default search action
Jian Tang 0005
Person information
- unicode name: 唐建
- affiliation (since 2017): HEC Montreal, QC, Canada
- affiliation (since 2017): Mila - Quebec AI Institute, Montreal, QC, Canada
- affiliation (2016 - 2017): University of Michigan, Ann Arbor, MI, USA
- affiliation (2014 - 2016): Microsoft Research Asia, Beijing, China
- affiliation (PhD 2014): Peking University, School of Electronics Engineering and Computer Science, Beijing, China
Other persons with the same name
- Jian Tang — disambiguation page
- Jian Tang 0001 — Memorial University of Newfoundland, Department of Computer Science, St. John's, Canada
- Jian Tang 0002 — Lanzhou University, School of Mathematics and Statistics, China (and 2 more)
- Jian Tang 0003 — Beijing University of Technology, College of Electronic and Control Engineering, China (and 1 more)
- Jian Tang 0004 — Wuhan University, GNSS Research Center, China (and 1 more)
- Jian Tang 0006 — Quzhou University, College of Mechanical Engineering, China
- Jian Tang 0007 — Sun Yat-sen University, School of Electronics and Information Engineering, Guangzhou, China
- Jian Tang 0008 — Midea Group Co Ltd, Foshan, China (and 3 more)
- Jian Tang 0009 — Central University of Finance and Economics, School of Information, Beijing, China
- Jian Tang 0010 — Technical University of Madrid, Spain
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j10]Shengchao Liu, Chengpeng Wang, Jiarui Lu, Weili Nie, Hanchen Wang, Zhuoxinran Li, Bolei Zhou, Jian Tang:
Unsupervised Discovery of Steerable Factors When Graph Deep Generative Models Are Entangled. Trans. Mach. Learn. Res. 2024 (2024) - [c90]Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, Zhaocheng Zhu:
Towards Foundation Models for Knowledge Graph Reasoning. ICLR 2024 - [c89]Dominique Beaini, Shenyang Huang, Joao Alex Cunha, Zhiyi Li, Gabriela Moisescu-Pareja, Oleksandr Dymov, Samuel Maddrell-Mander, Callum McLean, Frederik Wenkel, Luis Müller, Jama Hussein Mohamud, Ali Parviz, Michael Craig, Michal Koziarski, Jiarui Lu, Zhaocheng Zhu, Cristian Gabellini, Kerstin Klaser, Josef Dean, Cas Wognum, Maciej Sypetkowski, Guillaume Rabusseau, Reihaneh Rabbany, Jian Tang, Christopher Morris, Mirco Ravanelli, Guy Wolf, Prudencio Tossou, Hadrien Mary, Therence Bois, Andrew W. Fitzgibbon, Blazej Banaszewski, Chad Martin, Dominic Masters:
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets. ICLR 2024 - [c88]Arian Rokkum Jamasb, Alex Morehead, Chaitanya K. Joshi, Zuobai Zhang, Kieran Didi, Simon V. Mathis, Charles Harris, Jian Tang, Jianlin Cheng, Pietro Lio, Tom L. Blundell:
Evaluating Representation Learning on the Protein Structure Universe. ICLR 2024 - [c87]Jiarui Lu, Bozitao Zhong, Zuobai Zhang, Jian Tang:
Str2Str: A Score-based Framework for Zero-shot Protein Conformation Sampling. ICLR 2024 - [c86]Wentao Zhang, Guochen Yan, Yu Shen, Ling Yang, Yangyu Tao, Bin Cui, Jian Tang:
NPA: Improving Large-scale Graph Neural Networks with Non-parametric Attention. SIGMOD Conference Companion 2024: 414-427 - [c85]Haitao Mao, Jianan Zhao, Xiaoxin He, Zhikai Chen, Qian Huang, Zhaocheng Zhu, Jian Tang, Michael M. Bronstein, Xavier Bresson, Bryan Hooi, Haiyang Zhang, Xianfeng Tang, Luo Chen, Jiliang Tang:
The 1st International Workshop on Graph Foundation Models (GFM). WWW (Companion Volume) 2024: 1789-1792 - [i111]Shengchao Liu, Chengpeng Wang, Jiarui Lu, Weili Nie, Hanchen Wang, Zhuoxinran Li, Bolei Zhou, Jian Tang:
Unsupervised Discovery of Steerable Factors When Graph Deep Generative Models Are Entangled. CoRR abs/2401.17123 (2024) - [i110]Zuobai Zhang, Jiarui Lu, Vijil Chenthamarakshan, Aurélie C. Lozano, Payel Das, Jian Tang:
Structure-Informed Protein Language Model. CoRR abs/2402.05856 (2024) - [i109]Zuobai Zhang, Jiarui Lu, Vijil Chenthamarakshan, Aurélie C. Lozano, Payel Das, Jian Tang:
ProtIR: Iterative Refinement between Retrievers and Predictors for Protein Function Annotation. CoRR abs/2402.07955 (2024) - [i108]Jiarui Lu, Zuobai Zhang, Bozitao Zhong, Chence Shi, Jian Tang:
Fusing Neural and Physical: Augment Protein Conformation Sampling with Tractable Simulations. CoRR abs/2402.10433 (2024) - [i107]Mikhail Galkin, Jincheng Zhou, Bruno F. Ribeiro, Jian Tang, Zhaocheng Zhu:
Zero-shot Logical Query Reasoning on any Knowledge Graph. CoRR abs/2404.07198 (2024) - [i106]Jianan Zhao, Hesham Mostafa, Mikhail Galkin, Michael M. Bronstein, Zhaocheng Zhu, Jian Tang:
GraphAny: A Foundation Model for Node Classification on Any Graph. CoRR abs/2405.20445 (2024) - [i105]Arian R. Jamasb, Alex Morehead, Chaitanya K. Joshi, Zuobai Zhang, Kieran Didi, Simon V. Mathis, Charles Harris, Jian Tang, Jianlin Cheng, Pietro Lio, Tom L. Blundell:
Evaluating representation learning on the protein structure universe. CoRR abs/2406.13864 (2024) - [i104]Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-Wen Chang, Doina Precup, Rex Ying, Stan Z. Li, Jian Tang, Guy Wolf, Stefanie Jegelka:
The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges. CoRR abs/2407.09618 (2024) - [i103]Xinyu Yuan, Zhihao Zhan, Zuobai Zhang, Manqi Zhou, Jianan Zhao, Boyu Han, Yue Li, Jian Tang:
Cell-ontology guided transcriptome foundation model. CoRR abs/2408.12373 (2024) - [i102]Sitao Luan, Qincheng Lu, Chenqing Hua, Xinyu Wang, Jiaqi Zhu, Xiao-Wen Chang, Guy Wolf, Jian Tang:
Are Heterophily-Specific GNNs and Homophily Metrics Really Effective? Evaluation Pitfalls and New Benchmarks. CoRR abs/2409.05755 (2024) - [i101]Jiarui Lu, Xiaoyin Chen, Stephen Zhewen Lu, Chence Shi, Hongyu Guo, Yoshua Bengio, Jian Tang:
Structure Language Models for Protein Conformation Generation. CoRR abs/2410.18403 (2024) - 2023
- [j9]Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei Xiao, Animashree Anandkumar:
Multi-modal molecule structure-text model for text-based retrieval and editing. Nat. Mac. Intell. 5(12): 1447-1457 (2023) - [j8]Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, Anima Anandkumar, Karianne Bergen, Carla P. Gomes, Shirley Ho, Pushmeet Kohli, Joan Lasenby, Jure Leskovec, Tie-Yan Liu, Arjun Manrai, Debora S. Marks, Bharath Ramsundar, Le Song, Jimeng Sun, Jian Tang, Petar Velickovic, Max Welling, Linfeng Zhang, Connor W. Coley, Yoshua Bengio, Marinka Zitnik:
Scientific discovery in the age of artificial intelligence. Nat. 620(7972): 47-60 (2023) - [j7]Cheng Yang, Hao Wang, Jian Tang, Chuan Shi, Maosong Sun, Ganqu Cui, Zhiyuan Liu:
Full-Scale Information Diffusion Prediction With Reinforced Recurrent Networks. IEEE Trans. Neural Networks Learn. Syst. 34(5): 2271-2283 (2023) - [c84]Yu Li, Meng Qu, Jian Tang, Yi Chang:
Signed Laplacian Graph Neural Networks. AAAI 2023: 4444-4452 - [c83]Shengchao Liu, David Vázquez, Jian Tang, Pierre-André Noël:
Flaky Performances When Pretraining on Relational Databases (Student Abstract). AAAI 2023: 16266-16267 - [c82]Dingmin Wang, Shengchao Liu, Hanchen Wang, Bernardo Cuenca Grau, Linfeng Song, Jian Tang, Le Song, Qi Liu:
An Empirical Study of Retrieval-Enhanced Graph Neural Networks. ECAI 2023: 2443-2450 - [c81]Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, Jian Tang:
Learning on Large-scale Text-attributed Graphs via Variational Inference. ICLR 2023 - [c80]Shengchao Liu, Hongyu Guo, Jian Tang:
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching. ICLR 2023 - [c79]Chence Shi, Chuanrui Wang, Jiarui Lu, Bozitao Zhong, Jian Tang:
Protein Sequence and Structure Co-Design with Equivariant Translation. ICLR 2023 - [c78]Yangtian Zhang, Huiyu Cai, Chence Shi, Jian Tang:
E3Bind: An End-to-End Equivariant Network for Protein-Ligand Docking. ICLR 2023 - [c77]Zuobai Zhang, Minghao Xu, Arian Rokkum Jamasb, Vijil Chenthamarakshan, Aurélie C. Lozano, Payel Das, Jian Tang:
Protein Representation Learning by Geometric Structure Pretraining. ICLR 2023 - [c76]Shengchao Liu, Weitao Du, Zhi-Ming Ma, Hongyu Guo, Jian Tang:
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining. ICML 2023: 21497-21526 - [c75]Songtao Liu, Zhengkai Tu, Minkai Xu, Zuobai Zhang, Lu Lin, Rex Ying, Jian Tang, Peilin Zhao, Dinghao Wu:
FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning. ICML 2023: 22028-22041 - [c74]Minghao Xu, Xinyu Yuan, Santiago Miret, Jian Tang:
ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts. ICML 2023: 38749-38767 - [c73]Ryan-Rhys Griffiths, Leo Klarner, Henry B. Moss, Aditya Ravuri, Sang Truong, Yuanqi Du, Samuel Stanton, Gary Tom, Bojana Rankovic, Arian Rokkum Jamasb, Aryan Deshwal, Julius Schwartz, Austin Tripp, Gregory Kell, Simon Frieder, Anthony Bourached, Alex Chan, Jacob Moss, Chengzhi Guo, Johannes Peter Dürholt, Saudamini Chaurasia, Ji Won Park, Felix Strieth-Kalthoff, Alpha A. Lee, Bingqing Cheng, Alán Aspuru-Guzik, Philippe Schwaller, Jian Tang:
GAUCHE: A Library for Gaussian Processes in Chemistry. NeurIPS 2023 - [c72]Shengchao Liu, Weitao Du, Yanjing Li, Zhuoxinran Li, Zhiling Zheng, Chenru Duan, Zhi-Ming Ma, Omar Yaghi, Animashree Anandkumar, Christian Borgs, Jennifer T. Chayes, Hongyu Guo, Jian Tang:
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials. NeurIPS 2023 - [c71]Hanchen Wang, Jean Kaddour, Shengchao Liu, Jian Tang, Joan Lasenby, Qi Liu:
Evaluating Self-Supervised Learning for Molecular Graph Embeddings. NeurIPS 2023 - [c70]Zuobai Zhang, Minghao Xu, Aurélie C. Lozano, Vijil Chenthamarakshan, Payel Das, Jian Tang:
Pre-Training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction. NeurIPS 2023 - [c69]Yangtian Zhang, Zuobai Zhang, Bozitao Zhong, Sanchit Misra, Jian Tang:
DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing. NeurIPS 2023 - [c68]Zhaocheng Zhu, Xinyu Yuan, Michael Galkin, Louis-Pascal A. C. Xhonneux, Ming Zhang, Maxime Gazeau, Jian Tang:
A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs. NeurIPS 2023 - [i100]Minghao Xu, Xinyu Yuan, Santiago Miret, Jian Tang:
ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts. CoRR abs/2301.12040 (2023) - [i99]Zuobai Zhang, Minghao Xu, Aurélie C. Lozano, Vijil Chenthamarakshan, Payel Das, Jian Tang:
Physics-Inspired Protein Encoder Pre-Training via Siamese Sequence-Structure Diffusion Trajectory Prediction. CoRR abs/2301.12068 (2023) - [i98]Shengchao Liu, Yutao Zhu, Jiarui Lu, Zhao Xu, Weili Nie, Anthony Gitter, Chaowei Xiao, Jian Tang, Hongyu Guo, Anima Anandkumar:
A Text-guided Protein Design Framework. CoRR abs/2302.04611 (2023) - [i97]Zuobai Zhang, Minghao Xu, Vijil Chenthamarakshan, Aurélie C. Lozano, Payel Das, Jian Tang:
Enhancing Protein Language Models with Structure-based Encoder and Pre-training. CoRR abs/2303.06275 (2023) - [i96]Fang Sun, Zhihao Zhan, Hongyu Guo, Ming Zhang, Jian Tang:
GraphVF: Controllable Protein-Specific 3D Molecule Generation with Variational Flow. CoRR abs/2304.12825 (2023) - [i95]Shengchao Liu, Weitao Du, Zhiming Ma, Hongyu Guo, Jian Tang:
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining. CoRR abs/2305.18407 (2023) - [i94]Yangtian Zhang, Zuobai Zhang, Bozitao Zhong, Sanchit Misra, Jian Tang:
DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing. CoRR abs/2306.01794 (2023) - [i93]Jiarui Lu, Bozitao Zhong, Jian Tang:
Score-based Enhanced Sampling for Protein Molecular Dynamics. CoRR abs/2306.03117 (2023) - [i92]Shengchao Liu, Weitao Du, Yanjing Li, Zhuoxinran Li, Zhiling Zheng, Chenru Duan, Zhiming Ma, Omar Yaghi, Anima Anandkumar, Christian Borgs, Jennifer T. Chayes, Hongyu Guo, Jian Tang:
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials. CoRR abs/2306.09375 (2023) - [i91]Andreea Deac, Jian Tang:
Evolving Computation Graphs. CoRR abs/2306.12943 (2023) - [i90]Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael M. Bronstein, Zhaocheng Zhu, Jian Tang:
GraphText: Graph Reasoning in Text Space. CoRR abs/2310.01089 (2023) - [i89]Dominique Beaini, Shenyang Huang, Joao Alex Cunha, Zhiyi Li, Gabriela Moisescu-Pareja, Oleksandr Dymov, Samuel Maddrell-Mander, Callum McLean, Frederik Wenkel, Luis Müller, Jama Hussein Mohamud, Ali Parviz, Michael Craig, Michal Koziarski, Jiarui Lu, Zhaocheng Zhu, Cristian Gabellini, Kerstin Klaser, Josef Dean, Cas Wognum, Maciej Sypetkowski, Guillaume Rabusseau, Reihaneh Rabbany, Jian Tang, Christopher Morris, Ioannis Koutis, Mirco Ravanelli, Guy Wolf, Prudencio Tossou, Hadrien Mary, Therence Bois, Andrew W. Fitzgibbon, Blazej Banaszewski, Chad Martin, Dominic Masters:
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets. CoRR abs/2310.04292 (2023) - [i88]Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, Zhaocheng Zhu:
Towards Foundation Models for Knowledge Graph Reasoning. CoRR abs/2310.04562 (2023) - [i87]Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, Jian Tang, Dale Schuurmans, Hanjun Dai:
Large Language Models can Learn Rules. CoRR abs/2310.07064 (2023) - [i86]Chuanrui Wang, Bozitao Zhong, Zuobai Zhang, Narendra Chaudhary, Sanchit Misra, Jian Tang:
PDB-Struct: A Comprehensive Benchmark for Structure-based Protein Design. CoRR abs/2312.00080 (2023) - 2022
- [c67]Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping Li, Hong Chen:
Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering. ACL (1) 2022: 5773-5784 - [c66]Shengchao Liu, Meng Qu, Zuobai Zhang, Huiyu Cai, Jian Tang:
Structured Multi-task Learning for Molecular Property Prediction. AISTATS 2022: 8906-8920 - [c65]Sean Bin Yang, Chenjuan Guo, Jilin Hu, Bin Yang, Jian Tang, Christian S. Jensen:
Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning. ICDE 2022: 2873-2885 - [c64]Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, Jian Tang:
Pre-training Molecular Graph Representation with 3D Geometry. ICLR 2022 - [c63]Meng Qu, Huiyu Cai, Jian Tang:
Neural Structured Prediction for Inductive Node Classification. ICLR 2022 - [c62]Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, Jian Tang:
GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation. ICLR 2022 - [c61]Wujie Wang, Minkai Xu, Chen Cai, Benjamin Kurt Miller, Tess E. Smidt, Yusu Wang, Jian Tang, Rafael Gómez-Bombarelli:
Generative Coarse-Graining of Molecular Conformations. ICML 2022: 23213-23236 - [c60]Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, Jian Tang:
Neural-Symbolic Models for Logical Queries on Knowledge Graphs. ICML 2022: 27454-27478 - [c59]Kuangqi Zhou, Kaixin Wang, Jian Tang, Jiashi Feng, Bryan Hooi, Peilin Zhao, Tingyang Xu, Xinchao Wang:
Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction. LoG 2022: 29 - [c58]Michael Galkin, Zhaocheng Zhu, Hongyu Ren, Jian Tang:
Inductive Logical Query Answering in Knowledge Graphs. NeurIPS 2022 - [c57]Minghao Xu, Zuobai Zhang, Jiarui Lu, Zhaocheng Zhu, Yangtian Zhang, Chang Ma, Runcheng Liu, Jian Tang:
PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding. NeurIPS 2022 - [i85]Wujie Wang, Minkai Xu, Chen Cai, Benjamin Kurt Miller, Tess E. Smidt, Yusu Wang, Jian Tang, Rafael Gómez-Bombarelli:
Generative Coarse-Graining of Molecular Conformations. CoRR abs/2201.12176 (2022) - [i84]Zhaocheng Zhu, Chence Shi, Zuobai Zhang, Shengchao Liu, Minghao Xu, Xinyu Yuan, Yangtian Zhang, Junkun Chen, Huiyu Cai, Jiarui Lu, Chang Ma, Runcheng Liu, Louis-Pascal A. C. Xhonneux, Meng Qu, Jian Tang:
TorchDrug: A Powerful and Flexible Machine Learning Platform for Drug Discovery. CoRR abs/2202.08320 (2022) - [i83]Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping Li, Hong Chen:
Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering. CoRR abs/2202.13296 (2022) - [i82]Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, Jian Tang:
GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation. CoRR abs/2203.02923 (2022) - [i81]Shengchao Liu, Meng Qu, Zuobai Zhang, Huiyu Cai, Jian Tang:
Structured Multi-task Learning for Molecular Property Prediction. CoRR abs/2203.04695 (2022) - [i80]Zuobai Zhang, Minghao Xu, Arian R. Jamasb, Vijil Chenthamarakshan, Aurélie C. Lozano, Payel Das, Jian Tang:
Protein Representation Learning by Geometric Structure Pretraining. CoRR abs/2203.06125 (2022) - [i79]Sean Bin Yang, Chenjuan Guo, Jilin Hu, Bin Yang, Jian Tang, Christian S. Jensen:
Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning - Extended Version. CoRR abs/2203.16110 (2022) - [i78]Meng Qu, Huiyu Cai, Jian Tang:
Neural Structured Prediction for Inductive Node Classification. CoRR abs/2204.07524 (2022) - [i77]Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, Jian Tang:
Neural-Symbolic Models for Logical Queries on Knowledge Graphs. CoRR abs/2205.10128 (2022) - [i76]Kuangqi Zhou, Kaixin Wang, Jiashi Feng, Jian Tang, Tingyang Xu, Xinchao Wang:
Tyger: Task-Type-Generic Active Learning for Molecular Property Prediction. CoRR abs/2205.11279 (2022) - [i75]Minghao Xu, Yuanfan Guo, Xuanyu Zhu, Jiawen Li, Zhenbang Sun, Jian Tang, Yi Xu, Bingbing Ni:
HIRL: A General Framework for Hierarchical Image Representation Learning. CoRR abs/2205.13159 (2022) - [i74]Dingmin Wang, Shengchao Liu, Hanchen Wang, Linfeng Song, Jian Tang, Song Le, Bernardo Cuenca Grau, Qi Liu:
Augmenting Message Passing by Retrieving Similar Graphs. CoRR abs/2206.00362 (2022) - [i73]Minghao Xu, Zuobai Zhang, Jiarui Lu, Zhaocheng Zhu, Yangtian Zhang, Chang Ma, Runcheng Liu, Jian Tang:
PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding. CoRR abs/2206.02096 (2022) - [i72]Zhaocheng Zhu, Xinyu Yuan, Louis-Pascal A. C. Xhonneux, Ming Zhang, Maxime Gazeau, Jian Tang:
Learning to Efficiently Propagate for Reasoning on Knowledge Graphs. CoRR abs/2206.04798 (2022) - [i71]Hanchen Wang, Jean Kaddour, Shengchao Liu, Jian Tang, Matt J. Kusner, Joan Lasenby, Qi Liu:
Evaluating Self-Supervised Learning for Molecular Graph Embeddings. CoRR abs/2206.08005 (2022) - [i70]Shengchao Liu, Hongyu Guo, Jian Tang:
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching. CoRR abs/2206.13602 (2022) - [i69]Songtao Liu, Rex Ying, Zuobai Zhang, Peilin Zhao, Jian Tang, Lu Lin, Dinghao Wu:
Metro: Memory-Enhanced Transformer for Retrosynthetic Planning via Reaction Tree. CoRR abs/2209.15315 (2022) - [i68]Yangtian Zhang, Huiyu Cai, Chence Shi, Bozitao Zhong, Jian Tang:
E3Bind: An End-to-End Equivariant Network for Protein-Ligand Docking. CoRR abs/2210.06069 (2022) - [i67]Mikhail Galkin, Zhaocheng Zhu, Hongyu Ren, Jian Tang:
Inductive Logical Query Answering in Knowledge Graphs. CoRR abs/2210.08008 (2022) - [i66]Chence Shi, Chuanrui Wang, Jiarui Lu, Bozitao Zhong, Jian Tang:
Protein Sequence and Structure Co-Design with Equivariant Translation. CoRR abs/2210.08761 (2022) - [i65]Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, Jian Tang:
Learning on Large-scale Text-attributed Graphs via Variational Inference. CoRR abs/2210.14709 (2022) - [i64]Shengchao Liu, David Vázquez, Jian Tang, Pierre-André Noël:
Flaky Performances when Pretraining on Relational Databases. CoRR abs/2211.05213 (2022) - [i63]Minghao Xu, Yuanfan Guo, Yi Xu, Jian Tang, Xinlei Chen, Yuandong Tian:
EurNet: Efficient Multi-Range Relational Modeling of Spatial Multi-Relational Data. CoRR abs/2211.12941 (2022) - [i62]Ryan-Rhys Griffiths, Leo Klarner, Henry B. Moss, Aditya Ravuri, Sang Truong, Bojana Rankovic, Yuanqi Du, Arian R. Jamasb, Julius Schwartz, Austin Tripp, Gregory Kell, Anthony Bourached, Alex Chan, Jacob Moss, Chengzhi Guo, Alpha A. Lee, Philippe Schwaller, Jian Tang:
GAUCHE: A Library for Gaussian Processes in Chemistry. CoRR abs/2212.04450 (2022) - [i61]Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei Xiao, Anima Anandkumar:
Multi-modal Molecule Structure-text Model for Text-based Retrieval and Editing. CoRR abs/2212.10789 (2022) - 2021
- [j6]Thomas Gaudelet, Ben Day, Arian R. Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu, Jeremy B. R. Hayter, Richard Vickers, Charles Roberts, Jian Tang, David Roblin, Tom L. Blundell, Michael M. Bronstein, Jake P. Taylor-King:
Utilizing graph machine learning within drug discovery and development. Briefings Bioinform. 22(6) (2021) - [j5]Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, Jian Tang:
KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation. Trans. Assoc. Comput. Linguistics 9: 176-194 (2021) - [c56]Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, Jian Tang:
GraphMix: Improved Training of GNNs for Semi-Supervised Learning. AAAI 2021: 10024-10032 - [c55]Yoshua Bengio, Prateek Gupta, Tegan Maharaj, Nasim Rahaman, Martin Weiss, Tristan Deleu, Eilif Benjamin Müller, Meng Qu, Victor Schmidt, Pierre-Luc St-Charles, Hannah Alsdurf, Olexa Bilaniuk, David L. Buckeridge, Gaétan Marceau-Caron, Pierre Luc Carrier, Joumana Ghosn, Satya Ortiz-Gagne, Christopher J. Pal, Irina Rish, Bernhard Schölkopf, Abhinav Sharma, Jian Tang, Andrew Williams:
Predicting Infectiousness for Proactive Contact Tracing. ICLR 2021 - [c54]Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, Jian Tang:
RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs. ICLR 2021 - [c53]Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, Jian Tang:
Learning Neural Generative Dynamics for Molecular Conformation Generation. ICLR 2021 - [c52]Hangrui Bi, Hengyi Wang, Chence Shi, Connor W. Coley, Jian Tang, Hongyu Guo:
Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction. ICML 2021: 904-913 - [c51]Chence Shi, Shitong Luo, Minkai Xu, Jian Tang:
Learning Gradient Fields for Molecular Conformation Generation. ICML 2021: 9558-9568 - [c50]Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gómez-Bombarelli, Jian Tang:
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming. ICML 2021: 11537-11547 - [c49]Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, Jian Tang:
Self-supervised Graph-level Representation Learning with Local and Global Structure. ICML 2021: 11548-11558 - [c48]Sean Bin Yang, Chenjuan Guo, Jilin Hu, Jian Tang, Bin Yang:
Unsupervised Path Representation Learning with Curriculum Negative Sampling. IJCAI 2021: 3286-3292 - [c47]Jian Tang, Fei Wang, Feixiong Cheng:
Artificial Intelligence for Drug Discovery. KDD 2021: 4074-4075 - [c46]Minghao Xu, Meng Qu, Bingbing Ni, Jian Tang:
Joint Modeling of Visual Objects and Relations for Scene Graph Generation. NeurIPS 2021: 7689-7702 - [c45]Andreea Deac, Petar Velickovic, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, Mladen Nikolic:
Neural Algorithmic Reasoners are Implicit Planners. NeurIPS 2021: 15529-15542 - [c44]Louis-Pascal A. C. Xhonneux, Andreea Deac, Petar Velickovic, Jian Tang:
How to transfer algorithmic reasoning knowledge to learn new algorithms? NeurIPS 2021: 19500-19512 - [c43]Shitong Luo, Chence Shi, Minkai Xu, Jian Tang:
Predicting Molecular Conformation via Dynamic Graph Score Matching. NeurIPS 2021: 19784-19795 - [c42]Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, Jian Tang:
Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction. NeurIPS 2021: 29476-29490 - [i60]Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, Jian Tang:
Learning Neural Generative Dynamics for Molecular Conformation Generation. CoRR abs/2102.10240 (2021) - [i59]Chence Shi, Shitong Luo, Minkai Xu, Jian Tang:
Learning Gradient Fields for Molecular Conformation Generation. CoRR abs/2105.03902 (2021) - [i58]Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gómez-Bombarelli, Jian Tang:
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming. CoRR abs/2105.07246 (2021) - [i57]Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, Jian Tang:
Self-supervised Graph-level Representation Learning with Local and Global Structure. CoRR abs/2106.04113 (2021) - [i56]Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, Jian Tang:
Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction. CoRR abs/2106.06935 (2021) - [i55]Hangrui Bi, Hengyi Wang, Chence Shi, Connor W. Coley, Jian Tang, Hongyu Guo:
Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction. CoRR abs/2106.07801 (2021) - [i54]Sean Bin Yang, Chenjuan Guo, Jilin Hu, Jian Tang, Bin Yang:
Unsupervised Path Representation Learning with Curriculum Negative Sampling. CoRR abs/2106.09373 (2021) - [i53]Andreea Deac, Petar Velickovic, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, Mladen Nikolic:
Neural Algorithmic Reasoners are Implicit Planners. CoRR abs/2110.05442 (2021) - [i52]Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, Jian Tang:
Pre-training Molecular Graph Representation with 3D Geometry. CoRR abs/2110.07728 (2021) - [i51]Louis-Pascal A. C. Xhonneux, Andreea Deac, Petar Velickovic, Jian Tang:
How to transfer algorithmic reasoning knowledge to learn new algorithms? CoRR abs/2110.14056 (2021) - 2020
- [c41]Carlos Lassance, Myriam Bontonou, Ghouthi Boukli Hacene, Vincent Gripon, Jian Tang, Antonio Ortega:
Deep Geometric Knowledge Distillation with Graphs. ICASSP 2020: 8484-8488 - [c40]Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, Jian Tang:
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation. ICLR 2020 - [c39]Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, Jian Tang:
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. ICLR 2020 - [c38]Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu, Simon Blackburn, Karam M. J. Thomas, Connor W. Coley, Jian Tang, Sarath Chandar, Yoshua Bengio:
Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning. ICML 2020: 3668-3679 - [c37]Meng Qu, Tianyu Gao, Louis-Pascal A. C. Xhonneux, Jian Tang:
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs. ICML 2020: 7867-7876 - [c36]Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, Jian Tang:
A Graph to Graphs Framework for Retrosynthesis Prediction. ICML 2020: 8818-8827 - [c35]Louis-Pascal A. C. Xhonneux, Meng Qu, Jian Tang:
Continuous Graph Neural Networks. ICML 2020: 10432-10441 - [c34]Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté, Mikulas Zelinka, Marc-Antoine Rondeau, Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler, William L. Hamilton:
Learning Dynamic Belief Graphs to Generalize on Text-Based Games. NeurIPS 2020 - [c33]Shengding Hu, Zheng Xiong, Meng Qu, Xingdi Yuan, Marc-Alexandre Côté, Zhiyuan Liu, Jian Tang:
Graph Policy Network for Transferable Active Learning on Graphs. NeurIPS 2020 - [c32]Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, Xiaodan Liang, Maosong Sun, Chenyan Xiong, Jian Tang:
Towards Interpretable Natural Language Understanding with Explanations as Latent Variables. NeurIPS 2020 - [i50]Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, Jian Tang:
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation. CoRR abs/2001.09382 (2020) - [i49]Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté, Mikulas Zelinka, Marc-Antoine Rondeau, Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler, William L. Hamilton:
Learning Dynamic Knowledge Graphs to Generalize on Text-Based Games. CoRR abs/2002.09127 (2020) - [i48]Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, Jian Tang:
A Graph to Graphs Framework for Retrosynthesis Prediction. CoRR abs/2003.12725 (2020) - [i47]Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu, Karam M. J. Thomas, Simon Blackburn, Connor W. Coley, Jian Tang, Sarath Chandar, Yoshua Bengio:
Learning To Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning. CoRR abs/2004.12485 (2020) - [i46]Hannah Alsdurf, Yoshua Bengio, Tristan Deleu, Prateek Gupta, Daphne Ippolito, Richard Janda, Max Jarvie, Tyler Kolody, Sekoul Krastev, Tegan Maharaj, Robert Obryk, Dan Pilat, Valerie Pisano, Benjamin Prud'homme, Meng Qu, Nasim Rahaman, Irina Rish, Jean-Franois Rousseau, Abhinav Sharma, Brooke Struck, Jian Tang, Martin Weiss, Yun William Yu:
COVI White Paper. CoRR abs/2005.08502 (2020) - [i45]Shengding Hu, Zheng Xiong, Meng Qu, Xingdi Yuan, Marc-Alexandre Côté, Zhiyuan Liu, Jian Tang:
Graph Policy Network for Transferable Active Learning on Graphs. CoRR abs/2006.13463 (2020) - [i44]Meng Qu, Tianyu Gao, Louis-Pascal A. C. Xhonneux, Jian Tang:
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs. CoRR abs/2007.02387 (2020) - [i43]Simeon E. Spasov, Alessandro Di Stefano, Pietro Liò, Jian Tang:
GRADE: Graph Dynamic Embedding. CoRR abs/2007.08060 (2020) - [i42]Andreea Deac, Pierre-Luc Bacon, Jian Tang:
Graph neural induction of value iteration. CoRR abs/2009.12604 (2020) - [i41]Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, Jian Tang:
RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs. CoRR abs/2010.04029 (2020) - [i40]Yoshua Bengio, Prateek Gupta, Tegan Maharaj, Nasim Rahaman, Martin Weiss, Tristan Deleu, Eilif B. Müller, Meng Qu, Victor Schmidt, Pierre-Luc St-Charles, Hannah Alsdurf, Olexa Bilaniuk, David L. Buckeridge, Gaétan Marceau Caron, Pierre Luc Carrier, Joumana Ghosn, Satya Ortiz-Gagne, Chris Pal, Irina Rish, Bernhard Schölkopf, Abhinav Sharma, Jian Tang, Andrew Williams:
Predicting Infectiousness for Proactive Contact Tracing. CoRR abs/2010.12536 (2020) - [i39]Andreea Deac, Petar Velickovic, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, Mladen Nikolic:
XLVIN: eXecuted Latent Value Iteration Nets. CoRR abs/2010.13146 (2020) - [i38]Prateek Gupta, Tegan Maharaj, Martin Weiss, Nasim Rahaman, Hannah Alsdurf, Abhinav Sharma, Nanor Minoyan, Soren Harnois-Leblanc, Victor Schmidt, Pierre-Luc St-Charles, Tristan Deleu, Andrew Williams, Akshay Patel, Meng Qu, Olexa Bilaniuk, Gaétan Marceau Caron, Pierre Luc Carrier, Satya Ortiz-Gagné, Marc-Andre Rousseau, David L. Buckeridge, Joumana Ghosn, Yang Zhang, Bernhard Schölkopf, Jian Tang, Irina Rish, Christopher Joseph Pal, Joanna Merckx, Eilif B. Müller, Yoshua Bengio:
COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital Contact Tracing. CoRR abs/2010.16004 (2020) - [i37]Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, Xiaodan Liang, Maosong Sun, Chenyan Xiong, Jian Tang:
Towards Interpretable Natural Language Understanding with Explanations as Latent Variables. CoRR abs/2011.05268 (2020) - [i36]Minkai Xu, Zhiming Zhou, Guansong Lu, Jian Tang, Weinan Zhang, Yong Yu:
Sobolev Wasserstein GAN. CoRR abs/2012.03420 (2020) - [i35]Thomas Gaudelet, Ben Day, Arian R. Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu, Jeremy B. R. Hayter, Richard Vickers, Charles Roberts, Jian Tang, David Roblin, Tom L. Blundell, Michael M. Bronstein, Jake P. Taylor-King:
Utilising Graph Machine Learning within Drug Discovery and Development. CoRR abs/2012.05716 (2020)
2010 – 2019
- 2019
- [j4]Shagun Sodhani, Meng Qu, Jian Tang:
Attending Over Triads for Learning Signed Network Embedding. Frontiers Big Data 2: 6 (2019) - [c31]Luchen Liu, Haoran Li, Zhiting Hu, Haoran Shi, Zichang Wang, Jian Tang, Ming Zhang:
Learning Hierarchical Representations of Electronic Health Records for Clinical Outcome Prediction. AMIA 2019 - [c30]Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, Jian Tang:
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. CIKM 2019: 1161-1170 - [c29]Huawei Shen, Jian Tang, Peng Bao:
GRLA 2019: The first International Workshop on Graph Representation Learning and its Applications. CIKM 2019: 2997-2998 - [c28]Carlos Eduardo Rosar Kós Lassance, Vincent Gripon, Jian Tang, Antonio Ortega:
Structural Robustness for Deep Learning Architectures. DSW 2019: 125-129 - [c27]Myriam Bontonou, Carlos Eduardo Rosar Kós Lassance, Ghouthi Boukli Hacene, Vincent Gripon, Jian Tang, Antonio Ortega:
Introducing Graph Smoothness Loss for Training Deep Learning Architectures. DSW 2019: 160-164 - [c26]Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang:
RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. ICLR (Poster) 2019 - [c25]Meng Qu, Yoshua Bengio, Jian Tang:
GMNN: Graph Markov Neural Networks. ICML 2019: 5241-5250 - [c24]Cheng Yang, Jian Tang, Maosong Sun, Ganqu Cui, Zhiyuan Liu:
Multi-scale Information Diffusion Prediction with Reinforced Recurrent Networks. IJCAI 2019: 4033-4039 - [c23]Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang:
vGraph: A Generative Model for Joint Community Detection and Node Representation Learning. NeurIPS 2019: 512-522 - [c22]Meng Qu, Jian Tang:
Probabilistic Logic Neural Networks for Reasoning. NeurIPS 2019: 7710-7720 - [c21]Zhiqing Sun, Jian Tang, Pan Du, Zhi-Hong Deng, Jian-Yun Nie:
DivGraphPointer: A Graph Pointer Network for Extracting Diverse Keyphrases. SIGIR 2019: 755-764 - [c20]Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, Jian Tang:
Session-Based Social Recommendation via Dynamic Graph Attention Networks. WSDM 2019: 555-563 - [c19]Zhaocheng Zhu, Shizhen Xu, Jian Tang, Meng Qu:
GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding. WWW 2019: 2494-2504 - [i34]Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, Jian Tang:
Session-based Social Recommendation via Dynamic Graph Attention Networks. CoRR abs/1902.09362 (2019) - [i33]Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang:
RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. CoRR abs/1902.10197 (2019) - [i32]Zhaocheng Zhu, Shizhen Xu, Meng Qu, Jian Tang:
GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding. CoRR abs/1903.00757 (2019) - [i31]Luchen Liu, Haoran Li, Zhiting Hu, Haoran Shi, Zichang Wang, Jian Tang, Ming Zhang:
Learning Hierarchical Representations of Electronic Health Records for Clinical Outcome Prediction. CoRR abs/1903.08652 (2019) - [i30]Myriam Bontonou, Carlos Eduardo Rosar Kós Lassance, Ghouthi Boukli Hacene, Vincent Gripon, Jian Tang, Antonio Ortega:
Introducing Graph Smoothness Loss for Training Deep Learning Architectures. CoRR abs/1905.00301 (2019) - [i29]Andreea Deac, Yu-Hsiang Huang, Petar Velickovic, Pietro Liò, Jian Tang:
Drug-Drug Adverse Effect Prediction with Graph Co-Attention. CoRR abs/1905.00534 (2019) - [i28]Meng Qu, Yoshua Bengio, Jian Tang:
GMNN: Graph Markov Neural Networks. CoRR abs/1905.06214 (2019) - [i27]Zhiqing Sun, Jian Tang, Pan Du, Zhi-Hong Deng, Jian-Yun Nie:
DivGraphPointer: A Graph Pointer Network for Extracting Diverse Keyphrases. CoRR abs/1905.07689 (2019) - [i26]Shagun Sodhani, Anirudh Goyal, Tristan Deleu, Yoshua Bengio, Sergey Levine, Jian Tang:
Learning Powerful Policies by Using Consistent Dynamics Model. CoRR abs/1906.04355 (2019) - [i25]Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang:
vGraph: A Generative Model for Joint Community Detection and Node Representation Learning. CoRR abs/1906.07159 (2019) - [i24]Meng Qu, Jian Tang:
Probabilistic Logic Neural Networks for Reasoning. CoRR abs/1906.08495 (2019) - [i23]Weiping Song, Zhijian Duan, Ziqing Yang, Hao Zhu, Ming Zhang, Jian Tang:
Explainable Knowledge Graph-based Recommendation via Deep Reinforcement Learning. CoRR abs/1906.09506 (2019) - [i22]Meng Qu, Jian Tang, Yoshua Bengio:
Weakly-supervised Knowledge Graph Alignment with Adversarial Learning. CoRR abs/1907.03179 (2019) - [i21]Fan-Yun Sun, Jordan Hoffmann, Jian Tang:
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. CoRR abs/1908.01000 (2019) - [i20]Jordan Hoffmann, Louis Maestrati, Yoshihide Sawada, Jian Tang, Jean Michel D. Sellier, Yoshua Bengio:
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures. CoRR abs/1909.00949 (2019) - [i19]Carlos Eduardo Rosar Kós Lassance, Vincent Gripon, Jian Tang, Antonio Ortega:
Structural Robustness for Deep Learning Architectures. CoRR abs/1909.05095 (2019) - [i18]Vikas Verma, Meng Qu, Alex Lamb, Yoshua Bengio, Juho Kannala, Jian Tang:
GraphMix: Regularized Training of Graph Neural Networks for Semi-Supervised Learning. CoRR abs/1909.11715 (2019) - [i17]Carlos Eduardo Rosar Kós Lassance, Myriam Bontonou, Ghouthi Boukli Hacene, Vincent Gripon, Jian Tang, Antonio Ortega:
Deep geometric knowledge distillation with graphs. CoRR abs/1911.03080 (2019) - [i16]Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan Liu, Juanzi Li, Jian Tang:
KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation. CoRR abs/1911.06136 (2019) - [i15]Louis-Pascal A. C. Xhonneux, Meng Qu, Jian Tang:
Continuous Graph Neural Networks. CoRR abs/1912.00967 (2019) - 2018
- [j3]Minjeong Kim, Minsuk Choi, Sunwoong Lee, Jian Tang, Haesun Park, Jaegul Choo:
PixelSNE: Pixel-Aligned Stochastic Neighbor Embedding for Efficient 2D Visualization with Screen-Resolution Precision. Comput. Graph. Forum 37(3): 267-276 (2018) - [c18]Luchen Liu, Jianhao Shen, Ming Zhang, Zichang Wang, Jian Tang:
Learning the Joint Representation of Heterogeneous Temporal Events for Clinical Endpoint Prediction. AAAI 2018: 109-116 - [c17]Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, Jie Tang:
DeepInf: Social Influence Prediction with Deep Learning. KDD 2018: 2110-2119 - [c16]Meng Qu, Jian Tang, Jiawei Han:
Curriculum Learning for Heterogeneous Star Network Embedding via Deep Reinforcement Learning. WSDM 2018: 468-476 - [i14]Luchen Liu, Jianhao Shen, Ming Zhang, Zichang Wang, Jian Tang:
Learning the Joint Representation of Heterogeneous Temporal Events for Clinical Endpoint Prediction. CoRR abs/1803.04837 (2018) - [i13]Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, Jie Tang:
DeepInf: Social Influence Prediction with Deep Learning. CoRR abs/1807.05560 (2018) - [i12]Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, Jian Tang:
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. CoRR abs/1810.11921 (2018) - 2017
- [j2]Xuanzhe Liu, Wei Ai, Huoran Li, Jian Tang, Gang Huang, Feng Feng, Qiaozhu Mei:
Deriving User Preferences of Mobile Apps from Their Management Activities. ACM Trans. Inf. Syst. 35(4): 39:1-39:32 (2017) - [c15]Yue Wang, Jian Tang, V. G. Vinod Vydiswaran, Kai Zheng, Hua Xu, Qiaozhu Mei:
Matching Consumer Health Vocabulary with Professional Medical Terms Through Concept Embedding. AMIA 2017 - [c14]Meng Qu, Jian Tang, Jingbo Shang, Xiang Ren, Ming Zhang, Jiawei Han:
An Attention-based Collaboration Framework for Multi-View Network Representation Learning. CIKM 2017: 1767-1776 - [c13]Jian Tang, Yue Wang, Kai Zheng, Qiaozhu Mei:
End-to-end Learning for Short Text Expansion. KDD 2017: 1105-1113 - [i11]Ziniu Hu, Yun Ma, Qiaozhu Mei, Jian Tang:
Roaming across the Castle Tunnels: an Empirical Study of Inter-App Navigation Behaviors of Android Users. CoRR abs/1706.08274 (2017) - [i10]Jian Tang, Yue Wang, Kai Zheng, Qiaozhu Mei:
End-to-end Learning for Short Text Expansion. CoRR abs/1709.00389 (2017) - [i9]Meng Qu, Jian Tang, Jingbo Shang, Xiang Ren, Ming Zhang, Jiawei Han:
An Attention-based Collaboration Framework for Multi-View Network Representation Learning. CoRR abs/1709.06636 (2017) - 2016
- [c12]Jian Tang, Jingzhou Liu, Ming Zhang, Qiaozhu Mei:
Visualizing Large-scale and High-dimensional Data. WWW 2016: 287-297 - [c11]Huoran Li, Wei Ai, Xuanzhe Liu, Jian Tang, Gang Huang, Feng Feng, Qiaozhu Mei:
Voting with Their Feet: Inferring User Preferences from App Management Activities. WWW 2016: 1351-1362 - [i8]Jian Tang, Jingzhou Liu, Ming Zhang, Qiaozhu Mei:
Visualization Large-scale and High-dimensional Data. CoRR abs/1602.00370 (2016) - [i7]Minjeong Kim, Minsuk Choi, Sunwoong Lee, Jian Tang, Haesun Park, Jaegul Choo:
PixelSNE: Visualizing Fast with Just Enough Precision via Pixel-Aligned Stochastic Neighbor Embedding. CoRR abs/1611.02568 (2016) - [i6]Jian Tang, Meng Qu, Qiaozhu Mei:
Identity-sensitive Word Embedding through Heterogeneous Networks. CoRR abs/1611.09878 (2016) - [i5]Jian Tang, Yifan Yang, Samuel Carton, Ming Zhang, Qiaozhu Mei:
Context-aware Natural Language Generation with Recurrent Neural Networks. CoRR abs/1611.09900 (2016) - [i4]Jian Tang, Ming Zhang, Qiaozhu Mei:
Less is More: Learning Prominent and Diverse Topics for Data Summarization. CoRR abs/1611.09921 (2016) - 2015
- [c10]Jian Tang, Meng Qu, Qiaozhu Mei:
PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks. KDD 2015: 1165-1174 - [c9]Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Mei:
LINE: Large-scale Information Network Embedding. WWW 2015: 1067-1077 - [i3]Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Mei:
LINE: Large-scale Information Network Embedding. CoRR abs/1503.03578 (2015) - [i2]Jian Tang, Meng Qu, Qiaozhu Mei:
PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks. CoRR abs/1508.00200 (2015) - 2014
- [c8]Yong Luo, Jian Tang, Jun Yan, Chao Xu, Zheng Chen:
Pre-Trained Multi-View Word Embedding Using Two-Side Neural Network. AAAI 2014: 1982-1988 - [c7]Jian Tang, Zhaoshi Meng, XuanLong Nguyen, Qiaozhu Mei, Ming Zhang:
Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis. ICML 2014: 190-198 - [i1]Jian Tang, Ming Zhang, Qiaozhu Mei:
"Look Ma, No Hands!" A Parameter-Free Topic Model. CoRR abs/1409.2993 (2014) - 2013
- [c6]Jian Tang, Ming Zhang, Qiaozhu Mei:
One theme in all views: modeling consensus topics in multiple contexts. KDD 2013: 5-13 - 2012
- [c5]Lei Zhang, Jian Tang, Ming Zhang:
Integrating Temporal Usage Pattern into Personalized Tag Prediction. APWeb 2012: 354-365 - 2011
- [j1]Bolanle Adefowoke Ojokoh, Ming Zhang, Jian Tang:
A trigram hidden Markov model for metadata extraction from heterogeneous references. Inf. Sci. 181(9): 1538-1551 (2011) - [c4]Jian Tang, Jun Yan, Lei Ji, Ming Zhang, Shaodan Guo, Ning Liu, Xianfang Wang, Zheng Chen:
Collaborative Users' Brand Preference Mining across Multiple Domains from Implicit Feedbacks. AAAI 2011: 477-482 - [c3]Jian Tang, Ning Liu, Jun Yan, Yelong Shen, Shaodan Guo, Bin Gao, Shuicheng Yan, Ming Zhang:
Learning to rank audience for behavioral targeting in display ads. CIKM 2011: 605-610 - [c2]Ming Zhang, Sheng Feng, Jian Tang, Bolanle Adefowoke Ojokoh, Guojun Liu:
Co-Ranking Multiple Entities in a Heterogeneous Network: Integrating Temporal Factor and Users' Bookmarks. ICADL 2011: 202-211 - 2010
- [c1]Fei Yan, Ming Zhang, Jian Tang, Tao Sun, Zhi-Hong Deng, Long Xiao:
Users' Book-Loan Behaviors Analysis and Knowledge Dependency Mining. WAIM 2010: 206-217
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-16 23:22 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint