default search action
Chuan Shi
This is just a disambiguation page, and is not intended to be the bibliography of an actual person. Any publication listed on this page has not been assigned to an actual author yet. If you know the true author of one of the publications listed below, you are welcome to contact us.
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j65]Qi Zhang, Cheng Yang, Chuan Shi:
Adaptive negative representations for graph contrastive learning. AI Open 5: 79-86 (2024) - [j64]Chuan Shi, Junze Chen, Jiawei Liu, Cheng Yang:
Graph foundation model. Frontiers Comput. Sci. 18(6): 186355 (2024) - [j63]Ang Ma, Yanhua Yu, Chuan Shi, Zirui Guo, Tat-Seng Chua:
Cross-view hypergraph contrastive learning for attribute-aware recommendation. Inf. Process. Manag. 61(4): 103701 (2024) - [j62]Wenchuan Yang, Cheng Yang, Jichao Li, Yuejin Tan, Xin Lu, Chuan Shi:
Non-autoregressive personalized bundle generation. Inf. Process. Manag. 61(5): 103814 (2024) - [j61]Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, Bai Wang:
Generalizing Graph Neural Networks on Out-of-Distribution Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 46(1): 322-337 (2024) - [j60]Bo Yan, Cheng Yang, Chuan Shi, Yong Fang, Qi Li, Yanfang Ye, Junping Du:
Graph Mining for Cybersecurity: A Survey. ACM Trans. Knowl. Discov. Data 18(2): 47:1-47:52 (2024) - [j59]Chuan Shi, Houye Ji, Zhiyuan Lu, Ye Tang, Pan Li, Cheng Yang:
Distance Information Improves Heterogeneous Graph Neural Networks. IEEE Trans. Knowl. Data Eng. 36(3): 1030-1043 (2024) - [j58]Shaohua Fan, Xiao Wang, Chuan Shi, Kun Kuang, Nian Liu, Bai Wang:
Debiased Graph Neural Networks With Agnostic Label Selection Bias. IEEE Trans. Neural Networks Learn. Syst. 35(4): 4411-4422 (2024) - [j57]Chunchen Wang, Wei Wang, Cheng Yang, Chuan Shi, Ruobing Xie, Yuanfu Lu, Haili Yang, Xu Zhang:
Group-to-group recommendation with neural graph matching. World Wide Web (WWW) 27(2): 19 (2024) - [c200]Tianrui Jia, Haoyang Li, Cheng Yang, Tao Tao, Chuan Shi:
Graph Invariant Learning with Subgraph Co-mixup for Out-of-Distribution Generalization. AAAI 2024: 8562-8570 - [c199]Yibo Li, Xiao Wang, Hongrui Liu, Chuan Shi:
A Generalized Neural Diffusion Framework on Graphs. AAAI 2024: 8707-8715 - [c198]Yanhu Mo, Xiao Wang, Shaohua Fan, Chuan Shi:
Graph Contrastive Invariant Learning from the Causal Perspective. AAAI 2024: 8904-8912 - [c197]Cheng Yang, Jixi Liu, Yunhe Yan, Chuan Shi:
FairSIN: Achieving Fairness in Graph Neural Networks through Sensitive Information Neutralization. AAAI 2024: 9241-9249 - [c196]Nian Liu, Shen Fan, Ting Bai, Peng Wang, Mingwei Sun, Yanhu Mo, Xiaoxiao Xu, Hong Liu, Chuan Shi:
Learning Social Graph for Inactive User Recommendation. DASFAA (6) 2024: 151-167 - [c195]Feng Guo, Jiawei Liu, Jianwang Zhai, Jingyu Jia, Kang Zhao, Chuan Shi:
PGAU: Static IR Drop Analysis for Power Grid using Attention U-Net Architecture and Label Distribution Smoothing. ACM Great Lakes Symposium on VLSI 2024: 452-458 - [c194]Yang Liu, Deyu Bo, Chuan Shi:
Graph Distillation with Eigenbasis Matching. ICML 2024 - [c193]Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, Chuan Shi:
Less is More: on the Over-Globalizing Problem in Graph Transformers. ICML 2024 - [c192]Zhiyuan Lu, Yuan Fang, Cheng Yang, Chuan Shi:
Heterogeneous Graph Transformer with Poly-Tokenization. IJCAI 2024: 2234-2242 - [c191]Fengqi Liang, Huan Zhao, Yuhan Quan, Wei Fang, Chuan Shi:
Customizing Graph Neural Network for CAD Assembly Recommendation. KDD 2024: 1746-1757 - [c190]Ruijia Wang, Haoran Dai, Cheng Yang, Le Song, Chuan Shi:
Advancing Molecule Invariant Representation via Privileged Substructure Identification. KDD 2024: 3188-3199 - [c189]Yuxin Guo, Cheng Yang, Chuan Shi, Ke Tu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou:
Adaptively Denoising Graph Neural Networks for Knowledge Distillation. ECML/PKDD (8) 2024: 253-269 - [c188]Yuanxin Zhuang, Chuan Shi, Mengmei Zhang, Jinghui Chen, Lingjuan Lyu, Pan Zhou, Lichao Sun:
Unveiling the Secrets without Data: Can Graph Neural Networks Be Exploited through Data-Free Model Extraction Attacks? USENIX Security Symposium 2024 - [c187]Yibo Li, Xiao Wang, Yujie Xing, Shaohua Fan, Ruijia Wang, Yaoqi Liu, Chuan Shi:
Graph Fairness Learning under Distribution Shifts. WWW 2024: 676-684 - [c186]Cheng Yang, Chengdong Yang, Chuan Shi, Yawen Li, Zhiqiang Zhang, Jun Zhou:
Calibrating Graph Neural Networks from a Data-centric Perspective. WWW 2024: 745-755 - [c185]Mengmei Zhang, Mingwei Sun, Peng Wang, Shen Fan, Yanhu Mo, Xiaoxiao Xu, Hong Liu, Cheng Yang, Chuan Shi:
GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks. WWW 2024: 1003-1014 - [c184]Zhongjian Zhang, Mengmei Zhang, Yue Yu, Cheng Yang, Jiawei Liu, Chuan Shi:
Endowing Pre-trained Graph Models with Provable Fairness. WWW 2024: 1045-1056 - [c183]Chuan Shi, Cheng Yang, Yuan Fang, Lichao Sun, Philip S. Yu:
Lecture-style Tutorial: Towards Graph Foundation Models. WWW (Companion Volume) 2024: 1264-1267 - [c182]Bo Yan, Yang Cao, Haoyu Wang, Wenchuan Yang, Junping Du, Chuan Shi:
Federated Heterogeneous Graph Neural Network for Privacy-preserving Recommendation. WWW 2024: 3919-3929 - [i75]Chenghua Gong, Yao Cheng, Xiang Li, Caihua Shan, Siqiang Luo, Chuan Shi:
Towards Learning from Graphs with Heterophily: Progress and Future. CoRR abs/2401.09769 (2024) - [i74]Yanhu Mo, Xiao Wang, Shaohua Fan, Chuan Shi:
Graph Contrastive Invariant Learning from the Causal Perspective. CoRR abs/2401.12564 (2024) - [i73]Yibo Li, Xiao Wang, Yujie Xing, Shaohua Fan, Ruijia Wang, Yaoqi Liu, Chuan Shi:
Graph Fairness Learning under Distribution Shifts. CoRR abs/2401.16784 (2024) - [i72]Mengmei Zhang, Mingwei Sun, Peng Wang, Shen Fan, Yanhu Mo, Xiaoxiao Xu, Hong Liu, Cheng Yang, Chuan Shi:
GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks. CoRR abs/2402.07197 (2024) - [i71]Zhongjian Zhang, Mengmei Zhang, Yue Yu, Cheng Yang, Jiawei Liu, Chuan Shi:
Endowing Pre-trained Graph Models with Provable Fairness. CoRR abs/2402.12161 (2024) - [i70]Mengmei Zhang, Xiao Wang, Chuan Shi, Lingjuan Lyu, Tianchi Yang, Junping Du:
Minimum Topology Attacks for Graph Neural Networks. CoRR abs/2403.02723 (2024) - [i69]Donglin Xia, Xiao Wang, Nian Liu, Chuan Shi:
Learning Invariant Representations of Graph Neural Networks via Cluster Generalization. CoRR abs/2403.03599 (2024) - [i68]Sun Ao, Weilin Zhao, Xu Han, Cheng Yang, Zhiyuan Liu, Chuan Shi, Maosong Sun, Shengnan Wang, Teng Su:
BurstAttention: An Efficient Distributed Attention Framework for Extremely Long Sequences. CoRR abs/2403.09347 (2024) - [i67]Cheng Yang, Jixi Liu, Yunhe Yan, Chuan Shi:
FairSIN: Achieving Fairness in Graph Neural Networks through Sensitive Information Neutralization. CoRR abs/2403.12474 (2024) - [i66]Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, Chuan Shi:
Less is More: on the Over-Globalizing Problem in Graph Transformers. CoRR abs/2405.01102 (2024) - [i65]Nian Liu, Shen Fan, Ting Bai, Peng Wang, Mingwei Sun, Yanhu Mo, Xiaoxiao Xu, Hong Liu, Chuan Shi:
Learning Social Graph for Inactive User Recommendation. CoRR abs/2405.05288 (2024) - [i64]Ao Sun, Weilin Zhao, Xu Han, Cheng Yang, Zhiyuan Liu, Chuan Shi, Maosong Sun:
Seq1F1B: Efficient Sequence-Level Pipeline Parallelism for Large Language Model Training. CoRR abs/2406.03488 (2024) - [i63]Yangbin Chen, Chenyang Xu, Chunfeng Liang, Yanbao Tao, Chuan Shi:
Speech-based Clinical Depression Screening: An Empirical Study. CoRR abs/2406.03510 (2024) - [i62]Wenchuan Yang, Cheng Yang, Jichao Li, Yuejin Tan, Xin Lu, Chuan Shi:
Non-autoregressive Personalized Bundle Generation. CoRR abs/2406.06925 (2024) - [i61]Zhongjian Zhang, Xiao Wang, Huichi Zhou, Yue Yu, Mengmei Zhang, Cheng Yang, Chuan Shi:
Can Large Language Models Improve the Adversarial Robustness of Graph Neural Networks? CoRR abs/2408.08685 (2024) - [i60]Yuxia Wu, Shujie Li, Yuan Fang, Chuan Shi:
Exploring the Potential of Large Language Models for Heterophilic Graphs. CoRR abs/2408.14134 (2024) - [i59]Ting Bai, Le Huang, Yue Yu, Cheng Yang, Cheng Hou, Zhe Zhao, Chuan Shi:
Efficient Multi-task Prompt Tuning for Recommendation. CoRR abs/2408.17214 (2024) - [i58]Yibo Li, Yuan Fang, Mengmei Zhang, Chuan Shi:
FineMolTex: Towards Fine-grained Molecular Graph-Text Pre-training. CoRR abs/2409.14106 (2024) - [i57]Xin Li, Weize Chen, Qizhi Chu, Haopeng Li, Zhaojun Sun, Ran Li, Chen Qian, Yiwei Wei, Zhiyuan Liu, Chuan Shi, Maosong Sun, Cheng Yang:
Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models. CoRR abs/2409.19667 (2024) - [i56]Xin Li, Qizhi Chu, Yubin Chen, Yang Liu, Yaoqi Liu, Zekai Yu, Weize Chen, Chen Qian, Chuan Shi, Cheng Yang:
GraphTeam: Facilitating Large Language Model-based Graph Analysis via Multi-Agent Collaboration. CoRR abs/2410.18032 (2024) - [i55]Le Huang, Hengzhi Lan, Zijun Sun, Chuan Shi, Ting Bai:
Emotional RAG: Enhancing Role-Playing Agents through Emotional Retrieval. CoRR abs/2410.23041 (2024) - 2023
- [b4]Chuan Shi, Xiao Wang, Cheng Yang:
Advances in Graph Neural Networks. Synthesis Lectures on Data Mining and Knowledge Discovery, Springer 2023, ISBN 978-3-031-16173-5, pp. 1-198 - [j56]Weizhong Zhao, Xueling Yuan, Xianjun Shen, Xingpeng Jiang, Chuan Shi, Tingting He, Xiaohua Hu:
Improving drug-drug interactions prediction with interpretability via meta-path-based information fusion. Briefings Bioinform. 24(2) (2023) - [j55]Xiaojun Ma, Ziyao Li, Guojie Song, Chuan Shi:
Learning discrete adaptive receptive fields for graph convolutional networks. Sci. China Inf. Sci. 66(12) (2023) - [j54]Zheng-Yang Zhao, Jie Lin, Zhen Wang, Jianxin Guo, Xinke Zhan, Yu-An Huang, Chuan Shi, Wenzhun Huang:
SEBGLMA: Semantic Embedded Bipartite Graph Network for Predicting lncRNA-miRNA Associations. Int. J. Intell. Syst. 2023: 1-15 (2023) - [j53]Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, Philip S. Yu:
A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources. IEEE Trans. Big Data 9(2): 415-436 (2023) - [j52]Weizhong Zhao, Wenjie Yao, Xingpeng Jiang, Tingting He, Chuan Shi, Xiaohua Hu:
An Explainable Framework for Predicting Drug-Side Effect Associations via Meta-Path-Based Feature Learning in Heterogeneous Information Network. IEEE ACM Trans. Comput. Biol. Bioinform. 20(6): 3635-3647 (2023) - [j51]Aikun Xu, Ping Zhong, Yilin Kang, Jiongqiang Duan, Anning Wang, Mingming Lu, Chuan Shi:
THAN: Multimodal Transportation Recommendation With Heterogeneous Graph Attention Networks. IEEE Trans. Intell. Transp. Syst. 24(2): 1533-1543 (2023) - [j50]Houye Ji, Xiao Wang, Chuan Shi, Bai Wang, Philip S. Yu:
Heterogeneous Graph Propagation Network. IEEE Trans. Knowl. Data Eng. 35(1): 521-532 (2023) - [j49]Ruijia Wang, Chuan Shi, Tianyu Zhao, Xiao Wang, Yanfang Ye:
Heterogeneous Information Network Embedding With Adversarial Disentangler. IEEE Trans. Knowl. Data Eng. 35(2): 1581-1593 (2023) - [j48]Nian Liu, Xiao Wang, Hui Han, Chuan Shi:
Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural Network. IEEE Trans. Knowl. Data Eng. 35(10): 10884-10896 (2023) - [j47]Meiqi Zhu, Xiao Wang, Chuan Shi, Yibo Li, Junping Du:
Towards Adaptive Information Fusion in Graph Convolutional Networks. IEEE Trans. Knowl. Data Eng. 35(12): 13055-13069 (2023) - [j46]Cheng Yang, Hao Wang, Jian Tang, Chuan Shi, Maosong Sun, Ganqu Cui, Zhiyuan Liu:
Full-Scale Information Diffusion Prediction With Reinforced Recurrent Networks. IEEE Trans. Neural Networks Learn. Syst. 34(5): 2271-2283 (2023) - [j45]Yugang Ji, Chuan Shi, Yuan Fang:
Dynamic Meta-path Guided Temporal Heterogeneous Graph Neural Networks. World Sci. Annu. Rev. Artif. Intell. 1: 2350002:1-2350002:22 (2023) - [c181]Xumeng Gong, Cheng Yang, Chuan Shi:
MA-GCL: Model Augmentation Tricks for Graph Contrastive Learning. AAAI 2023: 4284-4292 - [c180]Shaohua Fan, Shuyang Zhang, Xiao Wang, Chuan Shi:
Directed Acyclic Graph Structure Learning from Dynamic Graphs. AAAI 2023: 7512-7521 - [c179]Fengqi Liang, Huan Zhao, Zhenyi Wang, Wei Fang, Chuan Shi:
Retrieving GNN Architecture for Collaborative Filtering. CIKM 2023: 1379-1388 - [c178]Zhenyi Wang, Huan Zhao, Fengqi Liang, Chuan Shi:
Node-dependent Semantic Search over Heterogeneous Graph Neural Networks. CIKM 2023: 2646-2655 - [c177]Yijian Liu, Hongyi Zhang, Cheng Yang, Ao Li, Yugang Ji, Luhao Zhang, Tao Li, Jinyu Yang, Tianyu Zhao, Juan Yang, Hai Huang, Chuan Shi:
Datasets and Interfaces for Benchmarking Heterogeneous Graph Neural Networks. CIKM 2023: 5346-5350 - [c176]Tianchi Yang, Haihan Gao, Cheng Yang, Chuan Shi, Qianlong Xie, Xingxing Wang, Dong Wang:
Memory-Enhanced Period-Aware Graph Neural Network for General POI Recommendation. DASFAA (2) 2023: 462-472 - [c175]Wenting Zhu, Zhe Liu, Zongyi Chen, Chuan Shi, Xi Zhang, Sanchuan Guo:
FedValidate: A Robust Federated Learning Framework Based on Client-Side Validation. DSC 2023: 337-344 - [c174]Ao Li, Yugang Ji, Guanyi Chu, Xiao Wang, Dong Li, Chuan Shi:
Clustering-Based Supervised Contrastive Learning for Identifying Risk Items on Heterogeneous Graph. ICASSP 2023: 1-5 - [c173]Deyu Bo, Chuan Shi, Lele Wang, Renjie Liao:
Specformer: Spectral Graph Neural Networks Meet Transformers. ICLR 2023 - [c172]Yuxin Guo, Cheng Yang, Yuluo Chen, Jixi Liu, Chuan Shi, Junping Du:
A Data-centric Framework to Endow Graph Neural Networks with Out-Of-Distribution Detection Ability. KDD 2023: 638-648 - [c171]Deyu Bo, Yuan Fang, Yang Liu, Chuan Shi:
Graph Contrastive Learning with Stable and Scalable Spectral Encoding. NeurIPS 2023 - [c170]Ruijia Wang, YiWu Sun, Yujie Luo, Shaochuan Li, Cheng Yang, Xingyi Cheng, Hui Li, Chuan Shi, Le Song:
Injecting Multimodal Information into Rigid Protein Docking via Bi-level Optimization. NeurIPS 2023 - [c169]Donglin Xia, Xiao Wang, Nian Liu, Chuan Shi:
Learning Invariant Representations of Graph Neural Networks via Cluster Generalization. NeurIPS 2023 - [c168]Yue Yu, Xiao Wang, Mengmei Zhang, Nian Liu, Chuan Shi:
Provable Training for Graph Contrastive Learning. NeurIPS 2023 - [c167]Shuyun Gu, Xiao Wang, Chuan Shi:
Duplicate Multi-modal Entities Detection with Graph Contrastive Self-training Network. ECML/PKDD (2) 2023: 651-665 - [c166]Bo Yan, Cheng Yang, Chuan Shi, Jiawei Liu, Xiaochen Wang:
Abnormal Event Detection via Hypergraph Contrastive Learning. SDM 2023: 712-720 - [c165]Chunjing Gan, Binbin Hu, Bo Huang, Tianyu Zhao, Yingru Lin, Wenliang Zhong, Zhiqiang Zhang, Jun Zhou, Chuan Shi:
Which Matters Most in Making Fund Investment Decisions? A Multi-granularity Graph Disentangled Learning Framework. SIGIR 2023: 2516-2520 - [c164]Yaoqi Liu, Cheng Yang, Tianyu Zhao, Hui Han, Siyuan Zhang, Jing Wu, Guangyu Zhou, Hai Huang, Hui Wang, Chuan Shi:
GammaGL: A Multi-Backend Library for Graph Neural Networks. SIGIR 2023: 2861-2870 - [c163]Cheng Yang, Yuxin Guo, Yao Xu, Chuan Shi, Jiawei Liu, Chunchen Wang, Xin Li, Ning Guo, Hongzhi Yin:
Learning to Distill Graph Neural Networks. WSDM 2023: 123-131 - [c162]Hao Wang, Yao Xu, Cheng Yang, Chuan Shi, Xin Li, Ning Guo, Zhiyuan Liu:
Knowledge-Adaptive Contrastive Learning for Recommendation. WSDM 2023: 535-543 - [c161]Cheng Yang, Xumeng Gong, Chuan Shi, Philip S. Yu:
A Post-Training Framework for Improving Heterogeneous Graph Neural Networks. WWW 2023: 251-262 - [c160]Mengmei Zhang, Xiao Wang, Chuan Shi, Lingjuan Lyu, Tianchi Yang, Junping Du:
Minimum Topology Attacks for Graph Neural Networks. WWW 2023: 630-640 - [i54]Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, Chuan Shi:
A Survey on Spectral Graph Neural Networks. CoRR abs/2302.05631 (2023) - [i53]Deyu Bo, Chuan Shi, Lele Wang, Renjie Liao:
Specformer: Spectral Graph Neural Networks Meet Transformers. CoRR abs/2303.01028 (2023) - [i52]Bo Yan, Cheng Yang, Chuan Shi, Yong Fang, Qi Li, Yanfang Ye, Junping Du:
Graph Mining for Cybersecurity: A Survey. CoRR abs/2304.00485 (2023) - [i51]Cheng Yang, Xumeng Gong, Chuan Shi, Philip S. Yu:
A Post-Training Framework for Improving Heterogeneous Graph Neural Networks. CoRR abs/2304.00698 (2023) - [i50]Bo Yan, Cheng Yang, Chuan Shi, Jiawei Liu, Xiaochen Wang:
Abnormal Event Detection via Hypergraph Contrastive Learning. CoRR abs/2304.01226 (2023) - [i49]Nian Liu, Xiao Wang, Hui Han, Chuan Shi:
Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural Network. CoRR abs/2304.12228 (2023) - [i48]Yue Yu, Xiao Wang, Mengmei Zhang, Nian Liu, Chuan Shi:
Provable Training for Graph Contrastive Learning. CoRR abs/2309.13944 (2023) - [i47]Cheng Yang, Deyu Bo, Jixi Liu, Yufei Peng, Boyu Chen, Haoran Dai, Ao Sun, Yue Yu, Yixin Xiao, Qi Zhang, Chunchen Wang, Yuxin Guo, Chuan Shi:
Data-centric Graph Learning: A Survey. CoRR abs/2310.04987 (2023) - [i46]Yang Liu, Deyu Bo, Chuan Shi:
Graph Condensation via Eigenbasis Matching. CoRR abs/2310.09202 (2023) - [i45]Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi:
Towards Graph Foundation Models: A Survey and Beyond. CoRR abs/2310.11829 (2023) - [i44]Chunjing Gan, Binbin Hu, Bo Huang, Tianyu Zhao, Yingru Lin, Wenliang Zhong, Zhiqiang Zhang, Jun Zhou, Chuan Shi:
Which Matters Most in Making Fund Investment Decisions? A Multi-granularity Graph Disentangled Learning Framework. CoRR abs/2311.13864 (2023) - [i43]Yibo Li, Xiao Wang, Hongrui Liu, Chuan Shi:
A Generalized Neural Diffusion Framework on Graphs. CoRR abs/2312.08616 (2023) - [i42]Tianrui Jia, Haoyang Li, Cheng Yang, Tao Tao, Chuan Shi:
Graph Invariant Learning with Subgraph Co-mixup for Out-Of-Distribution Generalization. CoRR abs/2312.10988 (2023) - 2022
- [b3]Chuan Shi, Xiao Wang, Philip S. Yu:
Heterogeneous Graph Representation Learning and Applications. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer 2022, ISBN 978-981-16-6165-5, pp. 1-318 - [j44]Jiawei Liu, Chuan Shi, Cheng Yang, Zhiyuan Lu, Philip S. Yu:
A survey on heterogeneous information network based recommender systems: Concepts, methods, applications and resources. AI Open 3: 40-57 (2022) - [j43]Tianchi Yang, Luhao Zhang, Cheng Yang, Chuan Shi, Maodi Hu, Tao Li, Dong Wang:
Hypergraph Clustering Network for Interaction Data. IEEE Data Eng. Bull. 45(4): 88-101 (2022) - [j42]Guanglin Niu, Bo Li, Yongfei Zhang, Yongpan Sheng, Chuan Shi, Jingyang Li, Shiliang Pu:
Joint semantics and data-driven path representation for knowledge graph reasoning. Neurocomputing 483: 249-261 (2022) - [j41]Jing Zhang, Qingyong Li, Yangli-ao Geng, Wen Wang, Wenju Sun, Chuan Shi, Zhengming Ding:
A zero-shot learning framework via cluster-prototype matching. Pattern Recognit. 124: 108469 (2022) - [j40]Yuyan Zheng, Chuan Shi, Xiaohuan Cao, Xiaoli Li, Bin Wu:
A Meta Path Based Method for Entity Set Expansion in Knowledge Graph. IEEE Trans. Big Data 8(3): 616-629 (2022) - [j39]Guojie Song, Chuan Shi, Yizhou Sun, Zhiyuan Liu:
Guest Editorial: Special Issue on Social Media Computing. IEEE Trans. Big Data 8(4): 953-954 (2022) - [j38]Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, Yanfang Ye:
Hyperbolic Graph Attention Network. IEEE Trans. Big Data 8(6): 1690-1701 (2022) - [j37]Yiding Zhang, Xiao Wang, Nian Liu, Chuan Shi:
Embedding Heterogeneous Information Network in Hyperbolic Spaces. ACM Trans. Knowl. Discov. Data 16(2): 35:1-35:23 (2022) - [j36]Chuan Shi, Yuanfu Lu, Linmei Hu, Zhiyuan Liu, Huadong Ma:
RHINE: Relation Structure-Aware Heterogeneous Information Network Embedding. IEEE Trans. Knowl. Data Eng. 34(1): 433-447 (2022) - [j35]Xiao Wang, Yuanfu Lu, Chuan Shi, Ruijia Wang, Peng Cui, Shuai Mou:
Dynamic Heterogeneous Information Network Embedding With Meta-Path Based Proximity. IEEE Trans. Knowl. Data Eng. 34(3): 1117-1132 (2022) - [c159]Deyu Bo, Binbin Hu, Xiao Wang, Zhiqiang Zhang, Chuan Shi, Jun Zhou:
Regularizing Graph Neural Networks via Consistency-Diversity Graph Augmentations. AAAI 2022: 3913-3921 - [c158]Mengmei Zhang, Xiao Wang, Meiqi Zhu, Chuan Shi, Zhiqiang Zhang, Jun Zhou:
Robust Heterogeneous Graph Neural Networks against Adversarial Attacks. AAAI 2022: 4363-4370 - [c157]Hui Han, Tianyu Zhao, Cheng Yang, Hongyi Zhang, Yaoqi Liu, Xiao Wang, Chuan Shi:
OpenHGNN: An Open Source Toolkit for Heterogeneous Graph Neural Network. CIKM 2022: 3993-3997 - [c156]Tianchi Yang, Luhao Zhang, Chuan Shi, Cheng Yang, Siyong Xu, Ruiyu Fang, Maodi Hu, Huaijun Liu, Tao Li, Dong Wang:
Gated Hypergraph Neural Network for Scene-Aware Recommendation. DASFAA (2) 2022: 199-215 - [c155]Luhao Zhang, Ruiyu Fang, Tianchi Yang, Maodi Hu, Tao Li, Chuan Shi, Dong Wang:
A Joint Framework for Explainable Recommendation with Knowledge Reasoning and Graph Representation. DASFAA (3) 2022: 351-363 - [c154]Yanru Hao, Tianchi Yang, Chuan Shi, Rui Wang, Ding Xiao:
An Effective Sentiment Analysis Model for Tobacco Consumption. ICCPR 2022: 496-502 - [c153]Shuyun Gu, Xiao Wang, Chuan Shi, Ding Xiao:
Self-supervised Graph Neural Networks for Multi-behavior Recommendation. IJCAI 2022: 2052-2058 - [c152]Yuanxin Zhuang, Lingjuan Lyu, Chuan Shi, Carl Yang, Lichao Sun:
Data-Free Adversarial Knowledge Distillation for Graph Neural Networks. IJCAI 2022: 2441-2447 - [c151]Shaohua Fan, Xiao Wang, Yanhu Mo, Chuan Shi, Jian Tang:
Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure. NeurIPS 2022 - [c150]Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, Jian Pei:
Revisiting Graph Contrastive Learning from the Perspective of Graph Spectrum. NeurIPS 2022 - [c149]Ruijia Wang, Xiao Wang, Chuan Shi, Le Song:
Uncovering the Structural Fairness in Graph Contrastive Learning. NeurIPS 2022 - [c148]Yiding Zhang, Chaozhuo Li, Xing Xie, Xiao Wang, Chuan Shi, Yuming Liu, Hao Sun, Liangjie Zhang, Weiwei Deng, Qi Zhang:
Geometric Disentangled Collaborative Filtering. SIGIR 2022: 80-90 - [c147]Tianchi Yang, Cheng Yang, Luhao Zhang, Chuan Shi, Maodi Hu, Huaijun Liu, Tao Li, Dong Wang:
Co-clustering Interactions via Attentive Hypergraph Neural Network. SIGIR 2022: 859-869 - [c146]Tianyu Zhao, Cheng Yang, Yibo Li, Quan Gan, Zhenyi Wang, Fengqi Liang, Huan Zhao, Yingxia Shao, Xiao Wang, Chuan Shi:
Space4HGNN: A Novel, Modularized and Reproducible Platform to Evaluate Heterogeneous Graph Neural Network. SIGIR 2022: 2776-2789 - [c145]Zhenyi Wang, Huan Zhao, Chuan Shi:
Profiling the Design Space for Graph Neural Networks based Collaborative Filtering. WSDM 2022: 1109-1119 - [c144]Cheng Yang, Chunchen Wang, Yuanfu Lu, Xumeng Gong, Chuan Shi, Wei Wang, Xu Zhang:
Few-shot Link Prediction in Dynamic Networks. WSDM 2022: 1245-1255 - [c143]Hongrui Liu, Binbin Hu, Xiao Wang, Chuan Shi, Zhiqiang Zhang, Jun Zhou:
Confidence May Cheat: Self-Training on Graph Neural Networks under Distribution Shift. WWW 2022: 1248-1258 - [c142]Yugang Ji, Guanyi Chu, Xiao Wang, Chuan Shi, Jianan Zhao, Junping Du:
Prohibited Item Detection via Risk Graph Structure Learning. WWW 2022: 1434-1443 - [c141]Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, Chuan Shi:
Compact Graph Structure Learning via Mutual Information Compression. WWW 2022: 1601-1610 - [i41]Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, Chuan Shi:
Compact Graph Structure Learning via Mutual Information Compression. CoRR abs/2201.05540 (2022) - [i40]Shaohua Fan, Xiao Wang, Chuan Shi, Kun Kuang, Nian Liu, Bai Wang:
Debiased Graph Neural Networks with Agnostic Label Selection Bias. CoRR abs/2201.07708 (2022) - [i39]Hongrui Liu, Binbin Hu, Xiao Wang, Chuan Shi, Zhiqiang Zhang, Jun Zhou:
Confidence May Cheat: Self-Training on Graph Neural Networks under Distribution Shift. CoRR abs/2201.11349 (2022) - [i38]Tianyu Zhao, Cheng Yang, Yibo Li, Quan Gan, Zhenyi Wang, Fengqi Liang, Huan Zhao, Yingxia Shao, Xiao Wang, Chuan Shi:
Space4HGNN: A Novel, Modularized and Reproducible Platform to Evaluate Heterogeneous Graph Neural Network. CoRR abs/2202.09177 (2022) - [i37]Qian Zhao, Shuo Yang, Binbin Hu, Zhiqiang Zhang, Yakun Wang, Yusong Chen, Jun Zhou, Chuan Shi:
An Effective Graph Learning based Approach for Temporal Link Prediction: The First Place of WSDM Cup 2022. CoRR abs/2203.01820 (2022) - [i36]Yuanxin Zhuang, Lingjuan Lyu, Chuan Shi, Carl Yang, Lichao Sun:
Data-Free Adversarial Knowledge Distillation for Graph Neural Networks. CoRR abs/2205.03811 (2022) - [i35]Binbin Hu, Zhiyang Hu, Zhiqiang Zhang, Jun Zhou, Chuan Shi:
KGNN: Distributed Framework for Graph Neural Knowledge Representation. CoRR abs/2205.08285 (2022) - [i34]Shaohua Fan, Xiao Wang, Yanhu Mo, Chuan Shi, Jian Tang:
Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure. CoRR abs/2209.14107 (2022) - [i33]Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, Jian Pei:
Revisiting Graph Contrastive Learning from the Perspective of Graph Spectrum. CoRR abs/2210.02330 (2022) - [i32]Ruijia Wang, Xiao Wang, Chuan Shi, Le Song:
Uncovering the Structural Fairness in Graph Contrastive Learning. CoRR abs/2210.03011 (2022) - [i31]Shaohua Fan, Shuyang Zhang, Xiao Wang, Chuan Shi:
Directed Acyclic Graph Structure Learning from Dynamic Graphs. CoRR abs/2211.17029 (2022) - [i30]Yining Wang, Xumeng Gong, Shaochuan Li, Bing Yang, YiWu Sun, Chuan Shi, Yangang Wang, Cheng Yang, Hui Li, Le Song:
xTrimoABFold: De novo Antibody Structure Prediction without MSA. CoRR abs/2212.00735 (2022) - [i29]Xumeng Gong, Cheng Yang, Chuan Shi:
MA-GCL: Model Augmentation Tricks for Graph Contrastive Learning. CoRR abs/2212.07035 (2022) - 2021
- [b2]Cheng Yang, Zhiyuan Liu, Cunchao Tu, Chuan Shi, Maosong Sun:
Network Embedding: Theories, Methods, and Applications. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers 2021, ISBN 978-3-031-00462-9, pp. 1-242 - [j34]Chuan Shi, Jiayu Ding, Xiaohuan Cao, Linmei Hu, Bin Wu, Xiaoli Li:
Entity set expansion in knowledge graph: a heterogeneous information network perspective. Frontiers Comput. Sci. 15(1): 151307 (2021) - [j33]Linmei Hu, Mengmei Zhang, Shaohua Li, Jinghan Shi, Chuan Shi, Cheng Yang, Zhiyuan Liu:
Text-Graph Enhanced Knowledge Graph Representation Learning. Frontiers Artif. Intell. 4: 697856 (2021) - [j32]Yugang Ji, Mingyang Yin, Hongxia Yang, Jingren Zhou, Vincent W. Zheng, Chuan Shi, Yuan Fang:
Accelerating Large-Scale Heterogeneous Interaction Graph Embedding Learning via Importance Sampling. ACM Trans. Knowl. Discov. Data 15(1): 10:1-10:23 (2021) - [j31]Chuan Shi, Xiaotian Han, Li Song, Xiao Wang, Senzhang Wang, Junping Du, Philip S. Yu:
Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks. IEEE Trans. Knowl. Data Eng. 33(4): 1413-1425 (2021) - [j30]Tianchi Yang, Linmei Hu, Chuan Shi, Houye Ji, Xiaoli Li, Liqiang Nie:
HGAT: Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification. ACM Trans. Inf. Syst. 39(3): 32:1-32:29 (2021) - [c140]Houye Ji, Junxiong Zhu, Xiao Wang, Chuan Shi, Bai Wang, Xiaoye Tan, Yanghua Li, Shaojian He:
Who You Would Like to Share With? A Study of Share Recommendation in Social E-commerce. AAAI 2021: 232-239 - [c139]Deyu Bo, Xiao Wang, Chuan Shi, Huawei Shen:
Beyond Low-frequency Information in Graph Convolutional Networks. AAAI 2021: 3950-3957 - [c138]Yi Li, Yilun Jin, Guojie Song, Zihao Zhu, Chuan Shi, Yiming Wang:
GraphMSE: Efficient Meta-path Selection in Semantically Aligned Feature Space for Graph Neural Networks. AAAI 2021: 4206-4214 - [c137]Yuanfu Lu, Xunqiang Jiang, Yuan Fang, Chuan Shi:
Learning to Pre-train Graph Neural Networks. AAAI 2021: 4276-4284 - [c136]Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, Yanfang Ye:
Heterogeneous Graph Structure Learning for Graph Neural Networks. AAAI 2021: 4697-4705 - [c135]Linmei Hu, Tianchi Yang, Luhao Zhang, Wanjun Zhong, Duyu Tang, Chuan Shi, Nan Duan, Ming Zhou:
Compare to The Knowledge: Graph Neural Fake News Detection with External Knowledge. ACL/IJCNLP (1) 2021: 754-763 - [c134]Xunqiang Jiang, Yuanfu Lu, Yuan Fang, Chuan Shi:
Contrastive Pre-Training of GNNs on Heterogeneous Graphs. CIKM 2021: 803-812 - [c133]Hao Wang, Cheng Yang, Chuan Shi:
Neural Information Diffusion Prediction with Topic-Aware Attention Network. CIKM 2021: 1899-1908 - [c132]Siyong Xu, Cheng Yang, Chuan Shi, Yuan Fang, Yuxin Guo, Tianchi Yang, Luhao Zhang, Maodi Hu:
Topic-aware Heterogeneous Graph Neural Network for Link Prediction. CIKM 2021: 2261-2270 - [c131]Yugang Ji, Chuan Shi, Xiao Wang:
Prohibited Item Detection on Heterogeneous Risk Graphs. CIKM 2021: 3867-3877 - [c130]Wenrui Wu, Tao Tao, Jing Shang, Ding Xiao, Chuan Shi, Yong Jiang:
Sequence Attention for Multivariate Time Series Forecasting. DSC 2021: 83-90 - [c129]Hsi-Wen Chen, Hong-Han Shuai, De-Nian Yang, Wang-Chien Lee, Chuan Shi, Philip S. Yu, Ming-Syan Chen:
Structure-Aware Parameter-Free Group Query via Heterogeneous Information Network Transformer. ICDE 2021: 2075-2080 - [c128]Houye Ji, Cheng Yang, Chuan Shi, Pan Li:
Heterogeneous Graph Neural Network with Distance Encoding. ICDM 2021: 1138-1143 - [c127]Guanyi Chu, Xiao Wang, Chuan Shi, Xunqiang Jiang:
CuCo: Graph Representation with Curriculum Contrastive Learning. IJCAI 2021: 2300-2306 - [c126]Xunqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, Hui Wang:
Pre-training on Large-Scale Heterogeneous Graph. KDD 2021: 756-766 - [c125]Xiao Wang, Nian Liu, Hui Han, Chuan Shi:
Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning. KDD 2021: 1726-1736 - [c124]Wei Jin, Yao Ma, Yiqi Wang, Xiaorui Liu, Jiliang Tang, Yukuo Cen, Jiezhong Qiu, Jie Tang, Chuan Shi, Yanfang Ye, Jiawei Zhang, Philip S. Yu:
Graph Representation Learning: Foundations, Methods, Applications and Systems. KDD 2021: 4044-4045 - [c123]Chuan Shi, Yuan Fang, Yanfang Ye, Jiawei Zhang:
The 4th Workshop on Heterogeneous Information Network Analysis and Applications (HENA 2021). KDD 2021: 4157-4158 - [c122]Xiao Wang, Hongrui Liu, Chuan Shi, Cheng Yang:
Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration. NeurIPS 2021: 23768-23779 - [c121]Tianchi Yang, Linmei Hu, Luhao Zhang, Chuan Shi, Cheng Yang, Nan Duan, Ming Zhou:
Tree-Capsule: Tree-Structured Capsule Network for Improving Relation Extraction. PAKDD (3) 2021: 325-337 - [c120]Yuanxin Zhuang, Chuan Shi, Cheng Yang, Fuzhen Zhuang, Yangqiu Song:
Semantic-Specific Hierarchical Alignment Network for Heterogeneous Graph Adaptation. ECML/PKDD (2) 2021: 335-350 - [c119]Yugang Ji, Tianrui Jia, Yuan Fang, Chuan Shi:
Dynamic Heterogeneous Graph Embedding via Heterogeneous Hawkes Process. ECML/PKDD (1) 2021: 388-403 - [c118]Chen Li, Linmei Hu, Chuan Shi, Guojie Song, Yuanfu Lu:
Sequence-aware Heterogeneous Graph Neural Collaborative Filtering. SDM 2021: 64-72 - [c117]Chen Li, Yuanfu Lu, Wei Wang, Chuan Shi, Ruobing Xie, Haili Yang, Cheng Yang, Xu Zhang, Leyu Lin:
Package Recommendation with Intra- and Inter-Package Attention Networks. SIGIR 2021: 595-604 - [c116]Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, Xing Xie:
Graph Structure Estimation Neural Networks. WWW 2021: 342-353 - [c115]Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, Peng Cui:
Interpreting and Unifying Graph Neural Networks with An Optimization Framework. WWW 2021: 1215-1226 - [c114]Cheng Yang, Jiawei Liu, Chuan Shi:
Extract the Knowledge of Graph Neural Networks and Go Beyond it: An Effective Knowledge Distillation Framework. WWW 2021: 1227-1237 - [c113]Yiding Zhang, Xiao Wang, Chuan Shi, Nian Liu, Guojie Song:
Lorentzian Graph Convolutional Networks. WWW 2021: 1249-1261 - [c112]Houye Ji, Junxiong Zhu, Chuan Shi, Xiao Wang, Bai Wang, Chaoyu Zhang, Zixuan Zhu, Feng Zhang, Yanghua Li:
Large-scale Comb-K Recommendation. WWW 2021: 2512-2523 - [i28]Deyu Bo, Xiao Wang, Chuan Shi, Huawei Shen:
Beyond Low-frequency Information in Graph Convolutional Networks. CoRR abs/2101.00797 (2021) - [i27]Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, Peng Cui:
Interpreting and Unifying Graph Neural Networks with An Optimization Framework. CoRR abs/2101.11859 (2021) - [i26]Cheng Yang, Jiawei Liu, Chuan Shi:
Extract the Knowledge of Graph Neural Networks and Go Beyond it: An Effective Knowledge Distillation Framework. CoRR abs/2103.02885 (2021) - [i25]Yiding Zhang, Xiao Wang, Chuan Shi, Nian Liu, Guojie Song:
Lorentzian Graph Convolutional Networks. CoRR abs/2104.07477 (2021) - [i24]Xiao Wang, Nian Liu, Hui Han, Chuan Shi:
Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning. CoRR abs/2105.09111 (2021) - [i23]Xiao Wang, Hongrui Liu, Chuan Shi, Cheng Yang:
Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration. CoRR abs/2109.14285 (2021) - [i22]Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, Bai Wang:
Generalizing Graph Neural Networks on Out-Of-Distribution Graphs. CoRR abs/2111.10657 (2021) - 2020
- [j29]Linmei Hu, Chen Li, Chuan Shi, Cheng Yang, Chao Shao:
Graph neural news recommendation with long-term and short-term interest modeling. Inf. Process. Manag. 57(2): 102142 (2020) - [j28]Yugang Ji, Chuan Shi, Yuan Fang, Xiangnan Kong, Mingyang Yin:
Semi-supervised Co-Clustering on Attributed Heterogeneous Information Networks. Inf. Process. Manag. 57(6): 102338 (2020) - [j27]Linmei Hu, Jiayu Ding, Chuan Shi, Chao Shao, Shaohua Li:
Graph neural entity disambiguation. Knowl. Based Syst. 195: 105620 (2020) - [j26]Ding Xiao, Li Song, Ruijia Wang, Xiaotian Han, Yanan Cai, Chuan Shi:
Embedding geographic information for anomalous trajectory detection. World Wide Web 23(5): 2789-2809 (2020) - [c111]Yilun Jin, Guojie Song, Chuan Shi:
GraLSP: Graph Neural Networks with Local Structural Patterns. AAAI 2020: 4361-4368 - [c110]Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, Xueqi Cheng:
FlowScope: Spotting Money Laundering Based on Graphs. AAAI 2020: 4731-4738 - [c109]Xiao Wang, Ruijia Wang, Chuan Shi, Guojie Song, Qingyong Li:
Multi-Component Graph Convolutional Collaborative Filtering. AAAI 2020: 6267-6274 - [c108]Linmei Hu, Siyong Xu, Chen Li, Cheng Yang, Chuan Shi, Nan Duan, Xing Xie, Ming Zhou:
Graph Neural News Recommendation with Unsupervised Preference Disentanglement. ACL 2020: 4255-4264 - [c107]Shuang Mo, Yifei Wang, Ding Xiao, Wenrui Wu, Shaohua Fan, Chuan Shi:
Encrypted Traffic Classification Using Graph Convolutional Networks. ADMA 2020: 207-219 - [c106]Mingjun Ma, Bo Peng, Ding Xiao, Yugang Ji, Chuan Shi:
STCNet: Spatial-Temporal Convolution Network for Traffic Speed Prediction. ADMA 2020: 315-323 - [c105]Jing Zhang, Yangli-ao Geng, Qingyong Li, Chuan Shi:
More Than One: A Cluster-Prototype Matching Framework for Zero-Shot Learning. CIKM 2020: 1803-1812 - [c104]Zhiqiang Zhang, Jun Zhou, Chuan Shi:
EasyGML: A Fully-functional and Easy-to-use Platform for Industrial Graph Machine Learning. CIKM 2020: 3485-3488 - [c103]Yiming Zhang, Yujie Fan, Shifu Hou, Yanfang Ye, Xusheng Xiao, Pan Li, Chuan Shi, Liang Zhao, Shouhuai Xu:
Cyber-guided Deep Neural Network for Malicious Repository Detection in GitHub. ICKG 2020: 458-465 - [c102]Yujie Fan, Yanfang Ye, Qian Peng, Jianfei Zhang, Yiming Zhang, Xusheng Xiao, Chuan Shi, Qi Xiong, Fudong Shao, Liang Zhao:
Metagraph Aggregated Heterogeneous Graph Neural Network for Illicit Traded Product Identification in Underground Market. ICDM 2020: 132-141 - [c101]Mengmei Zhang, Linmei Hu, Chuan Shi, Xiao Wang:
Adversarial Label-Flipping Attack and Defense for Graph Neural Networks. ICDM 2020: 791-800 - [c100]Junshan Wang, Ziyao Li, Qingqing Long, Weiyu Zhang, Guojie Song, Chuan Shi:
Learning Node Representations from Noisy Graph Structures. ICDM 2020: 1310-1315 - [c99]Jianan Zhao, Xiao Wang, Chuan Shi, Zekuan Liu, Yanfang Ye:
Network Schema Preserving Heterogeneous Information Network Embedding. IJCAI 2020: 1366-1372 - [c98]Xiao Wang, Shaohua Fan, Kun Kuang, Chuan Shi, Jiawei Liu, Bai Wang:
Decorrelated Clustering with Data Selection Bias. IJCAI 2020: 2177-2183 - [c97]Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei:
AM-GCN: Adaptive Multi-channel Graph Convolutional Networks. KDD 2020: 1243-1253 - [c96]Yuanfu Lu, Yuan Fang, Chuan Shi:
Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation. KDD 2020: 1563-1573 - [c95]Yuanfu Lu, Ruobing Xie, Chuan Shi, Yuan Fang, Wei Wang, Xu Zhang, Leyu Lin:
Social Influence Attentive Neural Network for Friend-Enhanced Recommendation. ECML/PKDD (4) 2020: 3-18 - [c94]Yugang Ji, Mingyang Yin, Yuan Fang, Hongxia Yang, Xiangwei Wang, Tianrui Jia, Chuan Shi:
Temporal Heterogeneous Interaction Graph Embedding for Next-Item Recommendation. ECML/PKDD (3) 2020: 314-329 - [c93]Xunqiang Jiang, Binbin Hu, Yuan Fang, Chuan Shi:
Multiplex Memory Network for Collaborative Filtering. SDM 2020: 91-99 - [c92]Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, Peng Cui:
Structural Deep Clustering Network. WWW 2020: 1400-1410 - [c91]Shaohua Fan, Xiao Wang, Chuan Shi, Emiao Lu, Ken Lin, Bai Wang:
One2Multi Graph Autoencoder for Multi-view Graph Clustering. WWW 2020: 3070-3076 - [i21]Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, Peng Cui:
Structural Deep Clustering Network. CoRR abs/2002.01633 (2020) - [i20]Xiao Wang, Shaohua Fan, Kun Kuang, Chuan Shi, Jiawei Liu, Bai Wang:
Decorrelated Clustering with Data Selection Bias. CoRR abs/2006.15874 (2020) - [i19]Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei:
AM-GCN: Adaptive Multi-channel Graph Convolutional Networks. CoRR abs/2007.02265 (2020) - [i18]Jinghan Shi, Houye Ji, Chuan Shi, Xiao Wang, Zhiqiang Zhang, Jun Zhou:
Heterogeneous Graph Neural Network for Recommendation. CoRR abs/2009.00799 (2020) - [i17]Guanglin Niu, Bo Li, Yongfei Zhang, Yongpan Sheng, Chuan Shi, Jingyang Li, Shiliang Pu:
Joint Semantics and Data-Driven Path Representation for Knowledge Graph Inference. CoRR abs/2010.02602 (2020) - [i16]Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, Philip S. Yu:
A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources. CoRR abs/2011.14867 (2020) - [i15]Junshan Wang, Ziyao Li, Qingqing Long, Weiyu Zhang, Guojie Song, Chuan Shi:
Learning Node Representations from Noisy Graph Structures. CoRR abs/2012.02434 (2020)
2010 – 2019
- 2019
- [j25]Xiaoji Chen, Chuan Shi, Aimin Zhou, Bin Wu, Pengcheng Sheng:
On Balancing Neighborhood and Global Replacement Strategies in MOEA/D. IEEE Access 7: 45274-45290 (2019) - [j24]Jianwei Liu, Chuan Shi:
Optimization of Network-Based Caching and Forwarding Using Mobile Edge Computing. IEEE Access 7: 181855-181866 (2019) - [j23]Chuan Shi, Binbin Hu, Wayne Xin Zhao, Philip S. Yu:
Heterogeneous Information Network Embedding for Recommendation. IEEE Trans. Knowl. Data Eng. 31(2): 357-370 (2019) - [j22]Chuan Shi, Zhiqiang Zhang, Yugang Ji, Weipeng Wang, Philip S. Yu, Zhiping Shi:
SemRec: a personalized semantic recommendation method based on weighted heterogeneous information networks. World Wide Web 22(1): 153-184 (2019) - [c90]Binbin Hu, Zhiqiang Zhang, Chuan Shi, Jun Zhou, Xiaolong Li, Yuan Qi:
Cash-Out User Detection Based on Attributed Heterogeneous Information Network with a Hierarchical Attention Mechanism. AAAI 2019: 946-953 - [c89]Yuanfu Lu, Chuan Shi, Linmei Hu, Zhiyuan Liu:
Relation Structure-Aware Heterogeneous Information Network Embedding. AAAI 2019: 4456-4463 - [c88]Xiao Wang, Yiding Zhang, Chuan Shi:
Hyperbolic Heterogeneous Information Network Embedding. AAAI 2019: 5337-5344 - [c87]Yunyao Cheng, Bin Wu, Li Song, Chuan Shi:
Spatial-Temporal Recurrent Neural Network for Anomalous Trajectories Detection. ADMA 2019: 565-578 - [c86]Jianan Zhao, Ding Xiao, Linmei Hu, Chuan Shi:
Coupled Semi-supervised Clustering: Exploring Attribute Correlations in Heterogeneous Information Networks. APWeb/WAIM (1) 2019: 95-109 - [c85]Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, Yanfang Ye:
Temporal Network Embedding with Micro- and Macro-dynamics. CIKM 2019: 469-478 - [c84]Yiming Zhang, Yujie Fan, Yanfang Ye, Liang Zhao, Chuan Shi:
Key Player Identification in Underground Forums over Attributed Heterogeneous Information Network Embedding Framework. CIKM 2019: 549-558 - [c83]Yuyan Zheng, Chuan Shi, Xiangnan Kong, Yanfang Ye:
Author Set Identification via Quasi-Clique Discovery. CIKM 2019: 771-780 - [c82]Chuan Shi, Philip S. Yu:
Recent Developments of Deep Heterogeneous Information Network Analysis. CIKM 2019: 2973-2974 - [c81]Chuan Shi, Yanfang Ye, Jiawei Zhang:
HENA 2019: The 3rd Workshop of Heterogeneous Information Network Analysis and Applications. CIKM 2019: 2991-2992 - [c80]Jiayu Ding, Xiaohuan Cao, Linmei Hu, Chuan Shi:
Meta-Path based Text Feature Enrichment Using Knowledge Graph. DSC 2019: 649-655 - [c79]Linmei Hu, Luhao Zhang, Chuan Shi, Liqiang Nie, Weili Guan, Cheng Yang:
Improving Distantly-Supervised Relation Extraction with Joint Label Embedding. EMNLP/IJCNLP (1) 2019: 3819-3827 - [c78]Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, Xiaoli Li:
Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification. EMNLP/IJCNLP (1) 2019: 4820-4829 - [c77]Xiaojun Yang, Zhongfu Xu, Chuan Shi, Hao Lei, Changwei Yan:
Credibility Assessment of Simulation Models Using Hesitant Cloud Linguistic Term Sets. ICNC-FSKD 2019: 856-863 - [c76]Yujie Fan, Yiming Zhang, Shifu Hou, Lingwei Chen, Yanfang Ye, Chuan Shi, Liang Zhao, Shouhuai Xu:
iDev: Enhancing Social Coding Security by Cross-platform User Identification Between GitHub and Stack Overflow. IJCAI 2019: 2272-2278 - [c75]Luhao Zhang, Linmei Hu, Chuan Shi:
Incorporating Instance Correlations in Distantly Supervised Relation Extraction. JIST 2019: 177-191 - [c74]Binbin Hu, Yuan Fang, Chuan Shi:
Adversarial Learning on Heterogeneous Information Networks. KDD 2019: 120-129 - [c73]Shaohua Fan, Junxiong Zhu, Xiaotian Han, Chuan Shi, Linmei Hu, Biyu Ma, Yongliang Li:
Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation. KDD 2019: 2478-2486 - [c72]Dedong Li, Aimin Zhou, Chuan Shi:
NEAR: Normalized Network Embedding with Autoencoder for Top-K Item Recommendation. PAKDD (3) 2019: 15-26 - [c71]Yugang Ji, Chuan Shi, Fuzhen Zhuang, Philip S. Yu:
Integrating Topic Model and Heterogeneous Information Network for Aspect Mining with Rating Bias. PAKDD (1) 2019: 160-171 - [c70]Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, Philip S. Yu:
Heterogeneous Graph Attention Network. WWW 2019: 2022-2032 - [c69]Yiming Zhang, Yujie Fan, Wei Song, Shifu Hou, Yanfang Ye, Xin Li, Liang Zhao, Chuan Shi, Jiabin Wang, Qi Xiong:
Your Style Your Identity: Leveraging Writing and Photography Styles for Drug Trafficker Identification in Darknet Markets over Attributed Heterogeneous Information Network. WWW 2019: 3448-3454 - [i14]Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, Philip S. Yu, Yanfang Ye:
Heterogeneous Graph Attention Network. CoRR abs/1903.07293 (2019) - [i13]Yuanfu Lu, Chuan Shi, Linmei Hu, Zhiyuan Liu:
Relation Structure-Aware Heterogeneous Information Network Embedding. CoRR abs/1905.08027 (2019) - [i12]Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, Yanfang Ye:
Temporal Network Embedding with Micro- and Macro-dynamics. CoRR abs/1909.04246 (2019) - [i11]Chuan Shi, Xiaotian Han, Li Song, Xiao Wang, Senzhang Wang, Junping Du, Philip S. Yu:
Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks. CoRR abs/1909.06627 (2019) - [i10]Linmei Hu, Chen Li, Chuan Shi, Cheng Yang, Chao Shao:
Graph Neural News Recommendation with Long-term and Short-term Interest Modeling. CoRR abs/1910.14025 (2019) - [i9]Yilun Jin, Guojie Song, Chuan Shi:
GraLSP: Graph Neural Networks with Local Structural Patterns. CoRR abs/1911.07675 (2019) - [i8]Xiao Wang, Ruijia Wang, Chuan Shi, Guojie Song, Qingyong Li:
Multi-Component Graph Convolutional Collaborative Filtering. CoRR abs/1911.10699 (2019) - [i7]Yiding Zhang, Xiao Wang, Xunqiang Jiang, Chuan Shi, Yanfang Ye:
Hyperbolic Graph Attention Network. CoRR abs/1912.03046 (2019) - 2018
- [j21]Ding Xiao, Yugang Ji, Yitong Li, Fuzhen Zhuang, Chuan Shi:
Coupled matrix factorization and topic modeling for aspect mining. Inf. Process. Manag. 54(6): 861-873 (2018) - [j20]Fuzhen Zhuang, Jing Zheng, Jingwu Chen, Xiangliang Zhang, Chuan Shi, Qing He:
Transfer collaborative filtering from multiple sources via consensus regularization. Neural Networks 108: 287-295 (2018) - [j19]Chuan Shi, Jian Liu, Yiding Zhang, Binbin Hu, Shenghua Liu, Philip S. Yu:
MFPR: A Personalized Ranking Recommendation with Multiple Feedback. ACM Trans. Soc. Comput. 1(2): 7:1-7:22 (2018) - [c68]Li Song, Ruijia Wang, Ding Xiao, Xiaotian Han, Yanan Cai, Chuan Shi:
Anomalous Trajectory Detection Using Recurrent Neural Network. ADMA 2018: 263-277 - [c67]Xin Wan, Chen Li, Ruijia Wang, Ding Xiao, Chuan Shi:
Abstractive Document Summarization via Bidirectional Decoder. ADMA 2018: 364-377 - [c66]Menghao Zhang, Binbin Hu, Chuan Shi, Bin Wu, Bai Wang:
Matrix Factorization Meets Social Network Embedding for Rating Prediction. APWeb/WAIM (1) 2018: 121-129 - [c65]Xiaotian Han, Chuan Shi, Lei Zheng, Philip S. Yu, Jianxin Li, Yuanfu Lu:
Representation Learning with Depth and Breadth for Recommendation Using Multi-view Data. APWeb/WAIM (1) 2018: 181-188 - [c64]Xiaoji Chen, Chuan Shi, Aimin Zhou, Siyong Xu, Bin Wu:
A Hybrid Replacement Strategy for MOEA/D. BIC-TA (1) 2018: 246-262 - [c63]Yang Xiao, Ding Xiao, Binbin Hu, Chuan Shi:
ANE: Network Embedding via Adversarial Autoencoders. BigComp 2018: 66-73 - [c62]Shaohua Fan, Chuan Shi, Xiao Wang:
Abnormal Event Detection via Heterogeneous Information Network Embedding. CIKM 2018: 1483-1486 - [c61]Binbin Hu, Chuan Shi, Wayne Xin Zhao, Tianchi Yang:
Local and Global Information Fusion for Top-N Recommendation in Heterogeneous Information Network. CIKM 2018: 1683-1686 - [c60]Michael D'Antonio, Chuan Shi, Bin Wu, Alireza Khaligh:
Design and Optimization of a Solar Power Conversion System for Space Applications. IAS 2018: 1-8 - [c59]Pudi Chen, Shenghua Liu, Chuan Shi, Bryan Hooi, Bai Wang, Xueqi Cheng:
NeuCast: Seasonal Neural Forecast of Power Grid Time Series. IJCAI 2018: 3315-3321 - [c58]Xiaotian Han, Chuan Shi, Senzhang Wang, Philip S. Yu, Li Song:
Aspect-Level Deep Collaborative Filtering via Heterogeneous Information Networks. IJCAI 2018: 3393-3399 - [c57]Chuan Shi, Yang Zhang, Lihuang Wang:
The Design and Research on a Target Tracking Arithmetic Under Complex Background. ISCID (1) 2018: 225-228 - [c56]Binbin Hu, Chuan Shi, Wayne Xin Zhao, Philip S. Yu:
Leveraging Meta-path based Context for Top- N Recommendation with A Neural Co-Attention Model. KDD 2018: 1531-1540 - [c55]Xiaohuan Cao, Chuan Shi, Yuyan Zheng, Jiayu Ding, Xiaoli Li, Bin Wu:
A Heterogeneous Information Network Method for Entity Set Expansion in Knowledge Graph. PAKDD (2) 2018: 288-299 - [c54]Houye Ji, Chuan Shi, Bai Wang:
Attention Based Meta Path Fusion for Heterogeneous Information Network Embedding. PRICAI (1) 2018: 348-360 - 2017
- [b1]Chuan Shi, Philip S. Yu:
Heterogeneous Information Network Analysis and Applications. Data Analytics, Springer 2017, ISBN 978-3-319-56211-7, pp. 1-227 - [j18]Jing Zheng, Jian Liu, Chuan Shi, Fuzhen Zhuang, Jingzhi Li, Bin Wu:
Recommendation in heterogeneous information network via dual similarity regularization. Int. J. Data Sci. Anal. 3(1): 35-48 (2017) - [j17]Xiaohuan Cao, Yuyan Zheng, Chuan Shi, Jingzhi Li, Bin Wu:
Meta-path-based link prediction in schema-rich heterogeneous information network. Int. J. Data Sci. Anal. 3(4): 285-296 (2017) - [j16]Fuzhen Zhuang, Zhiqiang Zhang, Mingda Qian, Chuan Shi, Xing Xie, Qing He:
Representation learning via Dual-Autoencoder for recommendation. Neural Networks 90: 83-89 (2017) - [j15]Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, Philip S. Yu:
A Survey of Heterogeneous Information Network Analysis. IEEE Trans. Knowl. Data Eng. 29(1): 17-37 (2017) - [j14]Chuan Shi, Yichao Tang, Alireza Khaligh:
A Single-Phase Integrated Onboard Battery Charger Using Propulsion System for Plug-in Electric Vehicles. IEEE Trans. Veh. Technol. 66(12): 10899-10910 (2017) - [c53]Xiaoji Chen, Chuan Shi, Aimin Zhou, Bin Wu, Zixing Cai:
A decomposition based multiobjective evolutionary algorithm with semi-supervised classification. CEC 2017: 797-804 - [c52]Jing Zheng, Fuzhen Zhuang, Chuan Shi:
Local Ensemble across Multiple Sources for Collaborative Filtering. CIKM 2017: 2431-2434 - [c51]Haibo Chen, Jianfei Zhao, Xiaoji Chen, Ding Xiao, Chuan Shi:
Visual analysis of large heterogeneous network through interactive centrality based sampling. ICNSC 2017: 378-383 - [c50]Binbin Hu, Chuan Shi, Jian Liu:
Playlist Recommendation Based on Reinforcement Learning. IFIP TC12 ICIS 2017: 172-182 - [c49]Yang Zhang, Chuan Shi, Huanyao Dai:
Design of an Image-Jamming Signal Detection System. ISCID (1) 2017: 197-200 - [c48]Jian Liu, Chuan Shi, Binbin Hu, Shenghua Liu, Philip S. Yu:
Personalized Ranking Recommendation via Integrating Multiple Feedbacks. PAKDD (2) 2017: 131-143 - [c47]Longfei Shi, Bin Wu, Jing Zheng, Chuan Shi, Mengxin Li:
DSBPR: Dual Similarity Bayesian Personalized Ranking. PAKDD (1) 2017: 266-277 - [c46]Yuyan Zheng, Chuan Shi, Xiaohuan Cao, Xiaoli Li, Bin Wu:
Entity Set Expansion with Meta Path in Knowledge Graph. PAKDD (1) 2017: 317-329 - [c45]Menghao Zhang, Binbin Hu, Chuan Shi, Bai Wang:
Local Low-Rank Matrix Approximation with Preference Selection of Anchor Points. WWW (Companion Volume) 2017: 1395-1403 - [i6]Chuan Shi, Binbin Hu, Wayne Xin Zhao, Philip S. Yu:
Heterogeneous Information Network Embedding for Recommendation. CoRR abs/1711.10730 (2017) - 2016
- [j13]Chuan Shi, Stanley B. Gershwin:
Part sojourn time distribution in a two-machine line. Eur. J. Oper. Res. 248(1): 146-158 (2016) - [j12]Chuan Shi, Yitong Li, Philip S. Yu, Bin Wu:
Constrained-meta-path-based ranking in heterogeneous information network. Knowl. Inf. Syst. 49(2): 719-747 (2016) - [j11]Chuan Shi, Jian Liu, Fuzhen Zhuang, Philip S. Yu, Bin Wu:
Integrating heterogeneous information via flexible regularization framework for recommendation. Knowl. Inf. Syst. 49(3): 835-859 (2016) - [c44]Chuan Shi, Bowei He, Menghao Zhang, Fuzhen Zhuang, Philip S. Yu, Naiwang Guo:
Expenditure aware rating prediction for recommendation. IEEE BigData 2016: 1018-1025 - [c43]Qiaolian Liu, Jianfei Zhao, Naiwang Guo, Ding Xiao, Chuan Shi:
High-Dimensional Data Visualization Based on User Knowledge. DMBD 2016: 321-329 - [c42]Yang Zhang, Chuan Shi, Huanyao Dai:
Design for Hardware In-the-Loop Real-Time Simulation Test of Combined Seeker. ISCID (1) 2016: 74-77 - [c41]Chuan Shi, Yang Zhang, Rongmao He:
Design and Implementation of a P2P Resource Sharing System Based on Metadata Catalog. ISCID (1) 2016: 78-81 - [c40]Xiaohuan Cao, Yuyan Zheng, Chuan Shi, Jingzhi Li, Bin Wu:
Link Prediction in Schema-Rich Heterogeneous Information Network. PAKDD (1) 2016: 449-460 - [c39]Jing Zheng, Jian Liu, Chuan Shi, Fuzhen Zhuang, Jingzhi Li, Bin Wu:
Dual Similarity Regularization for Recommendation. PAKDD (2) 2016: 542-554 - [c38]Yitong Li, Chuan Shi, Huidong Zhao, Fuzhen Zhuang, Bin Wu:
Aspect Mining with Rating Bias. ECML/PKDD (2) 2016: 458-474 - [c37]Jiawei Hu, Zhiqiang Zhang, Jian Liu, Chuan Shi, Philip S. Yu, Bai Wang:
RecExp: A Semantic Recommender System with Explanation Based on Heterogeneous Information Network. RecSys 2016: 401-402 - [i5]Chuan Shi, Bowei He, Menghao Zhang, Fuzhen Zhuang, Philip S. Yu:
Expenditure Aware Rating Prediction for Recommendation. CoRR abs/1610.05464 (2016) - 2015
- [c36]Chuan Shi, Zhiqiang Zhang, Ping Luo, Philip S. Yu, Yading Yue, Bin Wu:
Semantic Path based Personalized Recommendation on Weighted Heterogeneous Information Networks. CIKM 2015: 453-462 - [c35]Xiaoming Li, Bin Wu, Qian Guo, Xuelin Zeng, Chuan Shi:
Dynamic Community Detection Algorithm Based on Incremental Identification. ICDM Workshops 2015: 900-907 - [i4]Chuan Shi, Jian Liu, Fuzhen Zhuang, Philip S. Yu, Bin Wu:
Integrating Heterogeneous Information via Flexible Regularization Framework for Recommendation. CoRR abs/1511.03759 (2015) - [i3]Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, Philip S. Yu:
A Survey of Heterogeneous Information Network Analysis. CoRR abs/1511.04854 (2015) - 2014
- [j10]Chuan Shi, Stanley B. Gershwin:
Improvement of the evaluation of closed-loop production systems with unreliable machines and finite buffers. Comput. Ind. Eng. 75: 239-256 (2014) - [j9]Chuan Shi, Philip S. Yu, Zhenyu Yan, Yue Huang, Bai Wang:
Comparison and Selection of objective Functions in multiobjective Community Detection. Comput. Intell. 30(3): 562-582 (2014) - [j8]Chuan Shi, Xiangnan Kong, Di Fu, Philip S. Yu, Bin Wu:
Multi-Label Classification Based on Multi-Objective Optimization. ACM Trans. Intell. Syst. Technol. 5(2): 35:1-35:22 (2014) - [j7]Chuan Shi, Xiangnan Kong, Yue Huang, Philip S. Yu, Bin Wu:
HeteSim: A General Framework for Relevance Measure in Heterogeneous Networks. IEEE Trans. Knowl. Data Eng. 26(10): 2479-2492 (2014) - [c34]Xiaofeng Meng, Chuan Shi, Yitong Li, Lei Zhang, Bin Wu:
Relevance Measure in Large-Scale Heterogeneous Networks. APWeb 2014: 636-643 - [c33]Chuanyang Li, Xiuqin Lin, Bin Wu, Chuan Shi:
Location inference using microblog text and friendships. ASONAM 2014: 778-784 - [c32]Huidong Zhao, Bin Wu, Haoyu Wang, Chuan Shi:
Sentiment analysis based on transfer learning for Chinese ancient literature. BESC 2014: 68-74 - [c31]Chuan Shi, Ran Wang, Yitong Li, Philip S. Yu, Bin Wu:
Ranking-based Clustering on General Heterogeneous Information Networks by Network Projection. CIKM 2014: 699-708 - [c30]Huidong Zhao, Gang Liu, Chuan Shi, Bin Wu:
A Retweet Number Prediction Model Based on Followers' Retweet Intention and Influence. ICDM Workshops 2014: 952-959 - [c29]Fanglin Li, Bin Wu, Liutong Xu, Chuan Shi, Jing Shi:
A Fast Distributed Stochastic Gradient Descent Algorithm for Matrix Factorization. BigMine 2014: 77-87 - [c28]Dongyu Wei, Xin Pan, Chuan Shi, Yueguo Chen:
A Novel Index Structure for Multi-key Search. WAIM 2014: 431-434 - [c27]Yitong Li, Chuan Shi, Philip S. Yu, Qing Chen:
HRank: A Path Based Ranking Method in Heterogeneous Information Network. WAIM 2014: 553-565 - [c26]Gang Liu, Chuan Shi, Qing Chen, Bin Wu, Jiayin Qi:
A Two-Phase Model for Retweet Number Prediction. WAIM 2014: 781-792 - [i2]Yitong Li, Chuan Shi, Philip S. Yu, Qing Chen:
HRank: A Path based Ranking Framework in Heterogeneous Information Network. CoRR abs/1403.7315 (2014) - 2013
- [j6]Chuan Shi, Yanan Cai, Di Fu, Yuxiao Dong, Bin Wu:
A link clustering based overlapping community detection algorithm. Data Knowl. Eng. 87: 394-404 (2013) - [c25]Jingfei Du, Jianyang Lai, Chuan Shi:
Multi-Objective Optimization for Overlapping Community Detection. ADMA (2) 2013: 489-500 - [c24]Chuan Shi, Stanley B. Gershwin:
The Additive Property in Long Line Optimization. MIM 2013: 754-759 - [c23]Ran Wang, Chuan Shi, Philip S. Yu, Bin Wu:
Integrating Clustering and Ranking on Hybrid Heterogeneous Information Network. PAKDD (1) 2013: 583-594 - [i1]Chuan Shi, Xiangnan Kong, Yue Huang, Philip S. Yu, Bin Wu:
HeteSim: A General Framework for Relevance Measure in Heterogeneous Networks. CoRR abs/1309.7393 (2013) - 2012
- [j5]Chuan Shi, Zhenyu Yan, Yanan Cai, Bin Wu:
Multi-objective community detection in complex networks. Appl. Soft Comput. 12(2): 850-859 (2012) - [c22]Chuan Shi, Xiangnan Kong, Philip S. Yu, Sihong Xie, Bin Wu:
Relevance search in heterogeneous networks. EDBT 2012: 180-191 - [c21]Zhenhua Dong, Chuan Shi, Shilad Sen, Loren G. Terveen, John Riedl:
War Versus Inspirational in Forrest Gump: Cultural Effects in Tagging Communities. ICWSM 2012 - [c20]Chuan Shi, Chong Zhou, Xiangnan Kong, Philip S. Yu, Gang Liu, Bai Wang:
HeteRecom: a semantic-based recommendation systemin heterogeneous networks. KDD 2012: 1552-1555 - [c19]Chuan Shi, Xiangnan Kong, Philip S. Yu, Bai Wang:
Multi-Objective Multi-Label Classification. SDM 2012: 355-366 - 2011
- [j4]Chuan Shi, Zhenyu Yan, Xin Pan, Yanan Cai, Bin Wu:
A Posteriori Approach for Community Detection. J. Comput. Sci. Technol. 26(5): 792-805 (2011) - [c18]Yanan Cai, Chuan Shi, Yuxiao Dong, Qing Ke, Bin Wu:
A Novel Genetic Algorithm for Overlapping Community Detection. ADMA (1) 2011: 97-108 - [c17]Chuan Shi, Zhenyu Yan, Xin Pan, Yanan Cai, Bin Wu:
Multi-objective decisionmaking in the detection of comprehensive community structures. IEEE Congress on Evolutionary Computation 2011: 1489-1495 - [c16]Luhan Zhou, Aimin Zhou, Guixu Zhang, Chuan Shi:
An estimation of distribution algorithm based on nonparametric density estimation. IEEE Congress on Evolutionary Computation 2011: 1597-1604 - [c15]Chuan Shi, Philip S. Yu, Yanan Cai, Zhenyu Yan, Bin Wu:
On selection of objective functions in multi-objective community detection. CIKM 2011: 2301-2304 - [c14]Chuan Shi, Xiangnan Kong, Philip S. Yu, Bai Wang:
Multi-label Ensemble Learning. ECML/PKDD (3) 2011: 223-239 - 2010
- [j3]Chuan Shi, Zhenyu Yan, Yi Wang, Yanan Cai, Bin Wu:
A Genetic Algorithm for Detecting Communities in Large-Scale Complex Networks. Adv. Complex Syst. 13(1): 3-17 (2010) - [j2]Chuan Shi, Zhenyu Yan, Zhongzhi Shi, Lei Zhang:
A fast multi-objective evolutionary algorithm based on a tree structure. Appl. Soft Comput. 10(2): 468-480 (2010) - [c13]Chuan Shi, Jian Zhang, Liangliang Shi, Yanan Cai, Bin Wu:
A Novel Algorithm for Hierarchical Community Structure Detection in Complex Networks. ADMA (1) 2010: 557-564 - [c12]Zhiyuan Liu, Chuan Shi, Maosong Sun:
FolkDiffusion: A Graph-Based Tag Suggestion Method for Folksonomies. AIRS 2010: 231-240 - [c11]Chuan Shi, Cha Zhong, Zhenyu Yan, Yanan Cai, Bin Wu:
A multi-objective approach for community detection in complex network. IEEE Congress on Evolutionary Computation 2010: 1-8 - [c10]Chuan Shi, Yanan Cai, Philip S. Yu, Zhenyu Yan, Bin Wu:
A Comparison of Objective Functions in Network Community Detection. ICDM Workshops 2010: 1234-1241
2000 – 2009
- 2009
- [j1]Chuan Shi, Zhenyu Yan, Kevin Lü, Zhongzhi Shi, Bai Wang:
A dominance tree and its application in evolutionary multi-objective optimization. Inf. Sci. 179(20): 3540-3560 (2009) - [c9]Chuan Shi, Dan Zhou, Bin Wu, Jian Liu:
VisNetMiner: An Integration Tool for Visualization and Analysis of Networks. ADMA 2009: 611-618 - [c8]Chuan Shi, Yi Wang, Bin Wu, Cha Zhong:
A New Genetic Algorithm for Community Detection. Complex (2) 2009: 1298-1309 - 2007
- [c7]Chuan Shi, Rui Huang, Zhongzhi Shi:
Automatic Discovery of Subgoals in Reinforcement Learning Using Unique-Dreiction Value. IEEE ICCI 2007: 480-486 - [c6]Chuan Shi, Zhongzhi Shi, Bin Wu:
An Efficient Fitness Assignment Based on Dominating Tree. ICDM Workshops 2007: 247-252 - [c5]Chuan Shi, Peiqing Ye, Qiang Lv, Kaiming Yang:
Adjustment of Feedrate Planning Basing on Discrete Interpolation Interval in Interpolation Process. IMECS 2007: 1548-1553 - 2006
- [c4]Zhiyong Zhang, Chuan Shi, Sulan Zhang, Zhongzhi Shi:
Stock Time Series Forecasting Using Support Vector Machines Employing Analyst Recommendations. ISNN (2) 2006: 452-457 - [c3]Chuan Shi, Qingyong Li, Zhiyong Zhang, Zhongzhi Shi:
An Improved Multiobjective Evolutionary Algorithm Based on Dominating Tree. PRICAI 2006: 691-700 - [c2]Chuan Shi, Jiewen Luo, Fen Lin:
A Multi-agent Negotiation Model Applied in Multi-objective Optimization. PRIMA 2006: 305-314 - 2003
- [c1]Chuan Shi, Yan Li, Lishan Kang:
A new simple and highly efficient multi-objective optimal evolutionary algorithm. IEEE Congress on Evolutionary Computation 2003: 1536-1542
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-29 21:11 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint