default search action
Hisataka Maruyama
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2022
- [j12]Hisataka Maruyama, Fumihito Arai:
Fluorescence oxygen sensor array for non-contact and rapid measurement of oxygen consumption rate of single oocyte. Commun. Inf. Syst. 22(4): 459-475 (2022) - 2019
- [j11]Hisataka Maruyama, Yuki Yokota, Keisuke Hosono, Fumihito Arai:
Hydrogel Heart Model with Temperature Memory Properties for Surgical Simulation. Sensors 19(5): 1102 (2019) - [j10]Hairulazwan Hashim, Hisataka Maruyama, Yusuke Akita, Fumihito Arai:
Hydrogel Fluorescence Microsensor with Fluorescence Recovery for Prolonged Stable Temperature Measurements. Sensors 19(23): 5247 (2019) - 2018
- [j9]Takeshi Hayakawa, Hisataka Maruyama, Takafumi Watanabe, Fumihito Arai:
Three-Dimensional Blood Vessel Model with Temperature-Indicating Function for Evaluation of Thermal Damage during Surgery. Sensors 18(2): 345 (2018) - 2016
- [j8]Hairulazwan Hashim, Hisataka Maruyama, Taisuke Masuda, Fumihito Arai:
Manipulation and Immobilization of a Single Fluorescence Nanosensor for Selective Injection into Cells. Sensors 16(12): 2041 (2016) - 2013
- [j7]Hisataka Maruyama, Taisuke Masuda, Fumihito Arai:
Fluorescent-Based Temperature Measurement with Simple Compensation of Photo-Degradation Using Hydrogel-Tool and Color Space Conversion. J. Robotics Mechatronics 25(4): 596-602 (2013) - 2010
- [j6]Hisataka Maruyama, Shinya Sakuma, Yoko Yamanishi, Fumihito Arai:
Size-Dependent Filtration and Trapping of Microparticles in a Microfluidic Chip Using Graduated Gaps and Centrifugal Force. J. Robotics Mechatronics 22(3): 280-285 (2010) - [j5]Takehito Mizunuma, Yoko Yamanishi, Shinya Sakuma, Hisataka Maruyama, Fumihito Arai:
Disposable Inkjet Mechanism for Microdroplet Dispensing. J. Robotics Mechatronics 22(3): 341-347 (2010) - [j4]Hisataka Maruyama, Ryo Iitsuka, Kazuhisa Onda, Fumihito Arai:
Massive Parallel Assembly of Microbeads for Fabrication of Microtools Having Spherical Structure and Powerful Manipulation by Optical Tweezers. J. Robotics Mechatronics 22(3): 356-362 (2010) - [j3]Hisataka Maruyama, Toshio Fukuda, Fumihito Arai:
Optical Adhesion Control of Hydrogel Microtools for On-Demand Immobilization and Measurement of Cells on a Microfluidic Chip. J. Robotics Mechatronics 22(5): 631-638 (2010) - 2006
- [j2]Hisataka Maruyama, Fumihito Arai, Toshio Fukuda:
On-Chip Microparticle Manipulation Using Disposable Magnetically Driven Microdevices. J. Robotics Mechatronics 18(3): 264-270 (2006) - 2005
- [j1]Hisataka Maruyama, Fumihito Arai, Toshio Fukuda:
Microfabrication and Laser Manipulation of Functional Microtool Using In-Situ Photofabrication. J. Robotics Mechatronics 17(3): 335-341 (2005)
Conference and Workshop Papers
- 2020
- [c43]Hisataka Maruyama, Hairulazwan Hashim, Ryota Yanagawa, Fumihito Arai:
Injection of a Fluorescent Microsensor into a Specific Cell by Laser Manipulation and Heating with Multiple Wavelengths of Light. ICRA 2020: 3437-3442 - 2019
- [c42]Hisataka Maruyama, Taisuke Masuda, Ruixuan Weng, Zhaoyu Wang, Eiji Tokai, Fumihito Arai:
Fluorescence Microsensor Using Near-Infrared Light for Physiological Measurement inside Tissue. MHS 2019: 1-3 - [c41]Zhaoyu Wang, Taisuke Masuda, Ruixuan Weng, Hisataka Maruyama, Fumihito Arai:
Assembly and Monitoring of Modular Tissue Structure of Micro-Fibers. MHS 2019: 1-2 - 2018
- [c40]Hisataka Maruyama, M. Tsubaki, K. Okuda, Seiji Omata, Taisuke Masuda, Fumihito Arai:
Optical Measurement of Deformation Distribution on Retinal Model for Vitreoretinal Surgery Training. CBS 2018: 278-281 - [c39]Hisataka Maruyama, Seiji Omata, Taisuke Masuda, Fumihito Arai:
Multimodal Measurement of Cell Culture Conditions Using Hydrogel Culture Substrate having Fluorescence Microsensors. MHS 2018: 1-2 - [c38]Yuki Yokota, Hisataka Maruyama, Fumihito Arai:
Hydrogel Heart Model Having Temperature Indicating Function. MHS 2018: 1-2 - 2017
- [c37]Yusuke Akita, Hisataka Maruyama, Taisuke Masuda, Fumihito Arai:
Hydrogel fluorescent sensor for long term environmental measurement. MHS 2017: 1-2 - [c36]Yuki Yokota, Keisuke Hosono, Hisataka Maruyama, Fumihito Arai:
Fabrication of hollow branch structure without core by circumferential exposure for vascular model with temperature indicating function. MHS 2017: 1-2 - 2016
- [c35]Hairulazwan Hashim, Hisataka Maruyama, Taisuke Masuda, Fumihito Arai:
Manipulation and injection of a specific magnetic nanosensor using optical zeta potential control and local laser heating. MHS 2016: 1-3 - [c34]Keisuke Takagi, Hisataka Maruyama, Taisuke Masuda, Osamu Suzuki, Fumihito Arai:
Multi fluorescence microsensors for spatiotemporal measurement of culture environment in a microfluidic chip. MHS 2016: 1-2 - [c33]Takafumi Watanabe, Hisataka Maruyama, Takeshi Hayakawa, Fumihito Arai:
3D blood vessel model with temperature Indicator for evaluating thermal damage during surgery. MHS 2016: 1-3 - 2015
- [c32]Hisataka Maruyama, Masanobu Kito, Fumihito Arai:
Fluorescence sensor array for non-contact measurement of oxygen consumption rate of single oocyte on a microfluidic chip. ICRA 2015: 3495-3500 - [c31]Maki Kikukawa, Takeshi Hayakawa, Hisataka Maruyama, Fumihito Arai:
Cell adhesion control of optically-driven microtool using thermo-sensitive gel and laser heating. MHS 2015: 1-2 - [c30]Hisataka Maruyama, Takafumi Watanabe, Takeshi Hayakawa, Tomohisa Tanaka, Taisuke Masuda, Fumihito Arai:
Functional vessel model having temperature indicator for surgical simulator. MHS 2015: 1-3 - [c29]Keisuke Takagi, Hisataka Maruyama, Fumihito Arai:
Unconstraint measurement of vital information using near-infrared light sensor. MHS 2015: 1-3 - 2014
- [c28]Hisataka Maruyama, Taisuke Masuda, H. J. Liu, Fumihito Arai:
Selective and rapid cell injection of fluorescence sensor encapsulated in liposome using optical control of zeta potential and local mechanical stimulus by optical tweezers. IROS 2014: 816-821 - [c27]Masanobu Kito, Hisataka Maruyama, Fumihito Arai:
Non-contact measurement of oxygen consumption rate of single oocyte using stripe-shaped fluorescence sensor on microfluidic chip. MHS 2014: 1-2 - [c26]Hisataka Maruyama, Masanobu Kito, Fumihito Arai:
Non-contact measurement of oxygen consumption rate of single oocyte using fluorescence sensor. URAI 2014: 525-528 - 2013
- [c25]Shota Fukada, Kazuhisa Onda, Hisataka Maruyama, Taisuke Masuda, Fumihito Arai:
3D fabrication and manipulation of hybrid nanorobots by laser. ICRA 2013: 2594-2599 - [c24]Hisataka Maruyama, Taisuke Masuda, Ayae Honda, Fumihito Arai:
Selective cell injection of fluorescence particle sensor encapsulated in fusogenic liposome using optical manipulation and control of surface potential using photochromic chemical. ICRA 2013: 4421-4426 - [c23]Hengjun Liu, Hisataka Maruyama, Taisuke Masuda, Fumihito Arai:
Sensitivity compensation of multi-fluorescence sensor toward on-chip cell measurement. MHS 2013: 1-2 - [c22]Hisataka Maruyama, Taisuke Masuda, Fumihito Arai:
Selective injection of fluorescence sensor encapsulated in the functional lipid capsule for intracellular measurement. MHS 2013: 1-2 - 2012
- [c21]Hisataka Maruyama, Ryo Kariya, Sou Nakamura, Takehisa Matsuda, Yu Matsuda, Tomohide Niimi, Ayae Honda, Fumihito Arai:
Ultra long-lifetime and high-sensitive fluorescent measurement using difference compensation method for single cell analysis. IROS 2012: 3235-3240 - [c20]Ryo Kariya, Hisataka Maruyama, Fumihito Arai:
Evaluation of thermal conductivity of single carbon nanotube in liquid using fluorescent micropillars. MHS 2012: 215-217 - [c19]Hisataka Maruyama, Yu Matsuda, Tomohide Niimi, Nobuyuki Unozumi, Kei Nanatani, Fumihito Arai:
Measurement of photosynthesis activity using single synecocystis SP. PCC 6803 on microchambers having gas barrier wall and fluorescence oxygen sensor. MHS 2012: 476-478 - [c18]Shota Fukada, Hisataka Maruyama, Taisuke Masuda, Fumihito Arai:
3D fabrication and manipulation of hybrid nanorobots by laser for single cell analysis. MHS 2012: 479-481 - [c17]Takeshi Hayakawa, Hisataka Maruyama, Fumihito Arai:
High thermal conductive nano pillars for temperature distribution measurement of a single cell. MHS 2012: 488-490 - 2011
- [c16]Hisataka Maruyama, Naoya Inoue, Taisuke Masuda, Fumihito Arai:
Selective injection and laser manipulation of nanotool inside a specific cell using Optical pH regulation and optical tweezers. ICRA 2011: 2674-2679 - [c15]Hisataka Maruyama, Kyohei Tomita, Taisuke Masuda, Fumihito Arai:
Temperature measurement by color analysis of fluorescent spectrum using cell investigation tool impregnated with quantum dot for cell measurement on a microfluidic chip. IROS 2011: 13-18 - [c14]Hisataka Maruyama, Taisuke Masuda, Ryo Kariya, Fumihito Arai:
Long-lifetime measurement and control of local temperature using functional gel-tool containing quantum dot by color analysis of fluorescent spectrum. MHS 2011: 41-44 - 2010
- [c13]Hisataka Maruyama, Kyosuke Kotani, Ayae Honda, Tatsuro Takahata, Fumihito Arai:
Nanomanipulation of single virus using Dielectrophoretic concentration on a microfluidic chip. CASE 2010: 710-715 - [c12]Hisataka Maruyama, Ryo Iitsuka, Kazuhisa Onda, Fumihito Arai:
Massive parallel assembly of microbeads for fabrication of microtools having spherical structure and powerful laser manipulation. ICRA 2010: 482-487 - 2009
- [c11]Fumihito Arai, Kazuhisa Onda, Ryo Iitsuka, Hisataka Maruyama:
Multi-beam laser micromanipulation of microtool by integrated optical tweezers. ICRA 2009: 1832-1837 - [c10]Hisataka Maruyama, Toshio Fukuda, Fumihito Arai:
Laser manipulation and optical adhesion control of functional gel-microtool for on-chip cell manipulation. IROS 2009: 1413-1418 - [c9]Masaki Ito, Masahiro Nakajima, Hisataka Maruyama, Toshio Fukuda:
On-chip fabrication and assembly of rotational microstructures. IROS 2009: 1849-1854 - [c8]Benoît Chapurlat, Hisataka Maruyama, Yoko Yamanishi, Kyosuke Kotani, Fumihito Arai:
Size-dependent microparticle filtration using magnetically driven microtool for producing gel-microtool. IROS 2009: 4718-4723 - 2008
- [c7]Hisataka Maruyama, Fumihito Arai, Toshio Fukuda:
Fabrication of functional gel-microbead for local environment measurement in microchip. ICRA 2008: 305-310 - 2007
- [c6]Hisataka Maruyama, Fumihito Arai, Toshio Fukuda:
Gel-tool Sensor Positioned by Optical Tweezers for Local pH Measurement in a Microchip. ICRA 2007: 806-811 - [c5]Fumihito Arai, Toshiaki Endo, Hisataka Maruyama, Toshio Fukuda, Toshimi Shimizu, Shoko Kamiya:
3D Manipulation of lipid nanotubes using laser trapped functional gel microbeads. IROS 2007: 3125-3130 - 2005
- [c4]Hisataka Maruyama, Fumihito Arai, Toshio Fukuda:
Laser Manipulation and Fabrication of Functional Microtool Using Photo-crosslinkable Resin. ICRA 2005: 838-843 - 2004
- [c3]Akihiko Ichikawa, Fumihito Arai, Hisataka Maruyama, Toshio Fukuda, Tohoru Katsuragi:
Single Cell Trap on a Chip using In-situ Microfabrication with Photo-crosslinkable Resin and Thermal Gelation. ICRA 2004: 2848-2853 - 2003
- [c2]Fumihito Arai, Toshihiro Sakami, Kenichi Yoshikawa, Hisataka Maruyama, Toshio Fukuda:
Synchronized laser micromanipulation of microtools for assembly of microbeads and indirect manipulation of microbe. IROS 2003: 2121-2126 - 2002
- [c1]Fumihito Arai, Toshihiro Sakami, Hisataka Maruyama, Akihiko Ichikawa, Toshio Fukuda:
Minimally Invasive Micromanipulation of Microbe by Laser Trapped Micro Tools. ICRA 2002: 1937-1942
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 12:47 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint