default search action
David D. Wentzloff
Person information
- affiliation: University of Michigan, Ann Arbor, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j41]Milad Moosavifar, Jaeho Im, David D. Wentzloff:
An Interference-Resilient Bit-Level Duty-Cycled ULP Receiver Leveraging a Dual-Chirp Modulation. IEEE J. Solid State Circuits 59(2): 337-348 (2024) - [c59]Kuo-Ken Huang, Ricardo Luna, David D. Wentzloff, Bela Rathonyi, Y.-P. Eric Wang, Jason Chen, Jouni Korhonen, Hanna-Liisa Tiri:
NB-IoT Power-Saving Analysis with Wake-Up Signal and Wake-Up Receiver Implementation. ICC Workshops 2024: 1121-1126 - [c58]Yaswanth K. Cherivirala, David D. Wentzloff:
A Capacitor-less Hybrid LDO for Low Frequency Supply Noise Suppression Achieving 99.87% Efficiency and 3.32ps Response Time in 65nm. ISCAS 2024: 1-4 - [c57]Trevor J. Odelberg, Jaeho Im, Milad Moosavifar, David D. Wentzloff:
A Fully Integrated NB-IoT Wake-Up Receiver Utilizing An Optimized OFDM 12-Point FFT Wake-Up Engine. ISCAS 2024: 1-5 - [c56]Siyu Wang, David D. Wentzloff:
A 1.41µW Motion Sensing Front-End for Passive Infrared Sensors. ISCAS 2024: 1-4 - [c55]Yaswanth Kumar Cherivirala, David D. Wentzloff:
A Technology-Agnostic Method for Digital LDO Synthesis and Layout Automation. ISLPED 2024: 1-6 - 2023
- [j40]Noah M. Michels, Abbas Johar Jinia, Shaun D. Clarke, Hun-Seok Kim, Sara A. Pozzi, David D. Wentzloff:
Real-Time Classification of Radiation Pulses With Piled-Up Recovery Using an FPGA-Based Artificial Neural Network. IEEE Access 11: 78074-78083 (2023) - [j39]Kyumin Kwon, Omar A. B. Abdelatty, David D. Wentzloff:
PLL Fractional Spur's Impact on FSK Spectrum and a Synthesizable ADPLL for a Bluetooth Transmitter. IEEE J. Solid State Circuits 58(5): 1271-1284 (2023) - [j38]Daniel S. Truesdell, James Boley, Atul Wokhlu, Alain Gravel, David D. Wentzloff, Benton H. Calhoun:
Modeling and Design of Cold-Start Charge Pumps for Photovoltaic Energy Harvesters. IEEE Trans. Circuits Syst. I Regul. Pap. 70(11): 4334-4345 (2023) - [j37]Yaswanth K. Cherivirala, David D. Wentzloff:
A Capacitor-Less Digital LDO Regulator With Synthesizable PID Controller Achieving 99.75% Efficiency and 93.3-ps Response Time in 65 nm. IEEE Trans. Circuits Syst. II Express Briefs 70(5): 1769-1773 (2023) - [c54]Yaswanth K. Cherivirala, Mehdi Saligane, David D. Wentzloff:
An Open Source Compatible Framework to Fully Autonomous Digital LDO Generation. ISCAS 2023: 1-5 - [c53]Christopher J. Lukas, Farah B. Yahya, Kuo-Ken Huang, Jim Boley, Daniel S. Truesdell, Jacob Breiholz, Atul Wokhlu, Kyle Craig, Jonathan K. Brown, Andrew Fitting, William Moore, Andy Shih, Alice Wang, Alain Gravel, David D. Wentzloff, Benton H. Calhoun:
A 2.19µW Self-Powered SoC with Integrated Multimodal Energy Harvesting, Dual-Channel up to -92dBm WRX and Energy-Aware Subsystem. ISSCC 2023: 238-239 - [c52]Li-Yu Chen, David D. Wentzloff:
An Automated Framework for Switched-Capacitor Power Amplifier Implementation Verified in 65 nm CMOS. SMACD 2023: 1-4 - [c51]Kyumin Kwon, David D. Wentzloff:
Synthesizable ADPLL Generator: From Specification to GDS. SMACD 2023: 1-4 - 2022
- [j36]Yu-Ju Lin, Hyunsoo Song, Sungjin Oh, Mihály Vöröslakos, Kanghwan Kim, Xing Chen, David D. Wentzloff, György Buzsáki, Sung-Yun Park, Euisik Yoon:
A 3.1-5.2GHz, Energy-Efficient Single Antenna, Cancellation-Free, Bitwise Time-Division Duplex Transceiver for High Channel Count Optogenetic Neural Interface. IEEE Trans. Biomed. Circuits Syst. 16(1): 52-63 (2022) - [c50]Kuo-Ken Huang, Jonathan K. Brown, Richard K. Sawyer, Christopher J. Lukas, Farah B. Yahya, Alice Wang, Nathan E. Roberts, Benton H. Calhoun, David D. Wentzloff:
ULP Receivers in Self-Powered Industrial loT Applications: Challenges and Prospects. CICC 2022: 1-8 - [c49]Milad Moosavifar, Jaeho Im, Trevor Odelberg, David D. Wentzloff:
A 110µW 2.5kb/s -103dBm-Sensitivity Dual-Chirp Modulated ULP Receiver Achieving -41dB SIR. ISSCC 2022: 402-404 - 2021
- [j35]Abbas Johar Jinia, Tessa E. Maurer, Christopher A. Meert, Michael Y. Hua, Shaun D. Clarke, Hun-Seok Kim, David D. Wentzloff, Sara A. Pozzi:
An Artificial Neural Network System for Photon-Based Active Interrogation Applications. IEEE Access 9: 119871-119880 (2021) - [j34]Omar Abdelatty, Xing Chen, Abdullah Mohammed Alghaihab, David D. Wentzloff:
Bluetooth Communication Leveraging Ultra-Low Power Radio Design. J. Sens. Actuator Networks 10(2): 31 (2021) - [j33]Xing Chen, Abdullah Mohammed Alghaihab, Yao Shi, Daniel S. Truesdell, Benton H. Calhoun, David D. Wentzloff:
A Crystal-Less BLE Transmitter With Clock Recovery From GFSK-Modulated BLE Packets. IEEE J. Solid State Circuits 56(7): 1963-1974 (2021) - [c48]Jaeho Im, Hyeongseok Kim, Omar Abdelatty, David D. Wentzloff:
A Fully Integrated 62-to-69GHz Crystal-Less Transceiver with 12 Channels Tuned by a Transmission-Line- Referenced FLL in 0.13µm BiCMOS. ISSCC 2021: 232-234 - [c47]Kuo-Ken Huang, Jonathan K. Brown, Nicholas Collins, Richard K. Sawyer, Farah B. Yahya, Alice Wang, Nathan E. Roberts, Benton H. Calhoun, David D. Wentzloff:
A Fully Integrated 2.7µW -70.2dBm-Sensitivity Wake-Up Receiver with Charge-Domain Analog Front-End, -16.5dB-SIR, FEC and Cryptographic Checksum. ISSCC 2021: 306-308 - [c46]Milad Moosavifar, David D. Wentzloff:
Analysis of Design Trade-Offs in Ultra-Low-Power FSK Receivers for Phase-Based Ranging. WiSNet 2021: 8-11 - 2020
- [j32]Li-Xuan Chuo, Zhen Feng, Yejoong Kim, Nikolaos Chiotellis, Makoto Yasuda, Satoru Miyoshi, Masaru Kawaminami, Anthony Grbic, David D. Wentzloff, David T. Blaauw, Hun-Seok Kim:
Millimeter-Scale Node-to-Node Radio Using a Carrier Frequency-Interlocking IF Receiver for a Fully Integrated 4 $\times$ 4 $\times$ 4 mm3 Wireless Sensor Node. IEEE J. Solid State Circuits 55(5): 1128-1138 (2020) - [c45]David D. Wentzloff, Abdullah Mohammed Alghaihab, Jaeho Im:
Ultra-Low Power Receivers for IoT Applications: A Review. CICC 2020: 1-8 - [c44]Shuo Li, Jacob Breiholz, Sumanth Kamineni, Jaeho Im, David D. Wentzloff, Benton H. Calhoun:
An 85 nW IoT Node-Controlling SoC for MELs Power-Mode Management and Phantom Energy Reduction. ISCAS 2020: 1-5 - [c43]Jonathan K. Brown, David Abdallah, Jim Boley, Nicholas Collins, Kyle Craig, Greg Glennon, Kuo-Ken Huang, Christopher J. Lukas, William Moore, Richard K. Sawyer, Yousef Shakhsheer, Farah B. Yahya, Alice Wang, Nathan E. Roberts, David D. Wentzloff, Benton H. Calhoun:
27.1 A 65nm Energy-Harvesting ULP SoC with 256kB Cortex-M0 Enabling an 89.1µW Continuous Machine Health Monitoring Wireless Self-Powered System. ISSCC 2020: 420-422 - [c42]Abdullah Mohammed Alghaihab, Xing Chen, Yao Shi, Daniel S. Truesdell, Benton H. Calhoun, David D. Wentzloff:
30.7 A Crystal-Less BLE Transmitter with -86dBm Freq µ ency-Hopping Back-Channel WRX and Over-the-Air Clock Recovery from a GFSK-Modulated BLE Packet. ISSCC 2020: 472-474 - [c41]Tutu Ajayi, Sumanth Kamineni, Morteza Fayazi, Yaswanth K. Cherivirala, Kyumin Kwon, Shourya Gupta, Wenbo Duan, Jeongsup Lee, Chien-Hen Chen, Mehdi Saligane, Dennis Sylvester, David T. Blaauw, Ronald Dreslinski Jr., Benton H. Calhoun, David D. Wentzloff:
Fully-Autonomous SoC Synthesis Using Customizable Cell-Based Analog and Mixed-Signal Circuits Generation. VLSI-SoC (Selected Papers) 2020: 65-85 - [c40]Tutu Ajayi, Sumanth Kamineni, Yaswanth K. Cherivirala, Morteza Fayazi, Kyumin Kwon, Mehdi Saligane, Shourya Gupta, Chien-Hen Chen, Dennis Sylvester, David T. Blaauw, Ronald G. Dreslinski, Benton H. Calhoun, David D. Wentzloff:
An Open-source Framework for Autonomous SoC Design with Analog Block Generation. VLSI-SOC 2020: 141-146
2010 – 2019
- 2019
- [j31]Xing Chen, Jacob Breiholz, Farah B. Yahya, Christopher J. Lukas, Hun-Seok Kim, Benton H. Calhoun, David D. Wentzloff:
Analysis and Design of an Ultra-Low-Power Bluetooth Low-Energy Transmitter With Ring Oscillator-Based ADPLL and 4 $\times$ Frequency Edge Combiner. IEEE J. Solid State Circuits 54(5): 1339-1350 (2019) - [j30]Abdullah Mohammed Alghaihab, Yao Shi, Jacob Breiholz, Hun-Seok Kim, Benton H. Calhoun, David D. Wentzloff:
Enhanced Interference Rejection Bluetooth Low-Energy Back-Channel Receiver With LO Frequency Hopping. IEEE J. Solid State Circuits 54(7): 2019-2027 (2019) - [j29]Christopher J. Lukas, Farah B. Yahya, Jacob Breiholz, Abhishek Roy, Xing Chen, Harsh N. Patel, Ningxi Liu, Avish Kosari, Shuo Li, Divya Akella Kamakshi, Oluseyi A. Ayorinde, David D. Wentzloff, Benton H. Calhoun:
A 1.02 μW Battery-Less, Continuous Sensing and Post-Processing SiP for Wearable Applications. IEEE Trans. Biomed. Circuits Syst. 13(2): 271-281 (2019) - [c39]Omar Abdelatty, Henry L. Bishop, Yao Shi, Xing Chen, Abdullah Mohammed Alghaihab, Benton H. Calhoun, David D. Wentzloff:
A Low Power Bluetooth Low-Energy Transmitter with a 10.5nJ Startup-Energy Crystal Oscillator. ESSCIRC 2019: 377-380 - [c38]Yao Shi, Xing Chen, Hun-Seok Kim, David T. Blaauw, David D. Wentzloff:
A 606μW mm-Scale Bluetooth Low-Energy Transmitter Using Co-Designed 3.5×3.5mm2 Loop Antenna and Transformer-Boost Power Oscillator. ISSCC 2019: 442-444 - [c37]Avish Kosari, David D. Wentzloff:
MURS Band for LPWAN Applications. WiSNet 2019: 1-3 - 2018
- [j28]Avish Kosari, Hun-Seok Kim, David D. Wentzloff:
A MURS Band Digital Quadrature Transmitter With Class-B I/Q Cell Sharing for Long Range IoT Applications. IEEE Trans. Circuits Syst. II Express Briefs 65-II(6): 729-733 (2018) - [j27]Abdullah Mohammed Alghaihab, Hun-Seok Kim, David D. Wentzloff:
Analysis of Circuit Noise and Non-Ideal Filtering Impact on Energy Detection Based Ultra-Low-Power Radios Performance. IEEE Trans. Circuits Syst. II Express Briefs 65-II(12): 1924-1928 (2018) - [c36]David M. Moore, Jeffrey A. Fredenburgh, Muhammad Faisal, David D. Wentzloff:
Static timing analysis for ring oscillators. ASP-DAC 2018: 488-493 - [c35]Avish Kosari, Milad Moosavifar, David D. Wentzloff:
A 152μW -99dBm BPSK/16-QAM OFDM Receiver for LPWAN Applications. A-SSCC 2018: 303-306 - [c34]Hyeongseok Kim, Nikolaos Chiotellis, Elnaz Ansari, Muhammad Faisal, Tae-Kwang Jang, Anthony Grbic, Hun-Seok Kim, David T. Blaauw, David D. Wentzloff:
A receiver/antenna co-design for a 1.5mJ per fix fully-integrated 10×10×6mm3 GPS logger. CICC 2018: 1-4 - [c33]Ningxi Liu, Rishika Agarwala, Anjana Dissanayake, Daniel S. Truesdell, Sumanth Kamineni, Xing Chen, David D. Wentzloff, Benton H. Calhoun:
A 2.5 ppm/°C 1.05 MHz Relaxation Oscillator with Dynamic Frequency-Error Compensation and 8 µs Start-up Time. ESSCIRC 2018: 150-153 - [c32]Jaeho Im, Hun-Seok Kim, David D. Wentzloff:
A 470µW -92.5dBm OOK/FSK Receiver for IEEE 802.11 WiFi LP-WUR. ESSCIRC 2018: 302-305 - [c31]Yue Dai, Wenhao Peng, Yu Wang, Li-Xuan Chuo, Karan Suri, Hao Zheng, David D. Wentzloff, Hun-Seok Kim:
Implementation and Evaluation of Bi-Directional WiFi Back-channel Communication. PIMRC 2018: 1-7 - 2017
- [j26]Taekwang Jang, Gyouho Kim, Benjamin P. Kempke, Michael B. Henry, Nikolaos Chiotellis, Carl Pfeiffer, Dongkwun Kim, Yejoong Kim, Zhiyoong Foo, Hyeongseok Kim, Anthony Grbic, Dennis Sylvester, Hun-Seok Kim, David D. Wentzloff, David T. Blaauw:
Circuit and System Designs of Ultra-Low Power Sensor Nodes With Illustration in a Miniaturized GNSS Logger for Position Tracking: Part I - Analog Circuit Techniques. IEEE Trans. Circuits Syst. I Regul. Pap. 64-I(9): 2237-2249 (2017) - [j25]Tae-Kwang Jang, Gyouho Kim, Benjamin P. Kempke, Michael B. Henry, Nikolaos Chiotellis, Carl Pfeiffer, Dongkwun Kim, Yejoong Kim, Zhiyoong Foo, Hyeongseok Kim, Anthony Grbic, Dennis Sylvester, Hun-Seok Kim, David D. Wentzloff, David T. Blaauw:
Circuit and System Designs of Ultra-Low Power Sensor Nodes With Illustration in a Miniaturized GNSS Logger for Position Tracking: Part II - Data Communication, Energy Harvesting, Power Management, and Digital Circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 64-I(9): 2250-2262 (2017) - [c30]Li-Xuan Chuo, Yao Shi, Zhihong Luo, Nikolaos Chiotellis, Zhiyoong Foo, Gyouho Kim, Yejoong Kim, Anthony Grbic, David D. Wentzloff, Hun-Seok Kim, David T. Blaauw:
7.4 A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3×3×3mm3 wireless sensor node with 20m non-line-of-sight communication. ISSCC 2017: 132-133 - [c29]Jacob Breiholz, Farah B. Yahya, Christopher J. Lukas, Xing Chen, Kevin Leach, David D. Wentzloff, Benton H. Calhoun:
A 4.4 nW lossless sensor data compression accelerator for 2.9x system power reduction in wireless body sensors. MWSCAS 2017: 1041-1044 - 2016
- [j24]Hun-Seok Kim, David D. Wentzloff:
Back-Channel Wireless Communication Embedded in WiFi-Compliant OFDM Packets. IEEE J. Sel. Areas Commun. 34(12): 3181-3194 (2016) - [j23]Yajing Chen, Nikolaos Chiotellis, Li-Xuan Chuo, Carl Pfeiffer, Yao Shi, Ronald G. Dreslinski, Anthony Grbic, Trevor N. Mudge, David D. Wentzloff, David T. Blaauw, Hun-Seok Kim:
Energy-Autonomous Wireless Communication for Millimeter-Scale Internet-of-Things Sensor Nodes. IEEE J. Sel. Areas Commun. 34(12): 3962-3977 (2016) - [j22]Yao Shi, Myungjoon Choi, Ziyun Li, Zhihong Luo, Gyouho Kim, Zhiyoong Foo, Hun-Seok Kim, David D. Wentzloff, David T. Blaauw:
A 10 mm3 Inductive Coupling Radio for Syringe-Implantable Smart Sensor Nodes. IEEE J. Solid State Circuits 51(11): 2570-2583 (2016) - [j21]Osama Ullah Khan, David D. Wentzloff:
Hardware Accelerator for Probabilistic Inference in 65-nm CMOS. IEEE Trans. Very Large Scale Integr. Syst. 24(3): 837-845 (2016) - [c28]Huajun Zhang, David D. Wentzloff, Hun-Seok Kim:
Software-Defined, WiFi and BLE Compliant Back-Channel for Ultra-Low Power Wireless Communication. GLOBECOM 2016: 1-6 - [c27]Yao Shi, Myungjoon Choi, Ziyun Li, Gyouho Kim, Zhiyoong Foo, Hun-Seok Kim, David D. Wentzloff, David T. Blaauw:
26.7 A 10mm3 syringe-implantable near-field radio system on glass substrate. ISSCC 2016: 448-449 - [c26]Nathan E. Roberts, Kyle Craig, Aatmesh Shrivastava, Stuart N. Wooters, Yousef Shakhsheer, Benton H. Calhoun, David D. Wentzloff:
26.8 A 236nW -56.5dBm-sensitivity bluetooth low-energy wakeup receiver with energy harvesting in 65nm CMOS. ISSCC 2016: 450-451 - 2015
- [j20]Aatmesh Shrivastava, Nathan E. Roberts, Osama Ullah Khan, David D. Wentzloff, Benton H. Calhoun:
A 10 mV-Input Boost Converter With Inductor Peak Current Control and Zero Detection for Thermoelectric and Solar Energy Harvesting With 220 mV Cold-Start and -14.5 dBm, 915 MHz RF Kick-Start. IEEE J. Solid State Circuits 50(8): 1820-1832 (2015) - [j19]Mina Rais-Zadeh, Jeremy T. Fox, David D. Wentzloff, Yogesh B. Gianchandani:
Reconfigurable Radios: A Possible Solution to Reduce Entry Costs in Wireless Phones. Proc. IEEE 103(3): 438-451 (2015) - [j18]Veena Misra, Alper Bozkurt, Benton H. Calhoun, Thomas N. Jackson, Jesse Jur, John C. Lach, Bongmook Lee, John Muth, Ömer Oralkan, Mehmet Ozturk, Susan Trolier-McKinstry, Daryoosh Vashaee, David D. Wentzloff, Yong Zhu:
Flexible Technologies for Self-Powered Wearable Health and Environmental Sensing. Proc. IEEE 103(4): 665-681 (2015) - [j17]Abhishek Roy, Alicia Klinefelter, Farah B. Yahya, Xing Chen, Luisa Patricia Gonzalez-Guerrero, Christopher J. Lukas, Divya Akella Kamakshi, James Boley, Kyle Craig, Muhammad Faisal, Seunghyun Oh, Nathan E. Roberts, Yousef Shakhsheer, Aatmesh Shrivastava, Dilip P. Vasudevan, David D. Wentzloff, Benton H. Calhoun:
A 6.45 μW Self-Powered SoC With Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios for Portable Biomedical Systems. IEEE Trans. Biomed. Circuits Syst. 9(6): 862-874 (2015) - [j16]Osama Ullah Khan, David D. Wentzloff:
8.1 nJ/b 2.4 GHz Short-Range Communication Receiver in 65 nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap. 62-I(7): 1854-1862 (2015) - [c25]Benton H. Calhoun, David D. Wentzloff:
Ultra-low power wireless SoCs enabling a batteryless IoT. Hot Chips Symposium 2015: 1-45 - [c24]Alicia Klinefelter, Nathan E. Roberts, Yousef Shakhsheer, Patricia González, Aatmesh Shrivastava, Abhishek Roy, Kyle Craig, Muhammad Faisal, James Boley, Seunghyun Oh, Yanqing Zhang, Divya Akella, David D. Wentzloff, Benton H. Calhoun:
21.3 A 6.45μW self-powered IoT SoC with integrated energy-harvesting power management and ULP asymmetric radios. ISSCC 2015: 1-3 - [c23]Aatmesh Shrivastava, Kyle Craig, Nathan E. Roberts, David D. Wentzloff, Benton H. Calhoun:
5.4 A 32nW bandgap reference voltage operational from 0.5V supply for ultra-low power systems. ISSCC 2015: 1-3 - [c22]Hyeongseok Kim, Gyouho Kim, Yoonmyung Lee, Zhiyoong Foo, Dennis Sylvester, David T. Blaauw, David D. Wentzloff:
A 10.6mm3 fully-integrated, wireless sensor node with 8GHz UWB transmitter. VLSIC 2015: 202- - 2014
- [j15]Kuo-Ken Huang, David D. Wentzloff:
A 1.2-MHz 5.8-µW Temperature-Compensated Relaxation Oscillator in 130-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 61-II(5): 334-338 (2014) - [j14]Sangwook Han, David D. Wentzloff:
Characterization of the Proximity Effect From Tungsten TSVs on 130-nm CMOS Devices in 3-D ICs. IEEE Trans. Very Large Scale Integr. Syst. 22(9): 2025-2029 (2014) - [c21]Elnaz Ansari, David D. Wentzloff:
A 5mW 250MS/s 12-bit synthesized digital to analog converter. CICC 2014: 1-4 - [c20]Aatmesh Shrivastava, David D. Wentzloff, Benton H. Calhoun:
A 10mV-input boost converter with inductor peak current control and zero detection for thermoelectric energy harvesting. CICC 2014: 1-4 - 2013
- [j13]Jonathan K. Brown, David D. Wentzloff:
A GSM-Based Clock-Harvesting Receiver With -87 dBm Sensitivity for Sensor Network Wake-Up. IEEE J. Solid State Circuits 48(3): 661-669 (2013) - [j12]Kuo-Ken Huang, Jonathan K. Brown, Elnaz Ansari, Ryan R. Rogel, Yoonmyung Lee, Hyeongseok Kim, David D. Wentzloff:
An Ultra-Low-Power 9.8 GHz Crystal-Less UWB Transceiver With Digital Baseband Integrated in 0.18 µm BiCMOS. IEEE J. Solid State Circuits 48(12): 3178-3189 (2013) - [c19]Seunghyun Oh, Nathan E. Roberts, David D. Wentzloff:
A 116nW multi-band wake-up receiver with 31-bit correlator and interference rejection. CICC 2013: 1-4 - [c18]Jonathan K. Brown, Kuo-Ken Huang, Elnaz Ansari, Ryan R. Rogel, Yoonmyung Lee, David D. Wentzloff:
An ultra-low-power 9.8GHz crystal-less UWB transceiver with digital baseband integrated in 0.18µm BiCMOS. ISSCC 2013: 442-443 - [c17]Osama Ullah Khan, David D. Wentzloff:
1.2 GS/s Hadamard Transform front-end for compressive sensing in 65nm CMOS. RWS 2013: 181-183 - 2012
- [j11]Nathan E. Roberts, Seunghyun Oh, David D. Wentzloff:
Exploiting Channel Periodicity in Body Sensor Networks. IEEE J. Emerg. Sel. Topics Circuits Syst. 2(1): 4-13 (2012) - [j10]Osama Ullah Khan, Shao-Yuan Chen, David D. Wentzloff, Wayne E. Stark:
Impact of Compressed Sensing With Quantization on UWB Receivers With Multipath Channel Estimation. IEEE J. Emerg. Sel. Topics Circuits Syst. 2(3): 460-469 (2012) - [j9]Benton H. Calhoun, John C. Lach, John A. Stankovic, David D. Wentzloff, Kamin Whitehouse, Adam T. Barth, Jonathan K. Brown, Qiang Li, Seunghyun Oh, Nathan E. Roberts, Yanqing Zhang:
Body Sensor Networks: A Holistic Approach From Silicon to Users. Proc. IEEE 100(1): 91-106 (2012) - [j8]Jonathan K. Brown, David D. Wentzloff:
A Clock-Harvesting Receiver Using 3G CDMA Signals in the 1900-MHz Band. IEEE Trans. Circuits Syst. II Express Briefs 59-II(11): 711-715 (2012) - [c16]Sangwook Han, David D. Wentzloff:
0.61W/mm2 resonant inductively coupled power transfer for 3D-ICs. CICC 2012: 1-4 - 2011
- [j7]Youngmin Park, David D. Wentzloff:
An All-Digital 12 pJ/Pulse IR-UWB Transmitter Synthesized From a Standard Cell Library. IEEE J. Solid State Circuits 46(5): 1147-1157 (2011) - [j6]Kuo-Ken Huang, David D. Wentzloff:
A 60 GHz Antenna-Referenced Frequency-Locked Loop in 0.13 µ CMOS for Wireless Sensor Networks. IEEE J. Solid State Circuits 46(12): 2956-2965 (2011) - [j5]Youngmin Park, David D. Wentzloff:
A Cyclic Vernier TDC for ADPLLs Synthesized From a Standard Cell Library. IEEE Trans. Circuits Syst. I Regul. Pap. 58-I(7): 1511-1517 (2011) - [c15]Dae Young Lee, David D. Wentzloff, John P. Hayes:
A 900 Mbps single-channel capacitive I/O link for wireless wafer-level testing of integrated circuits. A-SSCC 2011: 153-156 - [c14]Youngmin Park, David D. Wentzloff:
An all-digital PLL synthesized from a digital standard cell library in 65nm CMOS. CICC 2011: 1-4 - [c13]Dae Young Lee, David D. Wentzloff, John P. Hayes:
Wireless wafer-level testing of integrated circuits via capacitively-coupled channels. DDECS 2011: 99-104 - [c12]Kuo-Ken Huang, David D. Wentzloff:
A 60GHz antenna-referenced frequency-locked loop in 0.13μm CMOS for wireless sensor networks. ISSCC 2011: 284-286 - [c11]Jose M. Almodovar-Faria, Janise McNair, David D. Wentzloff:
Optimal receiver bandwidth for energy-detection PPM UWB systems. WCNC 2011: 1700-1705 - 2010
- [j4]Rajesh Narasimha, Madhukar Budagavi, Seok-Jun Lee, David D. Wentzloff:
Special issue on breakthrough architectures for image and video systems. Signal Process. Image Commun. 25(5): 315-316 (2010) - [c10]Sangwook Han, David D. Wentzloff:
Wireless power transfer using resonant inductive coupling for 3D integrated ICs. 3DIC 2010: 1-5 - [c9]Jonathan K. Brown, David D. Wentzloff:
Harvesting a clock from a GSM signal for the wake-up of a wireless sensor network. ISCAS 2010: 1500-1503 - [c8]Jorge R. Fernandes, David D. Wentzloff:
Recent advances in IR-UWB transceivers: An overview. ISCAS 2010: 3284-3287 - [c7]Youngmin Park, David D. Wentzloff:
IR-UWB transmitters synthesized from standard digital library components. ISCAS 2010: 3296-3299 - [c6]Youngmin Park, David D. Wentzloff:
A cyclic vernier time-to-digital converter synthesized from a 65nm CMOS standard library. ISCAS 2010: 3561-3564
2000 – 2009
- 2009
- [j3]Anantha P. Chandrakasan, Fred S. Lee, David D. Wentzloff, Vivienne Sze, Brian P. Ginsburg, Patrick P. Mercier, Denis C. Daly, Raúl Blázquez:
Low-Power Impulse UWB Architectures and Circuits. Proc. IEEE 97(2): 332-352 (2009) - 2008
- [c5]Patrick P. Mercier, Denis C. Daly, Manish Bhardwaj, David D. Wentzloff, Fred S. Lee, Anantha P. Chandrakasan:
Ultra-low-power UWB for sensor network applications. ISCAS 2008: 2562-2565 - 2007
- [b1]David D. Wentzloff:
Pulse-based UWB transmitters for digital communication. Massachusetts Institute of Technology, Cambridge, MA, USA, 2007 - [c4]David D. Wentzloff, Anantha P. Chandrakasan:
Delay-Based BPSK for Pulsed-UWB Communication. ICASSP (3) 2007: 561-564 - [c3]David D. Wentzloff, Anantha P. Chandrakasan:
A 47pJ/pulse 3.1-to-5GHz All-Digital UWB Transmitter in 90nm CMOS. ISSCC 2007: 118-591 - [i1]Raúl Blázquez, Fred S. Lee, David D. Wentzloff, Brian P. Ginsburg, Johnna Powell, Anantha P. Chandrakasan:
Direct Conversion Pulsed UWB Transceiver Architecture. CoRR abs/0710.4815 (2007) - 2005
- [j2]David D. Wentzloff, Raúl Blázquez, Fred S. Lee, Brian P. Ginsburg, Johnna Powell, Anantha P. Chandrakasan:
System design considerations for ultra-wideband communication. IEEE Commun. Mag. 43(8): 114-121 (2005) - [j1]Benton H. Calhoun, Denis C. Daly, Naveen Verma, Daniel F. Finchelstein, David D. Wentzloff, Alice Wang, Seong-Hwan Cho, Anantha P. Chandrakasan:
Design Considerations for Ultra-Low Energy Wireless Microsensor Nodes. IEEE Trans. Computers 54(6): 727-740 (2005) - [c2]Raúl Blázquez, Fred S. Lee, David D. Wentzloff, Brian P. Ginsburg, Johnna Powell, Anantha P. Chandrakasan:
Direct Conversion Pulsed UWB Transceiver Architecture. DATE 2005: 94-95 - 2004
- [c1]David D. Wentzloff, Benton H. Calhoun, Rex Min, Alice Wang, Nathan Ickes, Anantha P. Chandrakasan:
Design Considerations for Next Generation Wireless Power-Aware Microsensor Nodes. VLSI Design 2004: 361-
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-23 21:24 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint