical Distortion Measure in Feature Space and 1-NN Classification. NIPS 1997: 245-251 - [c16]Mostefa Golea, Peter L. Bartlett, Wee Sun Lee, Llew Mason:
Generalization in Decision Trees and DNF: Does Size Matter? NIPS 1997: 259-265 - 1996
- [j7]Martin Anthony, Peter L. Bartlett, Yuval Ishai, John Shawe-Taylor:
Valid Generalisation from Approximate Interpolation. Comb. Probab. Comput. 5: 191-214 (1996) - [j6]Peter L. Bartlett, Philip M. Long, Robert C. Williamson:
Fat-Shattering and the Learnability of Real-Valued Functions. J. Comput. Syst. Sci. 52(3): 434-452 (1996) - [j5]Peter L. Bartlett, Robert C. Williamson:
The VC Dimension and Pseudodimension of Two-Layer Neural Networks with Discrete Inputs. Neural Comput. 8(3): 625-628 (1996) - [j4]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
Efficient agnostic learning of neural networks with bounded fan-in. IEEE Trans. Inf. Theory 42(6): 2118-2132 (1996) - [c15]John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, Martin Anthony:
A Framework for Structural Risk Minimisation. COLT 1996: 68-76 - [c14]Peter L. Bartlett, Shai Ben-David, Sanjeev R. Kulkarni:
Learning Changing Concepts by Exploiting the Structure of Change. COLT 1996: 131-139 - [c13]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
The Importance of Convexity in Learning with Squared Loss. COLT 1996: 140-146 - [c12]Peter L. Bartlett:
For Valid Generalization the Size of the Weights is More Important than the Size of the Network. NIPS 1996: 134-140 - 1995
- [j3]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
Lower Bounds on the VC Dimension of Smoothly Parameterized Function Classes. Neural Comput. 7(5): 1040-1053 (1995) - [c11]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
On Efficient Agnostic Learning of Linear Combinations of Basis Functions. COLT 1995: 369-376 - [c10]Peter L. Bartlett, Philip M. Long:
More Theorems about Scale-sensitive Dimensions and Learning. COLT 1995: 392-401 - [c9]Martin Anthony, Peter L. Bartlett:
Function learning from interpolation. EuroCOLT 1995: 211-221 - [c8]Adam Kowalczyk, Jacek Szymanski, Peter L. Bartlett, Robert C. Williamson:
Examples of learning curves from a modified VC-formalism. NIPS 1995: 344-350 - 1994
- [c7]Peter L. Bartlett, Philip M. Long, Robert C. Williamson:
Fat-Shattering and the Learnability of Real-Valued Functions. COLT 1994: 299-310 - [c6]Peter L. Bartlett, Paul Fischer, Klaus-Uwe Höffgen:
Exploiting Random Walks for Learning. COLT 1994: 318-327 - [c5]Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson:
Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes. COLT 1994: 362-367 - 1993
- [j2]Peter L. Bartlett:
Vapnik-Chervonenkis Dimension Bounds for Two- and Three-Layer Networks. Neural Comput. 5(3): 371-373 (1993) - [c4]Peter L. Bartlett:
Lower Bounds on the Vapnik-Chervonenkis Dimension of Multi-Layer Threshold Networks. COLT 1993: 144-150 - 1992
- [b1]Peter L. Bartlett:
Computational learning theory and neural network learning. University of Queensland, Australia, 1992 - [j1]Peter L. Bartlett, Tom Downs:
Using random weights to train multilayer networks of hard-limiting units. IEEE Trans. Neural Networks 3(2): 202-210 (1992) - [c3]Peter L. Bartlett:
Learning With a Slowly Changing Distribution. COLT 1992: 243-252 - 1991
- [c2]Peter L. Bartlett, Robert C. Williamson:
Investigating the Distribution Assumptions in the Pac Learning Model. COLT 1991: 24-32 - [c1]Robert C. Williamson, Peter L. Bartlett:
Splines, Rational Functions and Neural Networks. NIPS 1991: 1040-1047
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 01:09 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint