default search action
Neil D. Lawrence
Person information
- affiliation: University of Cambridge, UK
- affiliation: University of Sheffield, Department of Computer Science
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2023
- [j44]Andrei Paleyes, Raoul-Gabriel Urma, Neil D. Lawrence:
Challenges in Deploying Machine Learning: A Survey of Case Studies. ACM Comput. Surv. 55(6): 114:1-114:29 (2023) - [j43]Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, Neil D. Lawrence:
Correction: Vargas et al. Solving Schrödinger Bridges via Maximum Likelihood. Entropy 2021, 23, 1134. Entropy 25(2): 289 (2023) - [j42]Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D. Lawrence, Nikolas Nüsken:
Bayesian learning via neural Schrödinger-Föllmer flows. Stat. Comput. 33(1): 3 (2023) - 2021
- [j41]Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, Neil D. Lawrence:
Solving Schrödinger Bridges via Maximum Likelihood. Entropy 23(9): 1134 (2021) - [j40]Andreas C. Damianou, Neil D. Lawrence, Carl Henrik Ek:
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis. J. Mach. Learn. Res. 22: 86:1-86:51 (2021) - [j39]Michael Thomas Smith, Mauricio A. Álvarez, Neil D. Lawrence:
Differentially Private Regression and Classification with Sparse Gaussian Processes. J. Mach. Learn. Res. 22: 188:1-188:41 (2021) - 2020
- [j38]Bei Wang, Zhichao Li, Zhenwen Dai, Neil D. Lawrence, Xuefeng Yan:
Data-Driven Mode Identification and Unsupervised Fault Detection for Nonlinear Multimode Processes. IEEE Trans. Ind. Informatics 16(6): 3651-3661 (2020) - 2019
- [j37]Bei Wang, Zhichao Li, Zhenwen Dai, Neil D. Lawrence, Xuefeng Yan:
A probabilistic principal component analysis-based approach in process monitoring and fault diagnosis with application in wastewater treatment plant. Appl. Soft Comput. 82 (2019) - [j36]Simo Särkkä, Mauricio A. Álvarez, Neil D. Lawrence:
Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems. IEEE Trans. Autom. Control. 64(7): 2953-2960 (2019) - 2017
- [j35]Zhenwen Dai, Mudassar Iqbal, Neil D. Lawrence, Magnus Rattray:
Efficient inference for sparse latent variable models of transcriptional regulation. Bioinform. 33(23): 3776-3783 (2017) - 2016
- [j34]Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:
Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes. J. Mach. Learn. Res. 17: 42:1-42:62 (2016) - [j33]Nicolas Durrande, James Hensman, Magnus Rattray, Neil D. Lawrence:
Detecting periodicities with Gaussian processes. PeerJ Comput. Sci. 2: e50 (2016) - 2015
- [j32]Gennaro Gambardella, Ivana Peluso, Sandro Montefusco, Mukesh Bansal, Diego L. Medina, Neil D. Lawrence, Diego di Bernardo:
A reverse-engineering approach to dissect post-translational modulators of transcription factor's activity from transcriptional data. BMC Bioinform. 16: 279:1-279:9 (2015) - [j31]James Hensman, Magnus Rattray, Neil D. Lawrence:
Fast Nonparametric Clustering of Structured Time-Series. IEEE Trans. Pattern Anal. Mach. Intell. 37(2): 383-393 (2015) - 2014
- [j30]Ciira Wa Maina, Antti Honkela, Filomena Matarese, Korbinian Grote, Hendrik G. Stunnenberg, George Reid, Neil D. Lawrence, Magnus Rattray:
Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data. PLoS Comput. Biol. 10(5) (2014) - 2013
- [j29]Nicoló Fusi, Christoph Lippert, Karsten M. Borgwardt, Neil D. Lawrence, Oliver Stegle:
Detecting regulatory gene-environment interactions with unmeasured environmental factors. Bioinform. 29(11): 1382-1389 (2013) - [j28]James Hensman, Neil D. Lawrence, Magnus Rattray:
Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinform. 14: 252 (2013) - [j27]Barbara Hammer, Daniel A. Keim, Neil D. Lawrence, Guy Lebanon:
Preface: Intelligent interactive data visualization. Data Min. Knowl. Discov. 27(1): 1-3 (2013) - [j26]Mauricio A. Álvarez, David Luengo, Neil D. Lawrence:
Linear Latent Force Models Using Gaussian Processes. IEEE Trans. Pattern Anal. Mach. Intell. 35(11): 2693-2705 (2013) - 2012
- [j25]Michalis K. Titsias, Antti Honkela, Neil D. Lawrence, Magnus Rattray:
Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison. BMC Syst. Biol. 6: 53 (2012) - [j24]Mauricio A. Álvarez, Lorenzo Rosasco, Neil D. Lawrence:
Kernels for Vector-Valued Functions: A Review. Found. Trends Mach. Learn. 4(3): 195-266 (2012) - [j23]Neil D. Lawrence:
A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction: Insights and New Models. J. Mach. Learn. Res. 13: 1609-1638 (2012) - [j22]Ramin Zabih, Sing Bing Kang, Neil D. Lawrence, Jiri Matas, Max Welling:
Editor's Note. IEEE Trans. Pattern Anal. Mach. Intell. 34(2): 209-210 (2012) - [j21]Ramin Zabih, Sing Bing Kang, Neil D. Lawrence, Jiri Matas, Max Welling:
Editor's Note. IEEE Trans. Pattern Anal. Mach. Intell. 34(5): 833 (2012) - [j20]Nicoló Fusi, Oliver Stegle, Neil D. Lawrence:
Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies. PLoS Comput. Biol. 8(1) (2012) - [j19]Christopher A. Penfold, Paul E. Brown, Neil D. Lawrence, Alastair S. H. Goldman:
Modeling Meiotic Chromosomes Indicates a Size Dependent Contribution of Telomere Clustering and Chromosome Rigidity to Homologue Juxtaposition. PLoS Comput. Biol. 8(5) (2012) - [j18]Miguel Lázaro-Gredilla, Steven Van Vaerenbergh, Neil D. Lawrence:
Overlapping Mixtures of Gaussian Processes for the data association problem. Pattern Recognit. 45(4): 1386-1395 (2012) - 2011
- [j17]Antti Honkela, Pei Gao, Jonatan Ropponen, Magnus Rattray, Neil D. Lawrence:
tigre: Transcription factor inference through gaussian process reconstruction of expression for bioconductor. Bioinform. 27(7): 1026-1027 (2011) - [j16]Alfredo A. Kalaitzis, Neil D. Lawrence:
A Simple Approach to Ranking Differentially Expressed Gene Expression Time Courses through Gaussian Process Regression. BMC Bioinform. 12: 180 (2011) - [j15]Mauricio A. Álvarez, Neil D. Lawrence:
Computationally Efficient Convolved Multiple Output Gaussian Processes. J. Mach. Learn. Res. 12: 1459-1500 (2011) - 2010
- [j14]Hafiz Muhammad Shahzad Asif, Matthew D. Rolfe, Jeffrey Green, Neil D. Lawrence, Magnus Rattray, Guido Sanguinetti:
TFInfer: a tool for probabilistic inference of transcription factor activities. Bioinform. 26(20): 2635-2636 (2010) - [j13]Antti Honkela, Charles Girardot, Eleanor Hilary Gustafson, Ya-Hsin Liu, Eileen E. M. Furlong, Neil D. Lawrence, Magnus Rattray:
Model-based method for transcription factor target identification with limited data. Proc. Natl. Acad. Sci. USA 107(17): 7793-7798 (2010) - 2009
- [j12]Richard D. Pearson, Xuejun Liu, Guido Sanguinetti, Marta Milo, Neil D. Lawrence, Magnus Rattray:
puma: a Bioconductor package for propagating uncertainty in microarray analysis. BMC Bioinform. 10 (2009) - 2006
- [j11]Magnus Rattray, Xuejun Liu, Guido Sanguinetti, Marta Milo, Neil D. Lawrence:
Propagating uncertainty in microarray data analysis. Briefings Bioinform. 7(1): 37-47 (2006) - [j10]Guido Sanguinetti, Magnus Rattray, Neil D. Lawrence:
A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription. Bioinform. 22(14): 1753-1759 (2006) - [j9]Xuejun Liu, Marta Milo, Neil D. Lawrence, Magnus Rattray:
Probe-level measurement error improves accuracy in detecting differential gene expression. Bioinform. 22(17): 2107-2113 (2006) - [j8]Guido Sanguinetti, Neil D. Lawrence, Magnus Rattray:
Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinform. 22(22): 2775-2781 (2006) - [j7]Tonatiuh Peña Centeno, Neil D. Lawrence:
Optimising Kernel Parameters and Regularisation Coefficients for Non-linear Discriminant Analysis. J. Mach. Learn. Res. 7: 455-491 (2006) - 2005
- [j6]Xuejun Liu, Marta Milo, Neil D. Lawrence, Magnus Rattray:
A tractable probabilistic model for Affymetrix probe-level analysis across multiple chips. Bioinform. 21(18): 3637-3644 (2005) - [j5]Guido Sanguinetti, Marta Milo, Magnus Rattray, Neil D. Lawrence:
Accounting for probe-level noise in principal component analysis of microarray data. Bioinform. 21(19): 3748-3754 (2005) - [j4]Michael E. Tipping, Neil D. Lawrence:
Variational inference for Student-t models: Robust Bayesian interpolation and generalised component analysis. Neurocomputing 69(1-3): 123-141 (2005) - [j3]Neil D. Lawrence:
Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models. J. Mach. Learn. Res. 6: 1783-1816 (2005) - 2004
- [j2]Neil D. Lawrence, Marta Milo, Mahesan Niranjan, Penny Rashbass, Stephan Soullier:
Reducing the variability in cDNA microarray image processing by Bayesian inference. Bioinform. 20(4): 518-526 (2004) - 2001
- [j1]Boaz Lerner, Neil D. Lawrence:
A Comparison of State-of-the-Art Classification Techniques with Application to Cytogenetics. Neural Comput. Appl. 10(1): 39-47 (2001)
Conference and Workshop Papers
- 2024
- [c90]Andrei Paleyes, Han-Bo Li, Neil D. Lawrence:
Can causality accelerate experimentation in software systems? CAIN 2024: 280-281 - [c89]Christian Cabrera, Andrei Paleyes, Neil D. Lawrence:
Self-sustaining Software Systems (S4): Towards Improved Interpretability and Adaptation. SATrends 2024: 5-9 - [c88]Christian Cabrera, Andrei Paleyes, Neil David Lawrence:
Self-sustaining Software Systems (S4): Towards Improved Interpretability and Adaptation. SATrends@ICSE 2024: 5-9 - 2023
- [c87]Andrei Paleyes, Siyuan Guo, Bernhard Schölkopf, Neil D. Lawrence:
Dataflow graphs as complete causal graphs. CAIN 2023: 7-12 - [c86]Andrei Paleyes, Neil David Lawrence:
Causal fault localisation in dataflow systems. EuroMLSys@EuroSys 2023: 140-147 - 2022
- [c85]Vidhi Lalchand, Aditya Ravuri, Neil D. Lawrence:
Generalised GPLVM with Stochastic Variational Inference. AISTATS 2022: 7841-7864 - [c84]Sijia Li, Martín López-García, Neil D. Lawrence, Luisa Cutillo:
Two-way Sparse Network Inference for Count Data. AISTATS 2022: 10924-10938 - [c83]Andrei Paleyes, Christian Cabrera, Neil D. Lawrence:
An empirical evaluation of flow based programming in the machine learning deployment context. CAIN 2022: 54-64 - [c82]Vidhi Lalchand, Aditya Ravuri, Emma Dann, Natsuhiko Kumasaka, Dinithi Sumanaweera, Rik G. H. Lindeboom, Shaista Madad, Sarah A. Teichmann, Neil D. Lawrence:
Modelling Technical and Biological Effects in scRNA-seq data with Scalable GPLVMs. MLCB 2022: 46-60 - [c81]Samuel J. Bell, Onno Kampman, Jesse Dodge, Neil D. Lawrence:
Modeling the Machine Learning Multiverse. NeurIPS 2022 - 2021
- [c80]Pierre Thodoroff, Wenyu Li, Neil D. Lawrence:
Benchmarking Real-Time Reinforcement Learning. Pre-Registration Workshop @ NeurIPS 2021: 26-41 - 2020
- [c79]Shell Xu Hu, Pablo Garcia Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D. Lawrence, Andreas C. Damianou:
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients. ICLR 2020 - 2019
- [c78]Sungsoo Ahn, Shell Xu Hu, Andreas C. Damianou, Neil D. Lawrence, Zhenwen Dai:
Variational Information Distillation for Knowledge Transfer. CVPR 2019: 9163-9171 - [c77]Sebastian Flennerhag, Pablo Garcia Moreno, Neil D. Lawrence, Andreas C. Damianou:
Transferring Knowledge across Learning Processes. ICLR 2019 - [c76]Aaron Klein, Zhenwen Dai, Frank Hutter, Neil D. Lawrence, Javier González:
Meta-Surrogate Benchmarking for Hyperparameter Optimization. NeurIPS 2019: 6267-6277 - [c75]Alan F. Blackwell, Luke Church, Martin Erwig, James Geddes, Andy Gordon, Maria I. Gorinova, Atilim Gunes Baydin, Bradley Gram-Hansen, Tobias Kohn, Neil D. Lawrence, Vikash Mansinghka, Brooks Paige, Tomas Petricek, Diana Robinson, Advait Sarkar, Oliver Strickson:
Usability of Probabilistic Programming Languages. PPIG 2019 - 2018
- [c74]Michael T. Smith, Mauricio A. Álvarez, Max Zwiessele, Neil D. Lawrence:
Differentially Private Regression with Gaussian Processes. AISTATS 2018: 1195-1203 - [c73]Xiaoyu Lu, Javier González, Zhenwen Dai, Neil D. Lawrence:
Structured Variationally Auto-encoded Optimization. ICML 2018: 3273-3281 - 2017
- [c72]Javier González, Zhenwen Dai, Andreas C. Damianou, Neil D. Lawrence:
Preferential Bayesian Optimization. ICML 2017: 1282-1291 - [c71]Alexander Grigorievskiy, Neil D. Lawrence, Simo Särkkä:
Parallelizable sparse inverse formulation Gaussian processes (SpInGP). MLSP 2017: 1-6 - [c70]Zhenwen Dai, Mauricio A. Álvarez, Neil D. Lawrence:
Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes. NIPS 2017: 5131-5139 - 2016
- [c69]Javier González, Zhenwen Dai, Philipp Hennig, Neil D. Lawrence:
Batch Bayesian Optimization via Local Penalization. AISTATS 2016: 648-657 - [c68]Javier González, Michael A. Osborne, Neil D. Lawrence:
GLASSES: Relieving The Myopia Of Bayesian Optimisation. AISTATS 2016: 790-799 - [c67]Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence:
Chained Gaussian Processes. AISTATS 2016: 1431-1440 - [c66]Muhammad Arifur Rahman, Neil D. Lawrence:
A Gaussian Process Model for Inferring the Dynamic Transcription Factor Activity. BCB 2016: 495-496 - [c65]Daniel Camilleri, Andreas C. Damianou, Harry Jackson, Neil D. Lawrence, Tony J. Prescott:
iCub Visual Memory Inspector: Visualising the iCub's Thoughts. Living Machines 2016: 48-57 - [c64]Uriel Martinez-Hernandez, Andreas C. Damianou, Daniel Camilleri, Luke W. Boorman, Neil D. Lawrence, Tony J. Prescott:
An integrated probabilistic framework for robot perception, learning and memory. ROBIO 2016: 1796-1801 - [c63]Zhenwen Dai, Andreas C. Damianou, Javier González, Neil D. Lawrence:
Variational Auto-encoded Deep Gaussian Processes. ICLR (Poster) 2016 - [c62]César Lincoln C. Mattos, Zhenwen Dai, Andreas C. Damianou, Jeremy Forth, Guilherme A. Barreto, Neil D. Lawrence:
Recurrent Gaussian Processes. ICLR (Poster) 2016 - 2015
- [c61]Andreas C. Damianou, Carl Henrik Ek, Luke Boorman, Neil D. Lawrence, Tony J. Prescott:
A Top-Down Approach for a Synthetic Autobiographical Memory System. Living Machines 2015: 280-292 - [c60]Ricardo Andrade Pacheco, Martin Gordon Mubangizi, John A. Quinn, Neil D. Lawrence:
Monitoring Short Term Changes of Malaria Incidence in Uganda with Gaussian Processes. AALTD@PKDD/ECML 2015 - [c59]Ricardo Andrade Pacheco, Martin Gordon Mubangizi, John A. Quinn, Neil D. Lawrence:
Monitoring Short Term Changes of Infectious Diseases in Uganda with Gaussian Processes. AALTD@PKDD/ECML (Revised Selected Papers) 2015: 95-110 - [c58]Andreas C. Damianou, Neil D. Lawrence:
Semi-described and semi-supervised learning with Gaussian processes. UAI 2015: 228-237 - 2014
- [c57]Trevor Cohn, Daniel Preotiuc-Pietro, Neil D. Lawrence:
Gaussian Processes for Natural Language Processing. ACL (Tutorial Abstracts) 2014: 1-3 - [c56]Ricardo Andrade Pacheco, James Hensman, Max Zwiessele, Neil D. Lawrence:
Hybrid Discriminative-Generative Approach with Gaussian Processes. AISTATS 2014: 47-56 - [c55]James Hensman, Max Zwiessele, Neil D. Lawrence:
Tilted Variational Bayes. AISTATS 2014: 356-364 - [c54]Alessandra Tosi, Søren Hauberg, Alfredo Vellido, Neil D. Lawrence:
Metrics for Probabilistic Geometries. UAI 2014: 800-808 - 2013
- [c53]Andreas C. Damianou, Neil D. Lawrence:
Deep Gaussian Processes. AISTATS 2013: 207-215 - [c52]Alfredo A. Kalaitzis, John D. Lafferty, Neil D. Lawrence, Shuheng Zhou:
The Bigraphical Lasso. ICML (3) 2013: 1229-1237 - [c51]James Hensman, Nicoló Fusi, Neil D. Lawrence:
Gaussian Processes for Big Data. UAI 2013 - 2012
- [c50]Andreas C. Damianou, Carl Henrik Ek, Michalis K. Titsias, Neil D. Lawrence:
Manifold Relevance Determination. ICML 2012 - [c49]Alfredo A. Kalaitzis, Neil D. Lawrence:
Residual Components Analysis. ICML 2012 - [c48]James Hensman, Magnus Rattray, Neil D. Lawrence:
Fast Variational Inference in the Conjugate Exponential Family. NIPS 2012: 2897-2905 - [c47]Neil D. Lawrence, Mark A. Girolami:
Preface. AISTATS 2012 - 2011
- [c46]Oliver Stegle, Christoph Lippert, Joris M. Mooij, Neil D. Lawrence, Karsten M. Borgwardt:
Efficient inference in matrix-variate Gaussian models with \iid observation noise. NIPS 2011: 630-638 - [c45]Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:
Variational Gaussian Process Dynamical Systems. NIPS 2011: 2510-2518 - [c44]Neil D. Lawrence:
Spectral Dimensionality Reduction via Maximum Entropy. AISTATS 2011: 51-59 - 2010
- [c43]Yi Ma, Fei Sha, Lawrence Carin, Gilad Lerman, Neil D. Lawrence:
Invited Talk Abstracts. AAAI Fall Symposium: Manifold Learning and Its Applications 2010 - [c42]Mauricio A. Álvarez, Jan Peters, Bernhard Schölkopf, Neil D. Lawrence:
Switched Latent Force Models for Movement Segmentation. NIPS 2010: 55-63 - [c41]Mauricio A. Álvarez, David Luengo, Michalis K. Titsias, Neil D. Lawrence:
Efficient Multioutput Gaussian Processes through Variational Inducing Kernels. AISTATS 2010: 25-32 - [c40]Michalis K. Titsias, Neil D. Lawrence:
Bayesian Gaussian Process Latent Variable Model. AISTATS 2010: 844-851 - 2009
- [c39]John Darby, Baihua Li, Nicholas Costen, David J. Fleet, Neil D. Lawrence:
Backing Off: Hierarchical Decomposition of Activity for 3D Novel Pose Recovery. BMVC 2009: 1-11 - [c38]Neil D. Lawrence, Raquel Urtasun:
Non-linear matrix factorization with Gaussian processes. ICML 2009: 601-608 - [c37]Mauricio A. Álvarez, David Luengo, Neil D. Lawrence:
Latent Force Models. AISTATS 2009: 9-16 - 2008
- [c36]Pei Gao, Antti Honkela, Magnus Rattray, Neil D. Lawrence:
Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities. ECCB 2008: 70-75 - [c35]Raquel Urtasun, David J. Fleet, Andreas Geiger, Jovan Popovic, Trevor Darrell, Neil D. Lawrence:
Topologically-constrained latent variable models. ICML 2008: 1080-1087 - [c34]Carl Henrik Ek, Jonathan Rihan, Philip H. S. Torr, Grégory Rogez, Neil D. Lawrence:
Ambiguity Modeling in Latent Spaces. MLMI 2008: 62-73 - [c33]Mauricio A. Álvarez, Neil D. Lawrence:
Sparse Convolved Gaussian Processes for Multi-output Regression. NIPS 2008: 57-64 - [c32]Ben Calderhead, Mark A. Girolami, Neil D. Lawrence:
Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes. NIPS 2008: 217-224 - [c31]Michalis K. Titsias, Neil D. Lawrence, Magnus Rattray:
Efficient Sampling for Gaussian Process Inference using Control Variables. NIPS 2008: 1681-1688 - 2007
- [c30]Luka Eciolaza, Muhammad Alkarouri, Neil D. Lawrence, Visakan Kadirkamanathan, Peter J. Fleming:
Gaussian Process Latent Variable Models for Fault Detection. CIDM 2007: 287-292 - [c29]Raquel Urtasun, David J. Fleet, Neil D. Lawrence:
Modeling Human Locomotion with Topologically Constrained Latent Variable Models. Workshop on Human Motion 2007: 104-118 - [c28]Neil D. Lawrence, Andrew J. Moore:
Hierarchical Gaussian process latent variable models. ICML 2007: 481-488 - [c27]Brian Ferris, Dieter Fox, Neil D. Lawrence:
WiFi-SLAM Using Gaussian Process Latent Variable Models. IJCAI 2007: 2480-2485 - [c26]Jonathan Laidler, Martin Cooke, Neil D. Lawrence:
Model-driven detection of clean speech patches in noise. INTERSPEECH 2007: 922-925 - [c25]Carl Henrik Ek, Philip H. S. Torr, Neil D. Lawrence:
Gaussian Process Latent Variable Models for Human Pose Estimation. MLMI 2007: 132-143 - [c24]Neil D. Lawrence:
Learning for Larger Datasets with the Gaussian Process Latent Variable Model. AISTATS 2007: 243-250 - 2006
- [c23]Guido Sanguinetti, Magnus Rattray, Neil D. Lawrence:
Identifying Submodules of Cellular Regulatory Networks. CMSB 2006: 155-168 - [c22]Nathaniel John King, Neil D. Lawrence:
Fast Variational Inference for Gaussian Process Models Through KL-Correction. ECML 2006: 270-281 - [c21]Guido Sanguinetti, Neil D. Lawrence:
Missing Data in Kernel PCA. ECML 2006: 751-758 - [c20]Neil D. Lawrence, Joaquin Quiñonero Candela:
Local distance preservation in the GP-LVM through back constraints. ICML 2006: 513-520 - [c19]Neil D. Lawrence, Guido Sanguinetti, Magnus Rattray:
Modelling transcriptional regulation using Gaussian Processes. NIPS 2006: 785-792 - 2005
- [c18]Yasser Hifny, Steve Renals, Neil D. Lawrence:
A hybrid Maxent/HMM based ASR system. INTERSPEECH 2005: 3017-3020 - 2004
- [c17]Neil D. Lawrence, John C. Platt, Michael I. Jordan:
Extensions of the Informative Vector Machine. Deterministic and Statistical Methods in Machine Learning 2004: 56-87 - [c16]Yasser H. Abdel-Haleem, Steve Renals, Neil D. Lawrence:
Acoustic space dimensionality selection and combination using the maximum entropy principle. ICASSP (5) 2004: 637-640 - [c15]Neil D. Lawrence, John C. Platt:
Learning to learn with the informative vector machine. ICML 2004 - [c14]Neil D. Lawrence, Michael I. Jordan:
Semi-supervised Learning via Gaussian Processes. NIPS 2004: 753-760 - 2003
- [c13]Matthias W. Seeger, Christopher K. I. Williams, Neil D. Lawrence:
Fast Forward Selection to Speed Up Sparse Gaussian Process Regression. AISTATS 2003: 254-261 - [c12]Jaco Vermaak, Neil D. Lawrence, Patrick Pérez:
Variational Inference for Visual Tracking. CVPR (1) 2003: 773-780 - [c11]Neil D. Lawrence:
Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data. NIPS 2003: 329-336 - [c10]Neil D. Lawrence, Marta Milo, Mahesan Niranjan, Penny Rashbass, Stephan Soullier:
Bayesian processing of microarray images. NNSP 2003: 71-80 - [c9]Michael E. Tipping, Neil D. Lawrence:
A variational approach to robust Bayesian interpolation. NNSP 2003: 229-238 - 2002
- [c8]Neil D. Lawrence, Matthias W. Seeger, Ralf Herbrich:
Fast Sparse Gaussian Process Methods: The Informative Vector Machine. NIPS 2002: 609-616 - 2001
- [c7]Neil D. Lawrence:
Variational Learning for Multi-Layer Networks of Linear Threshold Units. AISTATS 2001: 168-175 - [c6]Antony I. T. Rowstron, Neil D. Lawrence, Christopher M. Bishop:
Probabilistic Modelling of Replica Divergence. HotOS 2001: 55-60 - [c5]Neil D. Lawrence, Bernhard Schölkopf:
Estimating a Kernel Fisher Discriminant in the Presence of Label Noise. ICML 2001: 306-313 - [c4]Neil D. Lawrence, Antony I. T. Rowstron, Christopher M. Bishop, M. J. Taylor:
Optimising Synchronisation Times for Mobile Devices. NIPS 2001: 1401-1408 - [c3]Neil D. Lawrence:
Note Relevance Determination. WIRN 2001: 128-133 - 1998
- [c2]Neil D. Lawrence, Christopher M. Bishop, Michael I. Jordan:
Mixture Representations for Inference and Learning in Boltzmann Machines. UAI 1998: 320-327 - 1997
- [c1]Christopher M. Bishop, Neil D. Lawrence, Tommi S. Jaakkola, Michael I. Jordan:
Approximating Posterior Distributions in Belief Networks Using Mixtures. NIPS 1997: 416-422
Parts in Books or Collections
- 2010
- [p3]Neil D. Lawrence, Magnus Rattray:
A Brief Introduction to Bayesian Inference. Learning and Inference in Computational Systems Biology 2010: 97-116 - [p2]Neil D. Lawrence, Magnus Rattray, Pei Gao, Michalis K. Titsias:
Gaussian Processes for Missing Species in Biochemical Systems. Learning and Inference in Computational Systems Biology 2010: 231-252 - 2006
- [p1]Neil D. Lawrence, Michael I. Jordan:
Gaussian Processes and the Null-Category Noise Model. Semi-Supervised Learning 2006: 136-150
Editorship
- 2015
- [e6]Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, Roman Garnett:
Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada. 2015 [contents] - 2014
- [e5]Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, Kilian Q. Weinberger:
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. 2014 [contents] - 2012
- [e4]Neil D. Lawrence, Mark A. Girolami:
Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2012, La Palma, Canary Islands, Spain, April 21-23, 2012. JMLR Proceedings 22, JMLR.org 2012 [contents] - 2010
- [e3]Neil D. Lawrence, Mark A. Girolami, Magnus Rattray, Guido Sanguinetti:
Learning and Inference in Computational Systems Biology. Computational molecular biology, MIT Press 2010, ISBN 978-0-262-01386-4 [contents] - 2007
- [e2]Neil D. Lawrence, Anton Schwaighofer, Joaquin Quiñonero Candela:
Gaussian Processes in Practice, Bletchley Park, Bletchley, UK, June 12-13, 2006. JMLR Proceedings 1, JMLR.org 2007 [contents] - 2005
- [e1]Joab R. Winkler, Mahesan Niranjan, Neil D. Lawrence:
Deterministic and Statistical Methods in Machine Learning, First International Workshop, Sheffield, UK, September 7-10, 2004, Revised Lectures. Lecture Notes in Computer Science 3635, Springer 2005, ISBN 3-540-29073-7 [contents]
Informal and Other Publications
- 2024
- [i65]Christian Cabrera, Andrei Paleyes, Neil D. Lawrence:
Self-sustaining Software Systems (S4): Towards Improved Interpretability and Adaptation. CoRR abs/2401.11370 (2024) - [i64]Sarah Zhao, Aditya Ravuri, Vidhi Lalchand, Neil D. Lawrence:
Scalable Amortized GPLVMs for Single Cell Transcriptomics Data. CoRR abs/2405.03879 (2024) - [i63]Diana Robinson, Christian Cabrera, Andrew D. Gordon, Neil D. Lawrence, Lars Mennen:
Requirements are All You Need: The Final Frontier for End-User Software Engineering. CoRR abs/2405.13708 (2024) - [i62]Aditya Ravuri, Neil D. Lawrence:
Towards One Model for Classical Dimensionality Reduction: A Probabilistic Perspective on UMAP and t-SNE. CoRR abs/2405.17412 (2024) - [i61]Aditya Ravuri, Jen Muir, Neil D. Lawrence:
On Feature Learning for Titi Monkey Activity Detection. CoRR abs/2407.01452 (2024) - 2023
- [i60]Christian Cabrera, Andrei Paleyes, Pierre Thodoroff, Neil D. Lawrence:
Real-world Machine Learning Systems: A survey from a Data-Oriented Architecture Perspective. CoRR abs/2302.04810 (2023) - [i59]Philipp Berens, Kyle Cranmer, Neil D. Lawrence, Ulrike von Luxburg, Jessica Montgomery:
AI for Science: An Emerging Agenda. CoRR abs/2303.04217 (2023) - [i58]Andrei Paleyes, Siyuan Guo, Bernhard Schölkopf, Neil D. Lawrence:
Dataflow graphs as complete causal graphs. CoRR abs/2303.09552 (2023) - [i57]Aditya Ravuri, Francisco Vargas, Vidhi Lalchand, Neil D. Lawrence:
Dimensionality Reduction as Probabilistic Inference. CoRR abs/2304.07658 (2023) - [i56]Andrei Paleyes, Neil D. Lawrence:
Causal fault localisation in dataflow systems. CoRR abs/2304.11987 (2023) - [i55]Bogdan Ficiu, Neil D. Lawrence, Andrei Paleyes:
Automated discovery of trade-off between utility, privacy and fairness in machine learning models. CoRR abs/2311.15691 (2023) - 2022
- [i54]Vidhi Lalchand, Aditya Ravuri, Neil D. Lawrence:
Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference. CoRR abs/2202.12979 (2022) - [i53]Sijia Li, Martín López-García, Neil D. Lawrence, Luisa Cutillo:
Scalable Bigraphical Lasso: Two-way Sparse Network Inference for Count Data. CoRR abs/2203.07912 (2022) - [i52]Andrei Paleyes, Christian Cabrera, Neil D. Lawrence:
An Empirical Evaluation of Flow Based Programming in the Machine Learning Deployment Context. CoRR abs/2204.12781 (2022) - [i51]Samuel J. Bell, Neil D. Lawrence:
The Effect of Task Ordering in Continual Learning. CoRR abs/2205.13323 (2022) - [i50]Samuel J. Bell, Onno Pepijn Kampman, Jesse Dodge, Neil D. Lawrence:
Modeling the Machine Learning Multiverse. CoRR abs/2206.05985 (2022) - [i49]Vidhi Lalchand, Aditya Ravuri, Emma Dann, Natsuhiko Kumasaka, Dinithi Sumanaweera, Rik G. H. Lindeboom, Shaista Madad, Sarah A. Teichmann, Neil D. Lawrence:
Modelling Technical and Biological Effects in scRNA-seq data with Scalable GPLVMs. CoRR abs/2209.06716 (2022) - [i48]Aditya Ravuri, Tom R. Andersson, Ieva Kazlauskaite, Will Tebbutt, Richard E. Turner, J. Scott Hosking, Neil D. Lawrence, Markus Kaiser:
Ice Core Dating using Probabilistic Programming. CoRR abs/2210.16568 (2022) - [i47]Philipp Berens, Kyle Cranmer, Neil D. Lawrence, Ulrike von Luxburg, Jessica Montgomery:
Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382). Dagstuhl Reports 12(9): 150-199 (2022) - 2021
- [i46]Francisco Vargas, Pierre Thodoroff, Neil D. Lawrence, Austen Lamacraft:
Solving Schrödinger Bridges via Maximum Likelihood. CoRR abs/2106.02081 (2021) - [i45]Andrei Paleyes, Christian Cabrera, Neil D. Lawrence:
Exploring the potential of flow-based programming for machine learning deployment in comparison with service-oriented architectures. CoRR abs/2108.04105 (2021) - [i44]Corinna Cortes, Neil D. Lawrence:
Inconsistency in Conference Peer Review: Revisiting the 2014 NeurIPS Experiment. CoRR abs/2109.09774 (2021) - [i43]Samuel J. Bell, Neil D. Lawrence:
Behavioral Experiments for Understanding Catastrophic Forgetting. CoRR abs/2110.10570 (2021) - [i42]Andrei Paleyes, Mark Pullin, Maren Mahsereci, Cliff McCollum, Neil D. Lawrence, Javier González:
Emulation of physical processes with Emukit. CoRR abs/2110.13293 (2021) - [i41]Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D. Lawrence, Nikolas Nüsken:
Bayesian Learning via Neural Schrödinger-Föllmer Flows. CoRR abs/2111.10510 (2021) - 2020
- [i40]Shell Xu Hu, Pablo Garcia Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D. Lawrence, Andreas C. Damianou:
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients. CoRR abs/2004.12696 (2020) - [i39]Andrei Paleyes, Raoul-Gabriel Urma, Neil D. Lawrence:
Challenges in Deploying Machine Learning: a Survey of Case Studies. CoRR abs/2011.09926 (2020) - 2019
- [i38]Kurt Cutajar, Mark Pullin, Andreas C. Damianou, Neil D. Lawrence, Javier González:
Deep Gaussian Processes for Multi-fidelity Modeling. CoRR abs/1903.07320 (2019) - [i37]Neil D. Lawrence:
Data Science and Digital Systems: The 3Ds of Machine Learning Systems Design. CoRR abs/1903.11241 (2019) - [i36]Sungsoo Ahn, Shell Xu Hu, Andreas C. Damianou, Neil D. Lawrence, Zhenwen Dai:
Variational Information Distillation for Knowledge Transfer. CoRR abs/1904.05835 (2019) - [i35]Aaron Klein, Zhenwen Dai, Frank Hutter, Neil D. Lawrence, Javier González:
Meta-Surrogate Benchmarking for Hyperparameter Optimization. CoRR abs/1905.12982 (2019) - [i34]Michael Thomas Smith, Mauricio A. Álvarez, Neil D. Lawrence:
Differentially Private Regression and Classification with Sparse Gaussian Processes. CoRR abs/1909.09147 (2019) - 2018
- [i33]Mu Niu, Pokman Cheung, Lizhen Lin, Zhenwen Dai, Neil D. Lawrence, David B. Dunson:
Intrinsic Gaussian processes on complex constrained domains. CoRR abs/1801.01061 (2018) - [i32]Michael Thomas Smith, Mauricio A. Álvarez, Neil D. Lawrence:
Gaussian Process Regression for Binned Data. CoRR abs/1809.02010 (2018) - [i31]Sebastian Flennerhag, Pablo Garcia Moreno, Neil D. Lawrence, Andreas C. Damianou:
Transferring Knowledge across Learning Processes. CoRR abs/1812.01054 (2018) - 2017
- [i30]Andreas C. Damianou, Neil D. Lawrence, Carl Henrik Ek:
Manifold Alignment Determination: finding correspondences across different data views. CoRR abs/1701.03449 (2017) - [i29]Neil D. Lawrence:
Data Readiness Levels. CoRR abs/1705.02245 (2017) - [i28]Neil D. Lawrence:
Living Together: Mind and Machine Intelligence. CoRR abs/1705.07996 (2017) - [i27]Zhenwen Dai, Mauricio A. Álvarez, Neil D. Lawrence:
Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes. CoRR abs/1705.09862 (2017) - [i26]Simo Särkkä, Mauricio A. Álvarez, Neil D. Lawrence:
Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems. CoRR abs/1709.05409 (2017) - [i25]Matthias W. Seeger, Asmus Hetzel, Zhenwen Dai, Neil D. Lawrence:
Auto-Differentiating Linear Algebra. CoRR abs/1710.08717 (2017) - 2016
- [i24]Andreas C. Damianou, Neil D. Lawrence, Carl Henrik Ek:
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis. CoRR abs/1604.04939 (2016) - [i23]Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence:
Chained Gaussian Processes. CoRR abs/1604.05263 (2016) - [i22]Michael T. Smith, Max Zwiessele, Neil D. Lawrence:
Differentially Private Gaussian Processes. CoRR abs/1606.00720 (2016) - [i21]Fariba Yousefi, Zhenwen Dai, Carl Henrik Ek, Neil D. Lawrence:
Unsupervised Learning with Imbalanced Data via Structure Consolidation Latent Variable Model. CoRR abs/1607.00067 (2016) - [i20]Brenden M. Lake, Neil D. Lawrence, Joshua B. Tenenbaum:
The Emergence of Organizing Structure in Conceptual Representation. CoRR abs/1611.09384 (2016) - [i19]Nicolas Durrande, James Hensman, Magnus Rattray, Neil D. Lawrence:
Detecting periodicities with Gaussian processes. PeerJ Prepr. 4: e1743 (2016) - 2015
- [i18]Zhenwen Dai, James Hensman, Neil D. Lawrence:
Spike and Slab Gaussian Process Latent Variable Models. CoRR abs/1505.02434 (2015) - [i17]Andreas C. Damianou, Neil D. Lawrence:
Semi-described and semi-supervised learning with Gaussian processes. CoRR abs/1509.01168 (2015) - 2014
- [i16]James Hensman, Magnus Rattray, Neil D. Lawrence:
Fast variational inference for nonparametric clustering of structured time-series. CoRR abs/1401.1605 (2014) - [i15]Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:
Variational Inference for Uncertainty on the Inputs of Gaussian Process Models. CoRR abs/1409.2287 (2014) - [i14]Zhenwen Dai, Andreas C. Damianou, James Hensman, Neil D. Lawrence:
Gaussian Process Models with Parallelization and GPU acceleration. CoRR abs/1410.4984 (2014) - [i13]Alessandra Tosi, Søren Hauberg, Alfredo Vellido, Neil D. Lawrence:
Metrics for Probabilistic Geometries. CoRR abs/1411.7432 (2014) - 2013
- [i12]Neil D. Lawrence, Christopher M. Bishop, Michael I. Jordan:
Mixture Representations for Inference and Learning in Boltzmann Machines. CoRR abs/1301.7393 (2013) - [i11]James Hensman, Nicoló Fusi, Neil D. Lawrence:
Gaussian Processes for Big Data. CoRR abs/1309.6835 (2013) - 2012
- [i10]Alfredo A. Kalaitzis, Neil D. Lawrence:
Residual Component Analysis: Generalising PCA for more flexible inference in linear-Gaussian models. CoRR abs/1206.4560 (2012) - [i9]Andreas C. Damianou, Carl Henrik Ek, Michalis K. Titsias, Neil D. Lawrence:
Manifold Relevance Determination. CoRR abs/1206.4610 (2012) - [i8]James Hensman, Magnus Rattray, Neil D. Lawrence:
Fast Variational Inference in the Conjugate Exponential Family. CoRR abs/1206.5162 (2012) - [i7]Andreas C. Damianou, Neil D. Lawrence:
Deep Gaussian Processes. CoRR abs/1211.0358 (2012) - 2011
- [i6]Alfredo A. Kalaitzis, Neil D. Lawrence:
Residual Component Analysis. CoRR abs/1106.4333 (2011) - [i5]Mauricio A. Álvarez, Lorenzo Rosasco, Neil D. Lawrence:
Kernels for Vector-Valued Functions: a Review. CoRR abs/1106.6251 (2011) - [i4]Mauricio A. Álvarez, David Luengo, Neil D. Lawrence:
Linear Latent Force Models using Gaussian Processes. CoRR abs/1107.2699 (2011) - [i3]Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:
Variational Gaussian Process Dynamical Systems. CoRR abs/1107.4985 (2011) - [i2]Miguel Lázaro-Gredilla, Steven Van Vaerenbergh, Neil D. Lawrence:
Overlapping Mixtures of Gaussian Processes for the Data Association Problem. CoRR abs/1108.3372 (2011) - 2010
- [i1]Neil D. Lawrence:
A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction. CoRR abs/1010.4830 (2010)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-21 21:26 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint