


default search action
Niklas Kühl 0001
Person information
- affiliation: University of Bayreuth, Germany
- affiliation: Karlsruhe Institute of Technology, Germany
Other persons with the same name
- Niklas Kühl 0002
— Hamburg Ship Model Basin, Hamburg, Germany (and 1 more)
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j17]Robin Hirt, Niklas Kühl, Dominik Martin
, Gerhard Satzger:
Enabling inter-organizational analytics in business networks through meta machine learning. Inf. Technol. Manag. 26(1): 57-81 (2025) - [j16]Jakob Schöffer, Johannes Jakubik, Michael Vössing, Niklas Kühl, Gerhard Satzger:
AI Reliance and Decision Quality: Fundamentals, Interdependence, and the Effects of Interventions. J. Artif. Intell. Res. 82 (2025) - [i78]Philipp Spitzer, Dominik Martin, Laurin Eichberger, Niklas Kühl:
Towards a Problem-Oriented Domain Adaptation Framework for Machine Learning. CoRR abs/2501.04528 (2025) - 2024
- [j15]Jan Bode
, Niklas Kühl
, Dominik Kreuzberger, Carsten Holtmann:
Toward Avoiding the Data Mess: Industry Insights From Data Mesh Implementations. IEEE Access 12: 95402-95416 (2024) - [j14]Johannes Jakubik, Michael Vössing, Niklas Kühl, Jannis Walk, Gerhard Satzger:
Data-Centric Artificial Intelligence. Bus. Inf. Syst. Eng. 66(4): 507-515 (2024) - [j13]Jannis Walk, Max Schemmer, Niklas Kühl, Gerhard Satzger:
Image-Mining-Based Decision Support Systems: Design Knowledge and its Evaluation in Tool Wear Analysis. Commun. Assoc. Inf. Syst. 54: 44 (2024) - [j12]Katelyn Morrison
, Philipp Spitzer
, Violet Turri
, Michelle Feng
, Niklas Kühl
, Adam Perer
:
The Impact of Imperfect XAI on Human-AI Decision-Making. Proc. ACM Hum. Comput. Interact. 8(CSCW1): 1-39 (2024) - [c84]Leopold Müller, Patrick Hemmer, Moritz Queisner, Igor Sauer, Simeon Allmendinger, Johannes Jakubik, Michael Vössing, Niklas Kühl:
Redefining the Laparoscopic Spatial Sense: AI-Based Intra- and Postoperative Measurement from Stereoimages. AAAI 2024: 22948-22954 - [c83]Jakob Schoeffer
, Maria De-Arteaga
, Niklas Kühl
:
Explanations, Fairness, and Appropriate Reliance in Human-AI Decision-Making. CHI 2024: 836:1-836:18 - [c82]Joshua Holstein, Philipp Spitzer, Marieke Hoell, Michael Vössing, Niklas Kühl:
Understanding Data Understanding: A Framework to Navigate the Intricacies of Data Analytics. ECIS 2024 - [c81]Philipp Spitzer, Niklas Kühl, Marc Goutier, Manuel Kaschura, Gerhard Satzger:
Transferring Domain Knowledge with (X)AI-Based Learning Systems. ECIS 2024 - [c80]Domenique Zipperling, Simeon Allmendinger, Lukas Struppek, Niklas Kühl:
Collafuse: Navigating Limited Resources and Privacy in Collaborative Generative AI. ECIS 2024 - [c79]Luca Deck
, Jakob Schoeffer
, Maria De-Arteaga
, Niklas Kühl
:
A Critical Survey on Fairness Benefits of Explainable AI. FAccT 2024: 1579-1595 - [c78]Niklas Kühl, Thomas Setzer, Hansjörg Fromm, Michael Vössing:
Introduction to the Minitrack on Service Analytics. HICSS 2024: 1486-1487 - [c77]Philipp Spitzer
, Sebastian Celis
, Dominik Martin
, Niklas Kühl
, Gerhard Satzger
:
Looking Through the Deep Glasses: How Large Language Models Enhance Explainability of Deep Learning Models. MuC 2024: 566-570 - [c76]Philipp Spitzer
, Marc Goutier
, Niklas Kühl
, Gerhard Satzger
:
(X)AI as a Teacher: Learning with Explainable Artificial Intelligence. MuC 2024: 571-576 - [c75]Ivan Iliash, Simeon Allmendinger, Felix Meissen, Niklas Kühl, Daniel Rückert:
Interactive Generation of Laparoscopic Videos with Diffusion Models. DGM4MICCAI@MICCAI 2024: 109-118 - [i77]Philipp Spitzer, Joshua Holstein, Patrick Hemmer, Michael Vössing, Niklas Kühl, Dominik Martin, Gerhard Satzger:
On the Effect of Contextual Information on Human Delegation Behavior in Human-AI collaboration. CoRR abs/2401.04729 (2024) - [i76]Domenique Zipperling, Simeon Allmendinger, Lukas Struppek, Niklas Kühl:
CollaFuse: Navigating Limited Resources and Privacy in Collaborative Generative AI. CoRR abs/2402.19105 (2024) - [i75]Luca Deck, Jan-Laurin Müller, Conradin Braun, Domenique Zipperling, Niklas Kühl:
Implications of the AI Act for Non-Discrimination Law and Algorithmic Fairness. CoRR abs/2403.20089 (2024) - [i74]Patrick Hemmer, Max Schemmer, Niklas Kühl, Michael Vössing, Gerhard Satzger:
Complementarity in Human-AI Collaboration: Concept, Sources, and Evidence. CoRR abs/2404.00029 (2024) - [i73]Luca Deck, Astrid Schomäcker, Timo Speith, Jakob Schöffer, Lena Kästner, Niklas Kühl:
Mapping the Potential of Explainable Artificial Intelligence (XAI) for Fairness Along the AI Lifecycle. CoRR abs/2404.18736 (2024) - [i72]Joshua Holstein, Philipp Spitzer, Marieke Hoell, Michael Vössing, Niklas Kühl:
Understanding Data Understanding: A Framework to Navigate the Intricacies of Data Analytics. CoRR abs/2405.07658 (2024) - [i71]Philipp Spitzer, Niklas Kühl, Marc Goutier, Manuel Kaschura, Gerhard Satzger:
Transferring Domain Knowledge with (X)AI-Based Learning Systems. CoRR abs/2406.01329 (2024) - [i70]Ivan Iliash, Simeon Allmendinger, Felix Meissen, Niklas Kühl, Daniel Rückert:
Interactive Generation of Laparoscopic Videos with Diffusion Models. CoRR abs/2406.06537 (2024) - [i69]Niklas Kühl, Christian Meske, Maximilian Nitsche, Jodie Lobana:
Investigating the Role of Explainability and AI Literacy in User Compliance. CoRR abs/2406.12660 (2024) - [i68]Simeon Allmendinger, Domenique Zipperling, Lukas Struppek, Niklas Kühl:
CollaFuse: Collaborative Diffusion Models. CoRR abs/2406.14429 (2024) - [i67]Sven Eckhardt, Niklas Kühl, Mateusz Dolata, Gerhard Schwabe:
A Survey of AI Reliance. CoRR abs/2408.03948 (2024) - [i66]Beatrice Balbierer, Lukas Heinlein, Domenique Zipperling, Niklas Kühl:
A Multivocal Literature Review on Privacy and Fairness in Federated Learning. CoRR abs/2408.08666 (2024) - [i65]Lars Böcking, Leopold Müller, Niklas Kühl:
Utilizing Data Fingerprints for Privacy-Preserving Algorithm Selection in Time Series Classification: Performance and Uncertainty Estimation on Unseen Datasets. CoRR abs/2409.08636 (2024) - [i64]Philipp Spitzer, Joshua Holstein, Katelyn Morrison, Kenneth Holstein, Gerhard Satzger, Niklas Kühl:
Don't be Fooled: The Misinformation Effect of Explanations in Human-AI Collaboration. CoRR abs/2409.12809 (2024) - 2023
- [j11]Dominik Kreuzberger, Niklas Kühl
, Sebastian Hirschl:
Machine Learning Operations (MLOps): Overview, Definition, and Architecture. IEEE Access 11: 31866-31879 (2023) - [j10]Philipp Spitzer
, Niklas Kühl
, Daniel Heinz
, Gerhard Satzger
:
ML-Based Teaching Systems: A Conceptual Framework. Proc. ACM Hum. Comput. Interact. 7(CSCW2): 1-25 (2023) - [c74]Patrick Hemmer, Lukas Thede, Michael Vössing, Johannes Jakubik, Niklas Kühl:
Learning to Defer with Limited Expert Predictions. AAAI 2023: 6002-6011 - [c73]Philipp Spitzer, Joshua Holstein, Michael Vössing, Niklas Kühl:
On the Perception of Difficulty: Differences between Human and AI. AutomationXP@CHI 2023 - [c72]Franziska Haller, Max Schemmer, Niklas Kühl, Carsten Holtmann:
Conceptualizing a Multi-Sided Platform for Cloud Computing Resource Trading. ECIS 2023 - [c71]Jakob Schoeffer
, Johannes Jakubik, Michael Vössing
, Niklas Kühl, Gerhard Satzger:
On the Interdependence of Reliance Behavior and Accuracy in AI-Assisted Decision-Making. HHAI 2023: 46-59 - [c70]Marco Geiger, Dominik Martin, Niklas Kühl:
Deep Domain Adaptation for Detecting Bomb Craters in Aerial Images. HICSS 2023: 825-834 - [c69]Lucas Baier, Tim Schlör, Jakob Schoeffer, Niklas Kühl:
Detecting Concept Drift with Neural Network Model Uncertainty. HICSS 2023: 835-844 - [c68]Hansjörg Fromm, Niklas Kühl, Gerhard Satzger, Thomas Setzer:
Introduction to the Minitrack on Service Analytics. HICSS 2023: 1345 - [c67]Max Schemmer, Andrea Bartos, Philipp Spitzer, Patrick Hemmer, Niklas Kühl, Jonas Liebschner, Gerhard Satzger:
Towards Effective Human-AI Decision-Making: The Role of Human Learning in Appropriate Reliance on AI Advice. ICIS 2023 - [c66]Johannes Jakubik
, Michal Muszynski, Michael Vössing, Niklas Kühl, Thomas Brunschwiler:
Toward Foundation Models for Earth Monitoring: Generalizable Deep Learning Models for Natural Hazard Segmentation. IGARSS 2023: 5638-5641 - [c65]Max Schemmer
, Niklas Kühl
, Carina Benz
, Andrea Bartos
, Gerhard Satzger
:
Appropriate Reliance on AI Advice: Conceptualization and the Effect of Explanations. IUI 2023: 410-422 - [i63]Johannes Jakubik, Michal Muszynski, Michael Vössing, Niklas Kühl, Thomas Brunschwiler:
Toward Foundation Models for Earth Monitoring: Generalizable Deep Learning Models for Natural Hazard Segmentation. CoRR abs/2301.09318 (2023) - [i62]Jan Bode, Niklas Kühl, Dominik Kreuzberger, Sebastian Hirschl:
Data Mesh: Motivational Factors, Challenges, and Best Practices. CoRR abs/2302.01713 (2023) - [i61]Max Schemmer, Niklas Kühl, Carina Benz, Andrea Bartos, Gerhard Satzger:
Appropriate Reliance on AI Advice: Conceptualization and the Effect of Explanations. CoRR abs/2302.02187 (2023) - [i60]Max Schemmer, Joshua Holstein, Niklas Bauer, Niklas Kühl, Gerhard Satzger:
Towards Meaningful Anomaly Detection: The Effect of Counterfactual Explanations on the Investigation of Anomalies in Multivariate Time Series. CoRR abs/2302.03302 (2023) - [i59]Jannis Walk, Niklas Kühl, Michael Saidani, Jürgen Schatte:
Artificial Intelligence for Sustainability: Facilitating Sustainable Smart Product-Service Systems with Computer Vision. CoRR abs/2303.13540 (2023) - [i58]Robin Hirt, Niklas Kühl, Dominik Martin, Gerhard Satzger:
Enabling Inter-organizational Analytics in Business Networks Through Meta Machine Learning. CoRR abs/2303.15834 (2023) - [i57]Patrick Hemmer, Lukas Thede, Michael Vössing, Johannes Jakubik, Niklas Kühl:
Learning to Defer with Limited Expert Predictions. CoRR abs/2304.07306 (2023) - [i56]Jakob Schoeffer, Johannes Jakubik, Michael Vössing, Niklas Kühl, Gerhard Satzger:
On the Interdependence of Reliance Behavior and Accuracy in AI-Assisted Decision-Making. CoRR abs/2304.08804 (2023) - [i55]Philipp Spitzer, Joshua Holstein
, Michael Vössing, Niklas Kühl:
On the Perception of Difficulty: Differences between Humans and AI. CoRR abs/2304.09803 (2023) - [i54]Franziska Haller, Max Schemmer, Niklas Kühl, Carsten Holtmann:
Conceptualizing A Multi-Sided Platform For Cloud Computing Resource Trading. CoRR abs/2305.07399 (2023) - [i53]Philipp Spitzer, Niklas Kühl, Daniel Heinz, Gerhard Satzger:
ML-Based Teaching Systems: A Conceptual Framework. CoRR abs/2305.07681 (2023) - [i52]Katelyn Morrison, Philipp Spitzer, Violet Turri, Michelle Feng, Niklas Kühl, Adam Perer:
The Impact of Imperfect XAI on Human-AI Decision-Making. CoRR abs/2307.13566 (2023) - [i51]Maximilian Nitsche, S. Karthik Mukkavilli, Niklas Kühl, Thomas Brunschwiler:
AB2CD: AI for Building Climate Damage Classification and Detection. CoRR abs/2309.01066 (2023) - [i50]Max Schemmer, Andrea Bartos, Philipp Spitzer, Patrick Hemmer, Niklas Kühl, Jonas Liebschner
, Gerhard Satzger:
Towards Effective Human-AI Decision-Making: The Role of Human Learning in Appropriate Reliance on AI Advice. CoRR abs/2310.02108 (2023) - [i49]Luca Deck, Jakob Schoeffer, Maria De-Arteaga, Niklas Kühl:
A Critical Survey on Fairness Benefits of XAI. CoRR abs/2310.13007 (2023) - [i48]Leopold Müller, Patrick Hemmer, Moritz Queisner
, Igor Sauer, Simeon Allmendinger
, Johannes Jakubik, Michael Vössing, Niklas Kühl:
Redefining the Laparoscopic Spatial Sense: AI-based Intra- and Postoperative Measurement from Stereoimages. CoRR abs/2311.09744 (2023) - [i47]Simeon Allmendinger
, Patrick Hemmer, Moritz Queisner
, Igor Sauer, Leopold Müller, Johannes Jakubik, Michael Vössing, Niklas Kühl:
Navigating the Synthetic Realm: Harnessing Diffusion-based Models for Laparoscopic Text-to-Image Generation. CoRR abs/2312.03043 (2023) - 2022
- [j9]Moritz von Zahn
, Stefan Feuerriegel, Niklas Kuehl:
The Cost of Fairness in AI: Evidence from E-Commerce. Bus. Inf. Syst. Eng. 64(3): 335-348 (2022) - [j8]Julius Peter Landwehr, Niklas Kühl, Jannis Walk, Mario Gnädig:
Design Knowledge for Deep-Learning-Enabled Image-Based Decision Support Systems. Bus. Inf. Syst. Eng. 64(6): 707-728 (2022) - [j7]Niklas Kühl
, Marc Goutier, Lucas Baier, Clemens Wolff, Dominik Martin
:
Human vs. supervised machine learning: Who learns patterns faster? Cogn. Syst. Res. 76: 78-92 (2022) - [j6]Niklas Kühl
, Max Schemmer, Marc Goutier, Gerhard Satzger:
Artificial intelligence and machine learning. Electron. Mark. 32(4): 2235-2244 (2022) - [j5]Michael Vössing
, Niklas Kühl, Matteo Lind, Gerhard Satzger:
Designing Transparency for Effective Human-AI Collaboration. Inf. Syst. Frontiers 24(3): 877-895 (2022) - [c64]Max Schemmer, Patrick Hemmer, Maximilian Nitsche, Niklas Kühl, Michael Vössing:
A Meta-Analysis of the Utility of Explainable Artificial Intelligence in Human-AI Decision-Making. AIES 2022: 617-626 - [c63]Patrick Hemmer, Max Schemmer, Lara Riefle, Nico Rosellen, Michael Vössing, Niklas Kühl:
Factors that Influence the Adoption of Human-AI Collaboration in Clinical Decision-Making. ECIS 2022 - [c62]Max Schemmer, Niklas Kühl, Carina Benz, Gerhard Satzger:
On the Influence of Explainable AI on Automation Bias. ECIS 2022 - [c61]Jakob Schoeffer
, Niklas Kühl, Yvette Machowski:
"There Is Not Enough Information": On the Effects of Explanations on Perceptions of Informational Fairness and Trustworthiness in Automated Decision-Making. FAccT 2022: 1616-1628 - [c60]Enrico Bunde, Niklas Kühl, Christian Meske:
Fake or Credible? Towards Designing Services to Support Users' Credibility Assessment of News Content. HICSS 2022: 1-10 - [c59]Thi Thu Hang Do, Markus Dobler, Niklas Kühl:
What to prioritize? Natural Language Processing for the Development of a Modern Bug Tracking Solution in Hardware Development. HICSS 2022: 1-10 - [c58]Hansjörg Fromm, Gerhard Satzger, Niklas Kühl, Thomas Setzer:
Introduction to the Minitrack on Service Analytics. HICSS 2022: 1 - [c57]Patrick Hemmer, Niklas Kühl, Jakob Schoeffer:
Utilizing Active Machine Learning for Quality Assurance: A Case Study of Virtual Car Renderings in the Automotive Industry. HICSS 2022: 1-10 - [c56]Dominik Martin, Simon Heinzel, Johannes Kunze von Bischhoffshausen, Niklas Kühl:
Deep Learning Strategies for Industrial Surface Defect Detection Systems. HICSS 2022: 1-10 - [c55]Max Schemmer, Niklas Kühl, Gerhard Satzger:
Intelligent Decision Assistance Versus Automated Decision-Making: Enhancing Knowledge Workers Through Explainable Artificial Intelligence. HICSS 2022: 1-10 - [c54]Jakob Schoeffer, Yvette Machowski, Niklas Kühl:
Perceptions of Fairness and Trustworthiness Based on Explanations in Human vs. Automated Decision-Making. HICSS 2022: 1-8 - [c53]Martin Maritsch, Kevin Koch, Hauke Thomsen, Niklas Kühl
, Matthias Pfäffli, Wolfgang Weinmann, Felix Wortmann:
Driver state prediction from vehicle signals: An evaluation of segmentation approaches. ITSC 2022: 1106-1113 - [c52]Johannes Jakubik
, Jakob Schöffer
, Vincent Hoge, Michael Vössing, Niklas Kühl:
An Empirical Evaluation of Predicted Outcomes as Explanations in Human-AI Decision-Making. PKDD/ECML Workshops (1) 2022: 353-368 - [i46]Max Schemmer, Patrick Hemmer, Niklas Kühl, Carina Benz, Gerhard Satzger:
Should I Follow AI-based Advice? Measuring Appropriate Reliance in Human-AI Decision-Making. CoRR abs/2204.06916 (2022) - [i45]Max Schemmer, Niklas Kühl, Carina Benz, Gerhard Satzger:
On the Influence of Explainable AI on Automation Bias. CoRR abs/2204.08859 (2022) - [i44]Patrick Hemmer, Max Schemmer, Lara Riefle, Nico Rosellen, Michael Vössing, Niklas Kühl:
Factors that influence the adoption of human-AI collaboration in clinical decision-making. CoRR abs/2204.09082 (2022) - [i43]Jakob Schoeffer, Maria De-Arteaga, Niklas Kühl:
On the Relationship Between Explanations, Fairness Perceptions, and Decisions. CoRR abs/2204.13156 (2022) - [i42]Patrick Hemmer, Max Schemmer, Niklas Kühl, Michael Vössing, Gerhard Satzger:
On the Effect of Information Asymmetry in Human-AI Teams. CoRR abs/2205.01467 (2022) - [i41]Dominik Kreuzberger, Niklas Kühl, Sebastian Hirschl:
Machine Learning Operations (MLOps): Overview, Definition, and Architecture. CoRR abs/2205.02302 (2022) - [i40]Max Schemmer, Patrick Hemmer, Maximilian Nitsche, Niklas Kühl, Michael Vössing:
A Meta-Analysis on the Utility of Explainable Artificial Intelligence in Human-AI Decision-Making. CoRR abs/2205.05126 (2022) - [i39]Jakob Schoeffer, Niklas Kühl, Yvette Machowski:
"There Is Not Enough Information": On the Effects of Explanations on Perceptions of Informational Fairness and Trustworthiness in Automated Decision-Making. CoRR abs/2205.05758 (2022) - [i38]Philipp Spitzer, Niklas Kühl, Marc Goutier:
Training Novices: The Role of Human-AI Collaboration and Knowledge Transfer. CoRR abs/2207.00497 (2022) - [i37]Johannes Jakubik, Jakob Schöffer, Vincent Hoge, Michael Vössing, Niklas Kühl:
An Empirical Evaluation of Predicted Outcomes as Explanations in Human-AI Decision-Making. CoRR abs/2208.04181 (2022) - [i36]Marco Geiger, Dominik Martin, Niklas Kühl:
Deep Domain Adaptation for Detecting Bomb Craters in Aerial Images. CoRR abs/2209.11299 (2022) - [i35]Jakob Schoeffer, Maria De-Arteaga, Niklas Kühl:
On Explanations, Fairness, and Appropriate Reliance in Human-AI Decision-Making. CoRR abs/2209.11812 (2022) - [i34]Johannes Jakubik, Michael Vössing, Niklas Kühl, Jannis Walk, Gerhard Satzger:
Data-centric Artificial Intelligence. CoRR abs/2212.11854 (2022) - 2021
- [j4]Dominik Martin, Niklas Kühl, Gerhard Satzger:
Virtual Sensors. Bus. Inf. Syst. Eng. 63(3): 315-323 (2021) - [j3]Niklas Kühl, Robin Hirt, Lucas Baier, Björn Schmitz, Gerhard Satzger:
How to Conduct Rigorous Supervised Machine Learning in Information Systems Research: The Supervised Machine Learning Report Card. Commun. Assoc. Inf. Syst. 48: 46 (2021) - [c51]Lucia Schuler, Somaya Jamil, Niklas Kühl:
AI-based Resource Allocation: Reinforcement Learning for Adaptive Auto-scaling in Serverless Environments. CCGRID 2021: 804-811 - [c50]Jakob Schöffer
, Niklas Kühl:
Appropriate Fairness Perceptions? On the Effectiveness of Explanations in Enabling People to Assess the Fairness of Automated Decision Systems. CSCW Companion 2021: 153-157 - [c49]Jakob Schöffer
, Niklas Kühl, Isabel Valera
:
A Ranking Approach to Fair Classification. COMPASS 2021: 115-125 - [c48]Max Schemmer, Daniel Heinz, Lucas Baier, Michael Vössing, Niklas Kühl:
Conceptualizing Digital Resilience for AI-based Information Systems. ECIS 2021 - [c47]Patrick Zschech, Jannis Walk, Kai Heinrich, Michael Vössing, Niklas Kühl:
A Picture is Worth a Collaboration: Accumulating Design Knowledge for Computer-Vision-based Hybrid Intelligence Systems. ECIS 2021 - [c46]Lucas Baier, Vincent Kellner, Niklas Kühl, Gerhard Satzger:
Switching Scheme: A Novel Approach for Handling Incremental Concept Drift in Real-World Data Sets. HICSS 2021: 1-10 - [c45]Tobias Enders, Niklas Kühl, Jannis Walk, Marc Muff:
Designing Chemical Emergency Response Systems Based on Open Data. HICSS 2021: 1-10 - [c44]Robin Hirt, Akash Srivastava, Carlos Berg, Niklas Kühl:
Sequential Transfer Machine Learning in Networks: Measuring the Impact of Data and Neural Net Similarity on Transferability. HICSS 2021: 1-10 - [c43]Niklas Kühl, Dominik Martin, Clemens Wolff, Melanie Volkamer:
"Healthy surveillance": Designing a concept for privacy-preserving mask recognition AI in the age of pandemics. HICSS 2021: 1-10 - [c42]Thomas Setzer, Hansjörg Fromm, Niklas Kühl, Gerhard Satzger:
Introduction to the Minitrack on Service Analytics. HICSS 2021: 1 - [c41]Lucas Baier, Niklas Kühl, Jörg Schmitt:
Increasing Robustness for Machine Learning Services in Challenging Environments: Limited Resources and No Label Feedback. IntelliSys (1) 2021: 837-856 - [c40]Jakob Schöffer, Yvette Machowski, Niklas Kühl:
A Study on Fairness and Trust Perceptions in Automated Decision Making. IUI Workshops 2021 - [c39]Patrick Hemmer, Max Schemmer, Michael Vössing, Niklas Kühl:
Human-AI Complementarity in Hybrid Intelligence Systems: A Structured Literature Review. PACIS 2021: 78 - [c38]Dominik Martin, Niklas Kühl, Marcel Schwenk:
Towards a Reference Architecture for Future Industrial Internet of Things Networks. CBI (2) 2021: 1-9 - [i33]Niklas Kühl, Gerhard Satzger:
Needmining: Designing Digital Support to Elicit Needs from Social Media. CoRR abs/2101.06146 (2021) - [i32]Jakob Schöffer
, Niklas Kühl, Isabel Valera:
A Ranking Approach to Fair Classification. CoRR abs/2102.04565 (2021) - [i31]Jakob Schöffer, Yvette Machowski, Niklas Kühl:
A Study on Fairness and Trust Perceptions in Automated Decision Making. CoRR abs/2103.04757 (2021) - [i30]Christoph Sager
, Patrick Zschech
, Niklas Kühl:
labelCloud: A Lightweight Domain-Independent Labeling Tool for 3D Object Detection in Point Clouds. CoRR abs/2103.04970 (2021) - [i29]Patrick Zschech, Jannis Walk, Kai Heinrich, Michael Vössing, Niklas Kühl:
A Picture is Worth a Collaboration: Accumulating Design Knowledge for Computer-Vision-based Hybrid Intelligence Systems. CoRR abs/2104.11600 (2021) - [i28]Lucas Baier, Tim Schlör, Jakob Schöffer
, Niklas Kühl
:
Detecting Concept Drift With Neural Network Model Uncertainty. CoRR abs/2107.01873 (2021) - [i27]Jakob Schöffer
, Niklas Kühl:
Appropriate Fairness Perceptions? On the Effectiveness of Explanations in Enabling People to Assess the Fairness of Automated Decision Systems. CoRR abs/2108.06500 (2021) - [i26]Dominik Martin, Niklas Kühl, Marcel Schwenk:
Towards a Reference Architecture for Future Industrial Internet of Things Networks. CoRR abs/2109.00833 (2021) - [i25]Jakob Schöffer
, Yvette Machowski, Niklas Kühl:
Perceptions of Fairness and Trustworthiness Based on Explanations in Human vs. Automated Decision-Making. CoRR abs/2109.05792 (2021) - [i24]Dominik Martin, Simon Heinzel, Johannes Kunze von Bischhoffshausen, Niklas Kühl:
Deep Learning Strategies for Industrial Surface Defect Detection Systems. CoRR abs/2109.11304 (2021) - [i23]Enrico Bunde, Niklas Kühl, Christian Meske:
Fake or Credible? Towards Designing Services to Support Users' Credibility Assessment of News Content. CoRR abs/2109.13336 (2021) - [i22]Thi Thu Hang Do, Markus Dobler, Niklas Kühl:
What to Prioritize? Natural Language Processing for the Development of a Modern Bug Tracking Solution in Hardware Development. CoRR abs/2109.13825 (2021) - [i21]Max Schemmer, Niklas Kühl, Gerhard Satzger:
Intelligent Decision Assistance Versus Automated Decision-Making: Enhancing Knowledge Work Through Explainable Artificial Intelligence. CoRR abs/2109.13827 (2021) - [i20]Patrick Hemmer, Niklas Kühl, Jakob Schöffer:
Utilizing Active Machine Learning for Quality Assurance: A Case Study of Virtual Car Renderings in the Automotive Industry. CoRR abs/2110.09023 (2021) - 2020
- [j2]Niklas Kühl
, Marius Mühlthaler, Marc Goutier:
Supporting customer-oriented marketing with artificial intelligence: automatically quantifying customer needs from social media. Electron. Mark. 30(2): 351-367 (2020) - [c37]Clemens Wolff, Niklas Kühl, Gerhard Satzger:
Engineering Industrial Service Systems: Design and Evaluation of System-Oriented Service Delivery. DESRIST 2020: 407-419 - [c36]Dominik Martin, Niklas Kühl, Johannes Kunze von Bischhoffshausen, Gerhard Satzger:
System-Wide Learning in Cyber-Physical Service Systems: A Research Agenda. DESRIST 2020: 457-468 - [c35]Tristan Karb, Niklas Kühl, Robin Hirt, Varvara Glivici-Cotruta:
A Network-based Transfer Learning Approach to Improve Sales Forecasting of New Products. ECIS 2020 - [c34]Niklas Kühl, Hansjörg Fromm, Gerhard Satzger, Thomas Setzer:
Introduction to the Minitrack on Service Analytics. HICSS 2020: 1-2 - [c33]Niklas Kühl, Cameron G. Walker, Melanie Reuter-Oppermann:
Introduction to the Minitrack on Optimization of and the Use of IT for Healthcare Processes. HICSS 2020: 1 - [c32]Dominik Martin, Philipp Spitzer, Niklas Kühl:
A New Metric for Lumpy and Intermittent Demand Forecasts: Stock-keeping-oriented Prediction Error Costs. HICSS 2020: 1-10 - [c31]Jannis Walk, Niklas Kühl, Jonathan Schäfer:
Towards Leveraging End-of-Life Tools as an Asset: Value Co-Creation based on Deep Learning in the Machining Industry. HICSS 2020: 1-10 - [c30]Clemens Wolff, Niklas Kühl, Gerhard Satzger
:
Enabling System-Oriented Service Delivery in Industrial Maintenance: A Meta-method for Predicting Industrial Costs of Downtime. IESS 2020: 92-106 - [c29]Jannis Walk, Robin Hirt, Niklas Kühl, Erik R. Hersløv:
Half-Empty or Half-Full? A Hybrid Approach to Predict Recycling Behavior of Consumers to Increase Reverse Vending Machine Uptime. IESS 2020: 107-120 - [c28]Lucas Baier, Jakob Schöffer, Niklas Kühl:
Utilizing Adaptive AI-based Information Systems to Analyze the Effectiveness of Policy Measures in the Fight of COVID-19. ICIS 2020 - [c27]Patrick Hemmer, Niklas Kühl, Jakob Schöffer
:
DEAL: Deep Evidential Active Learning for Image Classification. ICMLA 2020: 865-870 - [c26]Alexander Treiss, Jannis Walk, Niklas Kühl:
An Uncertainty-Based Human-in-the-Loop System for Industrial Tool Wear Analysis. ECML/PKDD (5) 2020: 85-100 - [c25]Robin Hirt, Niklas Kühl, Yusuf Peker, Gerhard Satzger
:
How to Learn from Others: Transfer Machine Learning with Additive Regression Models to Improve Sales Forecasting. CBI (1) 2020: 20-29 - [c24]Lucas Baier, Josua Reimold, Niklas Kühl:
Handling Concept Drift for Predictions in Business Process Mining. CBI (1) 2020: 76-83 - [c23]Lucas Baier, Niklas Kühl, Gerhard Satzger, Marcel Hofmann, Marisa Mohr:
Handling Concept Drifts in Regression Problems - the Error Intersection Approach. Wirtschaftsinformatik (Zentrale Tracks) 2020: 210-224 - [p7]Maria Maleshkova, Niklas Kühl, Philipp Jussen:
Introduction to Smart Service Management. Smart Service Management 2020: 3-5 - [p6]Dominik Martin, Niklas Kühl, Maria Maleshkova:
Grasping the Terminology: Smart Services, Smart Service Systems, and Cyber-Physical Systems. Smart Service Management 2020: 7-21 - [p5]Michael Vössing, Niklas Kühl:
Industrial Maintenance in the Digital World. Smart Service Management 2020: 23-32 - [p4]Niklas Kühl, Hansjörg Fromm, Jakob Schöffer, Gerhard Satzger:
Service Analytics: Putting the "Smart" in Smart Services. Smart Service Management 2020: 151-159 - [p3]Maria Maleshkova, Niklas Kühl, Philipp Jussen:
Introduction to Smart Service Use Cases. Smart Service Management 2020: 163-165 - [p2]Lena Eckstein, Niklas Kühl, Gerhard Satzger:
Designing a Smart Service for Customer Need Identification in B2B Ticketing Systems. Smart Service Management 2020: 167-178 - [p1]Dominik Martin, Niklas Kühl, Johannes Kunze von Bischhoffshausen:
Smart Services: A Condition Monitoring Use Case Utilizing System-Wide Analyses. Smart Service Management 2020: 179-191 - [e3]Maria Maleshkova
, Niklas Kühl
, Philipp Jussen:
Smart Service Management - Design Guidelines and Best Practices. Springer 2020, ISBN 978-3-030-58181-7 [contents] - [e2]Maria Henriqueta Nóvoa
, Monica Dragoicea
, Niklas Kühl
:
Exploring Service Science - 10th International Conference, IESS 2020, Porto, Portugal, February 5-7, 2020, Proceedings. Lecture Notes in Business Information Processing 377, Springer 2020, ISBN 978-3-030-38723-5 [contents] - [i19]Niklas Kühl, Jodie Lobana, Christian Meske:
Do you comply with AI? - Personalized explanations of learning algorithms and their impact on employees' compliance behavior. CoRR abs/2002.08777 (2020) - [i18]Niklas Kühl, Jan Scheurenbrand, Gerhard Satzger:
Needmining: Identifying micro blog data containing customer needs. CoRR abs/2003.05917 (2020) - [i17]Robin Hirt, Akash Srivastava, Carlos Berg, Niklas Kühl:
Sequential Transfer Machine Learning in Networks: Measuring the Impact of Data and Neural Net Similarity on Transferability. CoRR abs/2003.13070 (2020) - [i16]Jannis Walk, Robin Hirt, Niklas Kühl, Erik R. Hersløv:
Half-empty or half-full? A Hybrid Approach to Predict Recycling Behavior of Consumers to Increase Reverse Vending Machine Uptime. CoRR abs/2003.13304 (2020) - [i15]Lucas Baier, Marcel Hofmann, Niklas Kühl, Marisa Mohr, Gerhard Satzger:
Handling Concept Drifts in Regression Problems - the Error Intersection Approach. CoRR abs/2004.00438 (2020) - [i14]Svenja Laing, Niklas Kühl:
Comfort-as-a-Service: Designing a User-Oriented Thermal Comfort Artifact for Office Buildings. CoRR abs/2004.03323 (2020) - [i13]Niklas Kühl, Marc Goutier, Robin Hirt, Gerhard Satzger:
Machine Learning in Artificial Intelligence: Towards a Common Understanding. CoRR abs/2004.04686 (2020) - [i12]Dominik Martin, Philipp Spitzer, Niklas Kühl:
A New Metric for Lumpy and Intermittent Demand Forecasts: Stock-keeping-oriented Prediction Error Costs. CoRR abs/2004.10537 (2020) - [i11]Lucas Baier, Josua Reimold, Niklas Kühl:
Handling Concept Drift for Predictions in Business Process Mining. CoRR abs/2005.05810 (2020) - [i10]Tristan Karb, Niklas Kühl, Robin Hirt, Varvara Glivici-Cotruta:
A network-based transfer learning approach to improve sales forecasting of new products. CoRR abs/2005.06978 (2020) - [i9]Robin Hirt, Niklas Kühl, Yusuf Peker, Gerhard Satzger:
How to Learn from Others: Transfer Machine Learning with Additive Regression Models to Improve Sales Forecasting. CoRR abs/2005.10698 (2020) - [i8]Lucia Schuler, Somaya Jamil, Niklas Kühl:
AI-based Resource Allocation: Reinforcement Learning for Adaptive Auto-scaling in Serverless Environments. CoRR abs/2005.14410 (2020) - [i7]Alexander Treiss, Jannis Walk, Niklas Kühl:
An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear Analysis. CoRR abs/2007.07129 (2020) - [i6]Patrick Hemmer, Niklas Kühl, Jakob Schöffer
:
DEAL: Deep Evidential Active Learning for Image Classification. CoRR abs/2007.11344 (2020) - [i5]Jannis Walk, Niklas Kühl, Jonathan Schäfer:
Towards Leveraging End-of-Life Tools as an Asset: Value Co-Creation based on Deep Learning in the Machining Industry. CoRR abs/2008.01053 (2020) - [i4]Niklas Kühl, Dominik Martin, Clemens Wolff, Melanie Volkamer:
"Healthy surveillance": Designing a concept for privacy-preserving mask recognition AI in the age of pandemics. CoRR abs/2010.12026 (2020) - [i3]Lucas Baier, Vincent Kellner, Niklas Kühl, Gerhard Satzger:
Switching Scheme: A Novel Approach for Handling Incremental Concept Drift in Real-World Data Sets. CoRR abs/2011.02738 (2020) - [i2]Niklas Kühl, Marc Goutier, Lucas Baier, Clemens Wolff, Dominik Martin:
Human vs. supervised machine learning: Who learns patterns faster? CoRR abs/2012.03661 (2020) - [i1]Lucas Baier, Niklas Kühl, Jakob Schöffer, Gerhard Satzger:
Utilizing Concept Drift for Measuring the Effectiveness of Policy Interventions: The Case of the COVID-19 Pandemic. CoRR abs/2012.03728 (2020)
2010 – 2019
- 2019
- [j1]Robin Hirt
, Niklas Kühl
, Gerhard Satzger
:
Cognitive computing for customer profiling: meta classification for gender prediction. Electron. Mark. 29(1): 93-106 (2019) - [c22]Michael Vössing, Felix Potthoff, Niklas Kühl, Gerhard Satzger:
Designing Useful Transparency to Improve Process Performance - Evidence from an Automated production Line. ECIS 2019 - [c21]Lucas Baier, Niklas Kühl, Gerhard Satzger:
How to Cope with Change? - Preserving Validity of Predictive Services over Time. HICSS 2019: 1-10 - [c20]Niklas Kühl, Marc Goutier, Robin Hirt, Gerhard Satzger:
Machine Learning in Artificial Intelligence: Towards a Common Understanding. HICSS 2019: 1-10 - [c19]Dominik Martin, Niklas Kühl:
Holistic System-Analytics as an Alternative to Isolated Sensor Technology: A Condition Monitoring Use Case. HICSS 2019: 1-8 - [c18]Clemens Wolff, Melanie Reuter-Oppermann, Niklas Kühl:
On the Impact of the Customer Base on the Added Value through System-Oriented Service Delivery in Industrial Maintenance. HICSS 2019: 1-10 - [c17]Clemens Wolff, Steven Kimbrough, Niklas Kühl:
Analyzing the Impact of Strategic Behavior in System-Oriented Service Delivery. ICIS 2019 - [c16]Dominik Martin, Robin Hirt, Niklas Kühl:
Service Systems, Smart Service Systems and Cyber- Physical Systems - What's the difference? Towards a Unified Terminology. Wirtschaftsinformatik 2019: 17-31 - [c15]Niklas Kühl, Dominik Martin, Gerhard Satzger:
Automatically Extracting and Analyzing Customer Needs from Twitter: A "Needmining" Prototype. Wirtschaftsinformatik 2019: 1967-1970 - 2018
- [c14]Robin Hirt, Niklas Kühl, Björn Schmitz, Gerhard Satzger:
Service-Oriented Cognitive Analytics for Smart Service Systems: A Research Agenda. HICSS 2018: 1-8 - [c13]Niklas Kühl, Marius Mühlthaler, Marc Goutier:
Automatically Quantifying Customer Need Tweets: Towards a Supervised Machine Learning Approach. HICSS 2018: 1-10 - [c12]Robin Hirt, Niklas Kühl:
Cognition in the Era of Smart Service Systems: Inter-organizational Analytics through Meta and Transfer Learning. ICIS 2018 - [c11]Svenja Laing, Niklas Kühl:
Comfort-as-a-Service: Designing a User-Oriented Thermal Comfort Artifact for Office Buildings. ICIS 2018 - [c10]Clemens Wolff, Michael Vössing, Niklas Kühl:
Using Monte-Carlo simulation to Measure the Business-Relevant Impact of Planning uncertainty on field Service Delivery. WSC 2018: 3205-3216 - [e1]Gerhard Satzger, Lia Patrício
, Mohamed Zaki, Niklas Kühl, Peter Hottum:
Exploring Service Science - 9th International Conference, IESS 2018, Karlsruhe, Germany, September 19-21, 2018, Proceedings. Lecture Notes in Business Information Processing 331, Springer 2018, ISBN 978-3-030-00712-6 [contents] - 2017
- [b1]Niklas Kühl:
Needmining: automated analytical support for customer need elicitation. Karlsruhe Institute of Technology, Germany, 2017, pp. 1-200 - [c9]Robin Hirt, Niklas Kühl:
Abbildung kognitiver Fähigkeiten mit Metamodellen. GI-Jahrestagung 2017: 2301-2307 - [c8]Fabian Hunke, Ronny Schüritz, Niklas Kuehl:
Towards a Unified Approach to Identify Business Model Patterns: A Case of E-Mobility Services. IESS 2017: 182-196 - 2016
- [c7]Niklas Kühl, Jan Scheurenbrand, Gerhard Satzger:
Needmining: identifying micro Blog Data containing Customer Needs. ECIS 2016: Research Paper 185 - [c6]Niklas Kühl, Jonas Lehner:
Programming for refugees - an active learning approach for teaching Java to heterogeneous groups. GI-Jahrestagung 2016: 1175-1178 - [c5]Niklas Kühl, Marc Goutier:
"Need tweets": new insights about customer needs from micro blog data in the field of E-mobility. GI-Jahrestagung 2016: 1363-1376 - [c4]Niklas Kuehl:
Needmining: Towards Analytical Support for Service Design. IESS 2016: 187-200 - [c3]Niklas Kühl, Jan Scheurenbrand, Gerhard Satzger:
"Needs from Tweets": Towards Deriving Customer Needs From Micro Blog Data (Extended Abstract). MKWI 2016: 1229-1232 - [c2]Niklas Kühl, Marc Goutier:
Needmining: Evaluating a Whitelist-Based Assignment Method to Quantify Customer Needs from Micro Blog Data. OR 2016: 165-170 - [c1]Lena Eckstein, Niklas Kühl, Gerhard Satzger
:
Towards Extracting Customer Needs from Incident Tickets in IT Services. CBI (1) 2016: 200-207
Coauthor Index
aka: Jakob Schoeffer

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-02-20 01:40 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint