default search action
Ming Cheng 0001
Person information
- affiliation: Southeast University, School of Electrical Engineering, Nanjing, China
- affiliation (PhD 2001): University of Hong Kong, Hong Kong
Other persons with the same name
- Ming Cheng — disambiguation page
- Ming Cheng 0002 — Xiamen University, School of Information Science and Engineering, Fujian Key Laboratory of Sensing and Computing for Smart City, China (and 1 more)
- Ming Cheng 0003 — Southeast University, National Mobile Communications Research Laboratory, Nanjing, China
- Ming Cheng 0004 — Dartmouth College, NH, Hanover, USA
- Ming Cheng 0005 — Wuhan University, School of Computer Science, China (and 1 more)
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j102]Wei Wang, Yixin Jiang, Jun Hang, Wei Hua, Ming Cheng:
Simplified Phase Model Predictive Voltage Control for Half-Centralized Open-End Winding Permanent-Magnet Motor Systems. IEEE Trans. Ind. Electron. 71(2): 1212-1222 (2024) - [j101]Weijie Tian, Wei Wang, Wei Hua, Ming Cheng:
A General Control Method for Half-Centralized Open Winding Permanent-Magnet Motor Drive System. IEEE Trans. Ind. Electron. 71(3): 2365-2374 (2024) - [j100]Honghui Wen, Yulong Shao, Zhikang Shuai, Ming Cheng:
Performance Analysis of a Brushless Doubly Fed Machine With Asymmetrical Composite Flux Barrier/Magductance Rotor. IEEE Trans. Ind. Electron. 71(7): 6699-6708 (2024) - [j99]Zheng Wang, Minrui Gu, Ming Cheng, Wei Hua:
Modeling and Predictive Control of PMSM Considering Eddy-Current Reaction by Vector Magnetic Circuit Theory. IEEE Trans. Ind. Electron. 71(8): 8491-8502 (2024) - [j98]Junlei Chen, Ying Fan, Qiushi Zhang, Qiushuo Chen, Ming Cheng:
Ultralocal Model-Based Tuning-Free Controller for PMSM Drives Considering Control Frequency. IEEE Trans. Ind. Electron. 71(8): 9956-9961 (2024) - [j97]Jiawei Zhou, Ming Cheng, Wei Hua, Wenfei Yu, Zhengzhou Ma, Chenchen Zhao:
Mechanism and Characteristics of Cogging Torque in Surface-Mounted PMSM: A General Airgap Field Modulation Theory Approach. IEEE Trans. Ind. Electron. 71(10): 11888-11897 (2024) - [j96]Zhengzhou Ma, Ming Cheng, Wei Qin, Peng Han, Zheng Wang, Wei Hua:
Analysis of Squirrel Cage Induction Machine Based on the Magductance Modulator. IEEE Trans. Ind. Electron. 71(12): 15457-15466 (2024) - [j95]Xu Huang, Jianzhong Zhang, Ming Cheng:
Fault Detection of Servo Motor Bearing Based on Speed Signal Under Variable-Speed Conditions. IEEE Trans. Instrum. Meas. 73: 1-12 (2024) - 2023
- [j94]Wei Qin, Ming Cheng, Jingxia Wang, Xinkai Zhu, Zheng Wang, Wei Hua:
Compatibility Analysis Among Vector Magnetic Circuit Theory, Electrical Circuit Theory, and Electromagnetic Field Theory. IEEE Access 11: 113008-113016 (2023) - [j93]Bo Wang, Jiapeng Hu, Wei Hua, Ming Cheng, Guanghui Wang, Weinong Fu:
Multiple 3-Phase PMA-SynRM With Delta Windings for Enhanced Fault Tolerance. IEEE Trans. Ind. Electron. 70(2): 1094-1104 (2023) - [j92]Xiaobiao Wang, Huafeng Xiao, Wei Hua, Ming Cheng:
A Highly Reliable Three-Level Neutral-Point-Clamped Inverter With Anti-Shoot-Through Capability. IEEE Trans. Ind. Electron. 70(4): 3899-3908 (2023) - [j91]Ming Cheng, Xiaoming Yan, Jiawei Zhou:
Negative-Sequence Current Compensation-Based Coordinated Control Strategy for Dual-Cage-Rotor Brushless Doubly Fed Induction Generator Under Unbalanced Grid Conditions. IEEE Trans. Ind. Electron. 70(5): 4762-4773 (2023) - [j90]Junlei Chen, Ying Fan, Ming Cheng, Qiushi Zhang, Qiushuo Chen:
Parameter-Free Ultralocal Model-Based Deadbeat Predictive Current Control for PMVMs Using Finite-Time Gradient Method. IEEE Trans. Ind. Electron. 70(6): 5549-5559 (2023) - [j89]Bo Wang, ChenCheng Zha, Yuwen Xu, Jiabin Wang, Ming Cheng, Wei Hua:
Comparative Study on Fault-Tolerant Triple Three-Phase PM Machine Drive With Five Modular Windings. IEEE Trans. Ind. Electron. 70(10): 9720-9730 (2023) - [j88]Zhengzhou Ma, Ming Cheng, Honghui Wen:
Analysis and Optimization of Rotor Salient Pole Reluctance Considering Multi-Modulation Orders. IEEE Trans. Ind. Electron. 70(11): 10871-10880 (2023) - [c21]Zhiyuan Xu, Ming Cheng, Honghui Wen, Yang Jiang:
Design and Many-Objective Optimization of an In-Wheel Hybrid-Excitation Flux-Switching Machine Based on the Kriging Interpolation Model. IECON 2023: 1-6 - 2022
- [j87]Xiang Wu, Jinxing Lin, Kanjian Zhang, Ming Cheng:
Numerical algorithm for optimal control of switched systems and its application in cancer chemotherapy. Appl. Soft Comput. 115: 108090 (2022) - [j86]Peixin Wang, Wei Hua, Gan Zhang, Bo Wang, Ming Cheng:
Principle of Flux-Switching Permanent Magnet Machine by Magnetic Field Modulation Theory Part I: Back-Electromotive-Force Generation. IEEE Trans. Ind. Electron. 69(3): 2370-2379 (2022) - [j85]Wei Wang, Xinlu Zeng, Wei Hua, Zheng Wang, Ming Cheng:
Phase-Shifting Fault-Tolerant Control of Permanent-Magnet Linear Motors With Single-Phase Current Sensor. IEEE Trans. Ind. Electron. 69(3): 2414-2425 (2022) - [j84]Peixin Wang, Wei Hua, Gan Zhang, Bo Wang, Ming Cheng:
Principle of Flux-Switching PM Machine by Magnetic Field Modulation Theory Part II: Electromagnetic Torque Generation. IEEE Trans. Ind. Electron. 69(3): 2437-2446 (2022) - [j83]Huafeng Xiao, Ruibin Wang, Linwei Zhou, Yun Liu, Wei Hua, Ming Cheng:
Resonance Network Structuring Method for Zero-Voltage-Transition Transformerless Inverters. IEEE Trans. Ind. Electron. 69(9): 8905-8914 (2022) - [j82]Honghui Wen, Ming Cheng, Gan Zhang:
Principle and Performance of a New Brushless Doubly Fed Reluctance Machine With Asymmetrical Composite Modulator. IEEE Trans. Ind. Electron. 69(12): 12086-12095 (2022) - [j81]Kailiang Yu, Zheng Wang, Wei Hua, Ming Cheng:
Robust Cascaded Deadbeat Predictive Control for Dual Three-Phase Variable-Flux PMSM Considering Intrinsic Delay in Speed Loop. IEEE Trans. Ind. Electron. 69(12): 12107-12118 (2022) - [j80]Wei Wang, Yixin Jiang, Le Sun, Zheng Wang, Wei Hua, Ming Cheng:
Phase Model Predictive Voltage Control for Half-Centralized Open-End Winding Permanent-Magnet Linear Motor Traction Systems. IEEE Trans. Ind. Electron. 69(12): 12201-12212 (2022) - [j79]Peixin Wang, Wei Hua, Gan Zhang, Bo Wang, Ming Cheng:
Inductance Characteristics of Flux-Switching Permanent Magnet Machine Based on General Air-Gap Filed Modulation Theory. IEEE Trans. Ind. Electron. 69(12): 12270-12280 (2022) - [j78]Peixin Wang, Wei Hua, Gan Zhang, Bo Wang, Ming Cheng:
Torque Ripple Suppression of Flux-Switching Permanent Magnet Machine Based on General Air-Gap Field Modulation Theory. IEEE Trans. Ind. Electron. 69(12): 12379-12389 (2022) - [j77]Xiaoguang Zhang, Hailong Bai, Ming Cheng:
Improved Model Predictive Current Control With Series Structure for PMSM Drives. IEEE Trans. Ind. Electron. 69(12): 12437-12446 (2022) - [j76]Jingxia Wang, Ming Cheng, Weijie Tian, Yang Jiang:
Iron Loss Calculation for FSPM Machine With the PWM Inverter Supply Based on General Airgap Field Modulation Theory. IEEE Trans. Ind. Electron. 69(12): 12517-12528 (2022) - [j75]Qingsong Wang, Zhengyong Ding, Ming Cheng, Fujin Deng, Giuseppe Buja:
Direct Power Control of Three-Phase Electric Springs. IEEE Trans. Ind. Electron. 69(12): 13033-13044 (2022) - [j74]Yixin Jiang, Wei Wang, Zheng Wang, Wei Hua, Ming Cheng:
Four-Vector Phase Model Predictive Voltage Control for Half-Centralized Open-End Winding Permanent-Magnet Linear Motor Systems. IEEE Trans. Veh. Technol. 71(9): 9338-9349 (2022) - 2021
- [j73]Zhiying Zhu, Hailang Zhu, Xinya Li, Jin Zhu, Ming Cheng:
Dynamic Equivalent Magnetic Network Analysis of an Axial PM Bearingless Flywheel Machine. IEEE Access 9: 32425-32435 (2021) - [j72]Chao Wei, Huanyu Li, Xiaohu Wang, Chaowei Yang, Wei Wang, Ming Cheng:
Discrimination Method of Interturn Short-Circuit and Resistive Unbalance Faults for Synchronous Condenser. IEEE Access 9: 129706-129717 (2021) - [j71]Hua F. Xiao, Mingming Li, Liliang Wu, Ming Cheng:
A Novel Current Controller for Grid-Connected Voltage-Source-Inverters. IEEE Trans. Ind. Electron. 68(1): 553-562 (2021) - [j70]Minghao Tong, Ming Cheng, Sasa Wang, Wei Hua:
An On-Board Two-Stage Integrated Fast Battery Charger for EVs Based on a Five-Phase Hybrid-Excitation Flux-Switching Machine. IEEE Trans. Ind. Electron. 68(2): 1780-1790 (2021) - [j69]Le Sun, Joshua Taylor, Xizheng Guo, Ming Cheng, Ali Emadi:
A Linear Position Measurement Scheme for Long-Distance and High-Speed Applications. IEEE Trans. Ind. Electron. 68(5): 4435-4447 (2021) - [j68]Xiaoming Yan, Ming Cheng:
A Robustness-Improved Control Method Based on ST-SMC for Cascaded Brushless Doubly Fed Induction Generator. IEEE Trans. Ind. Electron. 68(8): 7061-7071 (2021) - [j67]Jianzhong Zhang, Zheng Xu, Jiayue Wang, Jin Zhao, Zakiud Din, Ming Cheng:
Detection and Discrimination of Incipient Stator Faults for Inverter-Fed Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 68(8): 7505-7515 (2021) - [j66]Yu Zeng, Ming Cheng, Xinchi Wei, Gan Zhang:
Grid-Connected and Standalone Control for Dual-Stator Brushless Doubly Fed Induction Generator. IEEE Trans. Ind. Electron. 68(10): 9196-9206 (2021) - [j65]Zhiying Zhu, Jin Zhu, Hailang Zhu, Yongjiang Jiang, Ming Cheng:
A Novel Axial Split Phase Bearingless Switched Reluctance Machine for On-Board Flywheel Battery. IEEE Trans. Veh. Technol. 70(4): 3175-3186 (2021) - 2020
- [j64]Qingsong Wang, Wujian Zuo, Ming Cheng, Fujin Deng, Giuseppe Buja:
Decoupled Power Control With Indepth Analysis of Single-Phase Electric Springs. IEEE Access 8: 21866-21874 (2020) - [j63]Qingsong Wang, Zhengyong Ding, Ming Cheng, Fujin Deng, Giuseppe Buja:
A Parameter-Exempted, High-Performance Power Decoupling Control of Single-Phase Electric Springs. IEEE Access 8: 33370-33379 (2020) - [j62]Qingsong Wang, Panhong Chen, Fujin Deng, Ming Cheng, Giuseppe Buja:
A Novel Method Simulating Human Eye Recognition for Sector Judgement of SVPWM Algorithm. IEEE Access 8: 90216-90224 (2020) - [j61]Zhi-Xiang Zou, Marco Liserre, Zheng Wang, Ming Cheng:
Modeling and Stability Analysis of a Smart Transformer-Fed Grid. IEEE Access 8: 91876-91885 (2020) - [j60]Wei Wang, Zhixiang Lu, Wei Hua, Zheng Wang, Ming Cheng:
A Hybrid Dual-Mode Control for Permanent-Magnet Synchronous Motor Drives. IEEE Access 8: 105864-105873 (2020) - [j59]Zhi-Xiang Zou, Marco Liserre, Zheng Wang, Ming Cheng:
Stability Assessment of Voltage Control Strategies for Smart Transformer-Fed Distribution Grid. IEEE Access 8: 185146-185157 (2020) - [j58]Peng Su, Wei Hua, Mingjin Hu, Zhongze Wu, Jikai Si, Zhe Chen, Ming Cheng:
Analysis of Stator Slots and Rotor Pole Pairs Combinations of Rotor-Permanent Magnet Flux-Switching Machines. IEEE Trans. Ind. Electron. 67(2): 906-918 (2020) - [j57]Peng Su, Wei Hua, Mingjin Hu, Zhe Chen, Ming Cheng, Wei Wang:
Analysis of PM Eddy Current Loss in Rotor-PM and Stator-PM Flux-switching Machines by Air-gap Field Modulation Theory. IEEE Trans. Ind. Electron. 67(3): 1824-1835 (2020) - [j56]Yu Zeng, Ming Cheng, Guohai Liu, Wenxiang Zhao:
Effects of Magnet Shape on Torque Capability of Surface-Mounted Permanent Magnet Machine for Servo Applications. IEEE Trans. Ind. Electron. 67(4): 2977-2990 (2020) - [j55]Xiaoyong Zhu, Min Jiang, Zixuan Xiang, Li Quan, Wei Hua, Ming Cheng:
Design and Optimization of a Flux-Modulated Permanent Magnet Motor Based on an Airgap-Harmonic-Orientated Design Methodology. IEEE Trans. Ind. Electron. 67(7): 5337-5348 (2020) - [j54]Xueqing Wang, Zheng Wang, Zhixian Xu, Ming Cheng, Yihua Hu:
Optimization of Torque Tracking Performance for Direct-Torque-Controlled PMSM Drives With Composite Torque Regulator. IEEE Trans. Ind. Electron. 67(12): 10095-10108 (2020) - [j53]Minghao Tong, Ming Cheng, Wei Hua, Shichuan Ding:
A Single-Phase On-Board Two-Stage Integrated Battery Charger for EVs Based on a Five-Phase Hybrid-Excitation Flux-Switching Machine. IEEE Trans. Veh. Technol. 69(4): 3793-3804 (2020) - [c20]Yusheng Hu, Jingxia Wang, Biao Li, Bin Chen, Ming Cheng, Ying Fan, Wei Hua, Qingsong Wang:
Bidirectional Coupling Calculation of Electromagnetic Field and Thermal Field for FSPM Machine. ICIT 2020: 139-144 - [c19]Shihao Li, Qingsong Wang, Fujin Deng, Ming Cheng, Giuseppe Buja:
Space Vector Modulation Strategy of Three Phase Multilevel Current Source Rectifer. IECON 2020: 3331-3336
2010 – 2019
- 2019
- [j52]Xinkai Zhu, Ming Cheng:
Design and Analysis of 10 MW Class HTS Exciting Double Stator Direct-Drive Wind Generator With Stationary Seal. IEEE Access 7: 51129-51139 (2019) - [j51]Giuseppe Buja, Ming Cheng, Milutin G. Jovanovic:
Emerging Multiport Electrical Machines and Systems - Part II. IEEE Trans. Ind. Electron. 66(1): 627-630 (2019) - [j50]Ming Cheng, Rensong Luo, Xinchi Wei:
Design and Analysis of Current Control Methods for Brushless Doubly Fed Induction Machines. IEEE Trans. Ind. Electron. 66(1): 717-727 (2019) - [j49]Wei Li, Ming Cheng:
Reliability Analysis and Evaluation for Flux-Switching Permanent Magnet Machine. IEEE Trans. Ind. Electron. 66(3): 1760-1769 (2019) - [j48]Ming Cheng, Honghui Wen, Peng Han, Xiaofeng Zhu:
Analysis of Airgap Field Modulation Principle of Simple Salient Poles. IEEE Trans. Ind. Electron. 66(4): 2628-2638 (2019) - [j47]Peng Su, Wei Hua, Zhongze Wu, Zhe Chen, Gan Zhang, Ming Cheng:
Comprehensive Comparison of Rotor Permanent Magnet and Stator Permanent Magnet Flux-Switching Machines. IEEE Trans. Ind. Electron. 66(8): 5862-5871 (2019) - [j46]Honghui Wen, Ming Cheng:
Unified Analysis of Induction Machine and Synchronous Machine Based on the General Airgap Field Modulation Theory. IEEE Trans. Ind. Electron. 66(12): 9205-9216 (2019) - [j45]Ruiwu Cao, Minghang Lu, Ning Jiang, Ming Cheng:
Comparison Between Linear Induction Motor and Linear Flux-Switching Permanent-Magnet Motor for Railway Transportation. IEEE Trans. Ind. Electron. 66(12): 9394-9405 (2019) - [j44]Xiang Wu, Jinxing Lin, Kanjian Zhang, Ming Cheng:
Optimal impulsive control for advertising strategy problems based on a gradient-based PSO algorithm. Trans. Inst. Meas. Control 41(8): 2280-2292 (2019) - 2018
- [j43]Xiang Wu, Jinxing Lin, Kanjian Zhang, Ming Cheng:
A switched dynamical system approach towards the optimal control of chemical processes based on a gradient-based parallel optimization algorithm. Comput. Chem. Eng. 118: 180-194 (2018) - [j42]Peng Han, Ming Cheng, Xinchi Wei, Yunlei Jiang:
Steady-State Characteristics of the Dual-Stator Brushless Doubly Fed Induction Generator. IEEE Trans. Ind. Electron. 65(1): 200-210 (2018) - [j41]Peng Su, Wei Hua, Zhongze Wu, Peng Han, Ming Cheng:
Analysis of the Operation Principle for Rotor-Permanent-Magnet Flux-Switching Machines. IEEE Trans. Ind. Electron. 65(2): 1062-1073 (2018) - [j40]Xiaofeng Zhu, Wei Hua, Zhongze Wu, Wentao Huang, Hengliang Zhang, Ming Cheng:
Analytical Approach for Cogging Torque Reduction in Flux-Switching Permanent Magnet Machines Based on Magnetomotive Force-Permeance Model. IEEE Trans. Ind. Electron. 65(3): 1965-1979 (2018) - [j39]Zheng Wang, Xueqing Wang, Ming Cheng, Yihua Hu:
Comprehensive Investigation on Remedial Operation of Switch Faults for Dual Three-Phase PMSM Drives Fed by T-3L Inverters. IEEE Trans. Ind. Electron. 65(6): 4574-4587 (2018) - [j38]Ming Cheng, Peng Han, Giuseppe Buja, Milutin G. Jovanovic:
Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects. IEEE Trans. Ind. Electron. 65(7): 5422-5435 (2018) - [j37]Qingsong Wang, Ming Cheng, Yunlei Jiang, Wujian Zuo, Giuseppe Buja:
A Simple Active and Reactive Power Control for Applications of Single-Phase Electric Springs. IEEE Trans. Ind. Electron. 65(8): 6291-6300 (2018) - [j36]Giuseppe Buja, Ming Cheng, Milutin G. Jovanovic:
Emerging Multiport Electrical Machines and Systems - Part I. IEEE Trans. Ind. Electron. 65(11): 9030-9034 (2018) - [j35]Ming Cheng, Yunlei Jiang, Peng Han, Qingsong Wang:
Unbalanced and Low-Order Harmonic Voltage Mitigation of Stand-Alone Dual-Stator Brushless Doubly Fed Induction Wind Generator. IEEE Trans. Ind. Electron. 65(11): 9135-9146 (2018) - [j34]Huafeng Xiao, Li Zhang, Zheng Wang, Ming Cheng:
A New Soft-Switching Configuration and Its Application in Transformerless Photovoltaic Grid-Connected Inverters. IEEE Trans. Ind. Electron. 65(12): 9518-9527 (2018) - [j33]Li Zhang, Ying Fan, Robert D. Lorenz, Ademir Nied, Ming Cheng:
Design and Comparison of Three-Phase and Five-Phase FTFSCW-IPM Motor Open-End Winding Drive Systems for Electric Vehicles Applications. IEEE Trans. Veh. Technol. 67(1): 385-396 (2018) - [j32]Li Zhang, Ying Fan, Ronghua Cui, Robert D. Lorenz, Ming Cheng:
Fault-Tolerant Direct Torque Control of Five-Phase FTFSCW-IPM Motor Based on Analogous Three-Phase SVPWM for Electric Vehicle Applications. IEEE Trans. Veh. Technol. 67(2): 910-919 (2018) - 2017
- [j31]Xiang Wu, Kanjian Zhang, Ming Cheng:
Computational method for optimal machine scheduling problem with maintenance and production. Int. J. Prod. Res. 55(6): 1791-1814 (2017) - [j30]Wei Hua, Hengliang Zhang, Ming Cheng, Jianjian Meng, Chuang Hou:
An Outer-Rotor Flux-Switching Permanent-Magnet-Machine With Wedge-Shaped Magnets for In-Wheel Light Traction. IEEE Trans. Ind. Electron. 64(1): 69-80 (2017) - [j29]Le Sun, Ming Cheng, Honghui Wen, Lihua Song:
Motion Control and Performance Evaluation of a Magnetic-Geared Dual-Rotor Motor in Hybrid Powertrain. IEEE Trans. Ind. Electron. 64(3): 1863-1872 (2017) - [j28]Ming Cheng, Peng Han, Wei Hua:
General Airgap Field Modulation Theory for Electrical Machines. IEEE Trans. Ind. Electron. 64(8): 6063-6074 (2017) - [j27]Xueqing Wang, Zheng Wang, Ming Cheng, Yihua Hu:
Remedial Strategies of T-NPC Three-Level Asymmetric Six-Phase PMSM Drives Based on SVM-DTC. IEEE Trans. Ind. Electron. 64(9): 6841-6853 (2017) - [j26]Zheng Wang, Yibo Wang, Jian Chen, Ming Cheng:
Fault-Tolerant Control of NPC Three-Level Inverters-Fed Double-Stator-Winding PMSM Drives Based on Vector Space Decomposition. IEEE Trans. Ind. Electron. 64(11): 8446-8458 (2017) - [j25]Peng Han, Ming Cheng, Yunlei Jiang, Zhe Chen:
Torque/Power Density Optimization of a Dual-Stator Brushless Doubly-Fed Induction Generator for Wind Power Application. IEEE Trans. Ind. Electron. 64(12): 9864-9875 (2017) - [c18]Fujin Deng, Dong Liu, Yanbo Wang, Zhe Chen, Ming Cheng, Qingsong Wang:
Capacitor monitoring for modular multilevel converters. IECON 2017: 934-939 - [c17]Xueqing Wang, Zheng Wang, Pengcheng Liu, Ming Cheng:
A hybrid direct torque control scheme for asymmetric six-phase PMSM drives. IECON 2017: 1686-1691 - [c16]Qingsong Wang, Ming Cheng, Yunlei Jiang, Fujin Deng, Giuseppe Buja, Yanbo Wang, Zhe Chen:
Novel topology of three-phase electric spring and its control. IECON 2017: 2600-2605 - [c15]Wei Wang, Yanan Feng, Wei Hua, Ming Cheng, Jun Hang:
Non-symmetrical permanent-magnet linear motor traction systems for subway applications. IECON 2017: 3676-3681 - [c14]Xiaofan Fu, Luc-André Grégoire, Alireza Javadi, Kamal Al-Haddad, Keliang Zhou, Ming Cheng:
Multi-terminal VSC-HVDC for smart DC network: Control and simulation. IECON 2017: 6476-6481 - 2016
- [j24]Jun Hang, Jianzhong Zhang, Ming Cheng:
Application of multi-class fuzzy support vector machine classifier for fault diagnosis of wind turbine. Fuzzy Sets Syst. 297: 128-140 (2016) - [j23]Gan Zhang, Wei Hua, Ming Cheng, Jinguo Liao:
Design and Comparison of Two Six-Phase Hybrid-Excited Flux-Switching Machines for EV/HEV Applications. IEEE Trans. Ind. Electron. 63(1): 481-493 (2016) - [j22]Lingyun Shao, Wei Hua, Ningyi Dai, Minghao Tong, Ming Cheng:
Mathematical Modeling of a 12-Phase Flux-Switching Permanent-Magnet Machine for Wind Power Generation. IEEE Trans. Ind. Electron. 63(1): 504-516 (2016) - [j21]Wei Hua, Hao Hua, Ningyi Dai, Guishu Zhao, Ming Cheng:
Comparative Study of Switched Reluctance Machines With Half-and Full-Teeth-Wound Windings. IEEE Trans. Ind. Electron. 63(3): 1414-1424 (2016) - [j20]Xiuhua Cai, Ming Cheng, Sa Zhu, Jiawen Zhang:
Thermal Modeling of Flux-Switching Permanent-Magnet Machines Considering Anisotropic Conductivity and Thermal Contact Resistance. IEEE Trans. Ind. Electron. 63(6): 3355-3365 (2016) - [j19]Ming Cheng, Feng Yu, K. T. Chau, Wei Hua:
Dynamic Performance Evaluation of a Nine-Phase Flux-Switching Permanent-Magnet Motor Drive With Model Predictive Control. IEEE Trans. Ind. Electron. 63(7): 4539-4549 (2016) - [j18]Zheng Wang, Bin Wu, Dewei Xu, Ming Cheng, Liang Xu:
DC-Link Current Ripple Mitigation for Current-Source Grid-Connected Converters Under Unbalanced Grid Conditions. IEEE Trans. Ind. Electron. 63(8): 4967-4977 (2016) - [j17]Le Sun, Ming Cheng, Jiawen Zhang, Lihua Song:
Analysis and Control of Complementary Magnetic-Geared Dual-Rotor Motor. IEEE Trans. Ind. Electron. 63(11): 6715-6725 (2016) - [c13]Ronghua Cui, Ying Fan, Xiangyang Zhang, Weixia Zhu, Ming Cheng:
A new fault-tolerant control strategy for switch open-circuit fault in open-winding driving system. IECON 2016: 2141-2146 - [c12]Qingsong Wang, Ming Cheng, Yunlei Jiang, Fujin Deng, Zhe Chen, Giuseppe Buja:
Control of three-phase electric springs used in microgrids under ideal and non-ideal conditions. IECON 2016: 2247-2252 - [c11]Zheng Wang, Jian Chen, Ming Cheng, Na Ren:
Vector space decomposition based control of neutral-point-clamping (NPC) three-level inverters fed dual three-phase PMSM drives. IECON 2016: 2988-2993 - [c10]Xinchi Wei, Ming Cheng, Qingsong Wang:
Direct power control strategies of cascaded brushless doubly fed induction generators. IECON 2016: 4085-4090 - [c9]Yue Zhang, Zheng Wang, Ming Cheng:
An interleaved current-fed bidirectional full-bridge DC/DC converter for on-board charger. IECON 2016: 4376-4381 - 2015
- [j16]Zhi-Xiang Zou, Keliang Zhou, Zheng Wang, Ming Cheng:
Frequency-Adaptive Fractional-Order Repetitive Control of Shunt Active Power Filters. IEEE Trans. Ind. Electron. 62(3): 1659-1668 (2015) - [j15]Ying Fan, Li Zhang, Ming Cheng, K. T. Chau:
Sensorless SVPWM-FADTC of a New Flux-Modulated Permanent-Magnet Wheel Motor Based on a Wide-Speed Sliding Mode Observer. IEEE Trans. Ind. Electron. 62(5): 3143-3151 (2015) - [j14]Ruiwu Cao, Ming Cheng, Bangfu Zhang:
Speed Control of Complementary and Modular Linear Flux-Switching Permanent-Magnet Motor. IEEE Trans. Ind. Electron. 62(7): 4056-4064 (2015) - [j13]Zheng Wang, Jian Chen, Ming Cheng, Yang Zheng:
Fault-Tolerant Control of Paralleled-Voltage-Source-Inverter-Fed PMSM Drives. IEEE Trans. Ind. Electron. 62(8): 4749-4760 (2015) - [j12]Wei Hua, Gan Zhang, Ming Cheng:
Flux-Regulation Theories and Principles of Hybrid-Excited Flux-Switching Machines. IEEE Trans. Ind. Electron. 62(9): 5359-5369 (2015) - [j11]Jun Yang, Wei Xing Zheng, Shihua Li, Bin Wu, Ming Cheng:
Design of a Prediction-Accuracy-Enhanced Continuous-Time MPC for Disturbed Systems via a Disturbance Observer. IEEE Trans. Ind. Electron. 62(9): 5807-5816 (2015) - [j10]Le Sun, Ming Cheng, Hongyun Jia:
Analysis of a Novel Magnetic-Geared Dual-Rotor Motor With Complementary Structure. IEEE Trans. Ind. Electron. 62(11): 6737-6747 (2015) - [c8]Zhi-Xiang Zou, Marco Liserre, Zheng Wang, Ming Cheng, Shouting Fan:
Resonance damping in a smart transformer-based microgrid. IECON 2015: 956-964 - 2014
- [j9]Ruiwu Cao, Ming Cheng, Chunting Chris Mi, Wei Hua:
Influence of Leading Design Parameters on the Force Performance of a Complementary and Modular Linear Flux-Switching Permanent-Magnet Motor. IEEE Trans. Ind. Electron. 61(5): 2165-2175 (2014) - [j8]Sa Zhu, Ming Cheng, Jianning Dong, Jun Du:
Core Loss Analysis and Calculation of Stator Permanent-Magnet Machine Considering DC-Biased Magnetic Induction. IEEE Trans. Ind. Electron. 61(10): 5203-5212 (2014) - [j7]Wei Wang, Ming Cheng, Ya Wang, Bangfu Zhang, Ying Zhu, Shichuan Ding, Wei Chen:
A Novel Energy Management Strategy of Onboard Supercapacitor for Subway Applications With Permanent-Magnet Traction System. IEEE Trans. Veh. Technol. 63(6): 2578-2588 (2014) - 2013
- [j6]Wenxiang Zhao, Ming Cheng, K. T. Chau, Ruiwu Cao, Jinghua Ji:
Remedial Injected-Harmonic-Current Operation of Redundant Flux-Switching Permanent-Magnet Motor Drives. IEEE Trans. Ind. Electron. 60(1): 151-159 (2013) - [j5]Ruiwu Cao, Ming Cheng, Wei Hua:
Investigation and General Design Principle of a New Series of Complementary and Modular Linear FSPM Motors. IEEE Trans. Ind. Electron. 60(12): 5436-5446 (2013) - 2012
- [c7]Yunqian Zhang, Weihao Hu, Zhe Chen, Ming Cheng:
Individual pitch control for mitigation of power fluctuation of variable speed wind turbines. A-SSCC 2012: 638-643 - [c6]Xiaofan Fu, Louis-A. Dessaint, Richard Gagnon, Keliang Zhou, Ming Cheng:
A comparative study of control schemes for VSCHVDC transmission system. IECON 2012: 2096-2103 - [c5]Yilian Zhang, Wei Hua, Ming Cheng, Gan Zhang, Xiaofan Fu:
Static characteristic of a novel stator surface-mounted permanent magnet machine for brushless DC drives. IECON 2012: 4139-4144 - [c4]Zheng Wang, Shouting Fan, Yang Zheng, Ming Cheng:
Control of a six-switch inverter based single-phase grid-connected PV generation system with inverse Park transform PLL. ISIE 2012: 258-263 - [c3]Zheng Wang, Bo Yuwen, Ming Cheng:
Improvement of operating performance for the wind farm with a novel CSC type wind turbine-SMES hybrid system. ISIE 2012: 1017-1022 - 2011
- [j4]Wenxiang Zhao, Ming Cheng, Wei Hua, Hongyun Jia, Ruiwu Cao:
Back-EMF Harmonic Analysis and Fault-Tolerant Control of Flux-Switching Permanent-Magnet Machine With Redundancy. IEEE Trans. Ind. Electron. 58(5): 1926-1935 (2011) - [j3]Ming Cheng, Wei Hua, Jianzhong Zhang, Wenxiang Zhao:
Overview of Stator-Permanent Magnet Brushless Machines. IEEE Trans. Ind. Electron. 58(11): 5087-5101 (2011) - 2010
- [j2]Wenxiang Zhao, K. T. Chau, Ming Cheng, Jinghua Ji, Xiaoyong Zhu:
Remedial Brushless AC Operation of Fault-Tolerant Doubly Salient Permanent-Magnet Motor Drives. IEEE Trans. Ind. Electron. 57(6): 2134-2141 (2010)
2000 – 2009
- 2008
- [j1]Wenxiang Zhao, Ming Cheng, Xiaoyong Zhu, Wei Hua, Xiangxin Kong:
Analysis of Fault-Tolerant Performance of a Doubly Salient Permanent-Magnet Motor Drive Using Transient Cosimulation Method. IEEE Trans. Ind. Electron. 55(4): 1739-1748 (2008) - [c2]Wei Hua, Ming Cheng, Hongyun Jia, Xiaofan Fu:
Comparative Study of Flux-Switching and Doubly-Salient PM Machines Particularly on Torque Capability. IAS 2008: 1-8 - [c1]Hongyun Jia, Ming Cheng, Wei Hua, Wei Lu, Xiaofan Fu:
Investigation and Implementation of Control Strategies for Flux-Switching Permanent Magnet Motor Drives. IAS 2008: 1-6
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 21:44 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint