default search action
Edouard Pauwels
Person information
- affiliation: Toulouse School of Economics, France
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j28]Edouard Pauwels:
On the nature of Bregman functions. Oper. Res. Lett. 57: 107183 (2024) - [j27]Jérôme Bolte, Edouard Pauwels, Antonio Silveti-Falls:
Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems. SIAM J. Optim. 34(1): 71-97 (2024) - [i25]Franck Iutzeler, Edouard Pauwels, Samuel Vaiter:
Derivatives of Stochastic Gradient Descent. CoRR abs/2405.15894 (2024) - [i24]Jérôme Bolte, Quoc-Tung Le, Edouard Pauwels, Samuel Vaiter:
Geometric and computational hardness of bilevel programming. CoRR abs/2407.12372 (2024) - [i23]Jérôme Bolte, Ryan Boustany, Edouard Pauwels, Andrei I. Purica:
A second-order-like optimizer with adaptive gradient scaling for deep learning. CoRR abs/2410.05871 (2024) - 2023
- [j26]Edouard Pauwels, Samuel Vaiter:
The Derivatives of Sinkhorn-Knopp Converge. SIAM J. Optim. 33(3): 1494-1517 (2023) - [j25]Jérôme Bolte, Tam Le, Edouard Pauwels:
Subgradient Sampling for Nonsmooth Nonconvex Minimization. SIAM J. Optim. 33(4): 2542-2569 (2023) - [c11]Jérôme Bolte, Ryan Boustany, Edouard Pauwels, Béatrice Pesquet-Popescu:
On the complexity of nonsmooth automatic differentiation. ICLR 2023 - [c10]Jérôme Bolte, Edouard Pauwels, Samuel Vaiter:
One-step differentiation of iterative algorithms. NeurIPS 2023 - [i22]Jérôme Bolte, Edouard Pauwels, Samuel Vaiter:
One-step differentiation of iterative algorithms. CoRR abs/2305.13768 (2023) - 2022
- [j24]Tong Chen, Jean-Bernard Lasserre, Victor Magron, Edouard Pauwels:
A sublevel moment-SOS hierarchy for polynomial optimization. Comput. Optim. Appl. 81(1): 31-66 (2022) - [j23]Jérôme Bolte, Edouard Pauwels:
Curiosities and counterexamples in smooth convex optimization. Math. Program. 195(1): 553-603 (2022) - [j22]Camille Castera, Jérôme Bolte, Cédric Févotte, Edouard Pauwels:
Second-Order Step-Size Tuning of SGD for Non-Convex Optimization. Neural Process. Lett. 54(3): 1727-1752 (2022) - [c9]Jérôme Bolte, Edouard Pauwels, Samuel Vaiter:
Automatic differentiation of nonsmooth iterative algorithms. NeurIPS 2022 - [i21]Swann Marx, Edouard Pauwels:
Path differentiability of ODE flows. CoRR abs/2201.03819 (2022) - [i20]Jérôme Bolte, Edouard Pauwels, Samuel Vaiter:
Automatic differentiation of nonsmooth iterative algorithms. CoRR abs/2206.00457 (2022) - [i19]Jérôme Bolte, Ryan Boustany, Edouard Pauwels, Béatrice Pesquet-Popescu:
Nonsmooth automatic differentiation: a cheap gradient principle and other complexity results. CoRR abs/2206.01730 (2022) - [i18]Jérôme Bolte, Edouard Pauwels, Antonio José Silveti-Falls:
Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems. CoRR abs/2212.07844 (2022) - 2021
- [j21]Edouard Pauwels, Mihai Putinar, Jean-Bernard Lasserre:
Data Analysis from Empirical Moments and the Christoffel Function. Found. Comput. Math. 21(1): 243-273 (2021) - [j20]Camille Castera, Jérôme Bolte, Cédric Févotte, Edouard Pauwels:
An Inertial Newton Algorithm for Deep Learning. J. Mach. Learn. Res. 22: 134:1-134:31 (2021) - [j19]Edouard Pauwels:
Incremental Without Replacement Sampling in Nonconvex Optimization. J. Optim. Theory Appl. 190(1): 274-299 (2021) - [j18]Jérôme Bolte, Edouard Pauwels:
Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning. Math. Program. 188(1): 19-51 (2021) - [j17]Cheik Traoré, Edouard Pauwels:
Sequential convergence of AdaGrad algorithm for smooth convex optimization. Oper. Res. Lett. 49(4): 452-458 (2021) - [c8]David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, Edouard Pauwels:
Numerical influence of ReLU'(0) on backpropagation. NeurIPS 2021: 468-479 - [c7]Jérôme Bolte, Tam Le, Edouard Pauwels, Antonio Silveti-Falls:
Nonsmooth Implicit Differentiation for Machine-Learning and Optimization. NeurIPS 2021: 13537-13549 - [c6]Tong Chen, Jean B. Lasserre, Victor Magron, Edouard Pauwels:
Semialgebraic Representation of Monotone Deep Equilibrium Models and Applications to Certification. NeurIPS 2021: 27146-27159 - [i17]Camille Castera, Jérôme Bolte, Cédric Févotte, Edouard Pauwels:
Second-order step-size tuning of SGD for non-convex optimization. CoRR abs/2103.03570 (2021) - [i16]Jérôme Bolte, Tam Le, Edouard Pauwels, Antonio Silveti-Falls:
Nonsmooth Implicit Differentiation for Machine Learning and Optimization. CoRR abs/2106.04350 (2021) - [i15]David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, Edouard Pauwels:
Numerical influence of ReLU'(0) on backpropagation. CoRR abs/2106.12915 (2021) - 2020
- [j16]Jérôme Bolte, Zheng Chen, Edouard Pauwels:
The multiproximal linearization method for convex composite problems. Math. Program. 182(1): 1-36 (2020) - [c5]Tong Chen, Jean B. Lasserre, Victor Magron, Edouard Pauwels:
Semialgebraic Optimization for Lipschitz Constants of ReLU Networks. NeurIPS 2020 - [c4]Jérôme Bolte, Edouard Pauwels:
A mathematical model for automatic differentiation in machine learning. NeurIPS 2020 - [i14]Tong Chen, Jean-Bernard Lasserre, Victor Magron, Edouard Pauwels:
Polynomial Optimization for Bounding Lipschitz Constants of Deep Networks. CoRR abs/2002.03657 (2020) - [i13]Jérôme Bolte, Edouard Pauwels, Rodolfo Rios-Zertuche:
Long term dynamics of the subgradient method for Lipschitz path differentiable functions. CoRR abs/2006.00098 (2020) - [i12]Jérôme Bolte, Edouard Pauwels:
A mathematical model for automatic differentiation in machine learning. CoRR abs/2006.02080 (2020) - [i11]Edouard Pauwels:
Incremental Without Replacement Sampling in Nonconvex Optimization. CoRR abs/2007.07557 (2020) - [i10]Jérôme Bolte, Lilian Glaudin, Edouard Pauwels, Mathieu Serrurier:
A Hölderian backtracking method for min-max and min-min problems. CoRR abs/2007.08810 (2020) - [i9]Cheik Traoré, Edouard Pauwels:
Sequential convergence of AdaGrad algorithm for smooth convex optimization. CoRR abs/2011.12341 (2020)
2010 – 2019
- 2019
- [j15]Jean B. Lasserre, Edouard Pauwels:
The empirical Christoffel function with applications in data analysis. Adv. Comput. Math. 45(3): 1439-1468 (2019) - [i8]Camille Castera, Jérôme Bolte, Cédric Févotte, Edouard Pauwels:
An Inertial Newton Algorithm for Deep Learning. CoRR abs/1905.12278 (2019) - [i7]Jérôme Bolte, Edouard Pauwels:
Conservative set valued fields, automatic differentiation, stochastic gradient method and deep learning. CoRR abs/1909.10300 (2019) - [i6]Mai Trang Vu, François Bachoc, Edouard Pauwels:
Rate of convergence for geometric inference based on the empirical Christoffel function. CoRR abs/1910.14458 (2019) - 2018
- [j14]Trong Phong Nguyen, Edouard Pauwels, Emile Richard, Bruce W. Suter:
Extragradient Method in Optimization: Convergence and Complexity. J. Optim. Theory Appl. 176(1): 137-162 (2018) - [j13]Amir Beck, Edouard Pauwels, Shoham Sabach:
Primal and dual predicted decrease approximation methods. Math. Program. 167(1): 37-73 (2018) - [j12]Jérôme Bolte, Antoine Hochart, Edouard Pauwels:
Qualification Conditions in Semialgebraic Programming. SIAM J. Optim. 28(2): 1867-1891 (2018) - [j11]Edouard Pauwels, Amir Beck, Yonina C. Eldar, Shoham Sabach:
On Fienup Methods for Sparse Phase Retrieval. IEEE Trans. Signal Process. 66(4): 982-991 (2018) - [c3]Edouard Pauwels, Francis R. Bach, Jean-Philippe Vert:
Relating Leverage Scores and Density using Regularized Christoffel Functions. NeurIPS 2018: 1670-1679 - [i5]Edouard Pauwels, Francis R. Bach, Jean-Philippe Vert:
Relating Leverage Scores and Density using Regularized Christoffel Functions. CoRR abs/1805.07943 (2018) - 2017
- [p1]Edouard Pauwels, Didier Henrion, Jean-Bernard Lasserre:
Positivity Certificates in Optimal Control. Geometric and Numerical Foundations of Movements 2017: 113-131 - [i4]Jean-Bernard Lasserre, Edouard Pauwels:
The empirical Christoffel function in Statistics and Machine Learning. CoRR abs/1701.02886 (2017) - [i3]Edouard Pauwels, Amir Beck, Yonina C. Eldar, Shoham Sabach:
On Fienup Methods for Regularized Phase Retrieval. CoRR abs/1702.08339 (2017) - 2016
- [j10]Jérôme Bolte, Edouard Pauwels:
Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs. Math. Oper. Res. 41(2): 442-465 (2016) - [j9]Edouard Pauwels:
The value function approach to convergence analysis in composite optimization. Oper. Res. Lett. 44(6): 790-795 (2016) - [j8]Edouard Pauwels, Didier Henrion, Jean-Bernard Lasserre:
Linear Conic Optimization for Inverse Optimal Control. SIAM J. Control. Optim. 54(3): 1798-1825 (2016) - [c2]Edouard Pauwels, Jean B. Lasserre:
Sorting out typicality with the inverse moment matrix SOS polynomial. NIPS 2016: 190-198 - [i2]Jean-Bernard Lasserre, Edouard Pauwels:
Sorting out typicality with the inverse moment matrix SOS polynomial. CoRR abs/1606.03858 (2016) - 2015
- [j7]Amir Beck, Edouard Pauwels, Shoham Sabach:
The Cyclic Block Conditional Gradient Method for Convex Optimization Problems. SIAM J. Optim. 25(4): 2024-2049 (2015) - 2014
- [j6]Edouard Pauwels, Christian Lajaunie, Jean-Philippe Vert:
A Bayesian active learning strategy for sequential experimental design in systems biology. BMC Syst. Biol. 8(1): 102:1-102:11 (2014) - [c1]Edouard Pauwels, Didier Henrion, Jean-Bernard Lasserre:
Inverse optimal control with polynomial optimization. CDC 2014: 5581-5586 - [i1]Edouard Pauwels, Didier Henrion, Jean-Bernard Lasserre:
Inverse optimal control with polynomial optimization. CoRR abs/1403.5180 (2014) - 2012
- [j5]Yasuo Tabei, Edouard Pauwels, Véronique Stoven, Kazuhiro Takemoto, Yoshihiro Yamanishi:
Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers. Bioinform. 28(18): 487-494 (2012) - [j4]Sayaka Mizutani, Edouard Pauwels, Véronique Stoven, Susumu Goto, Yoshihiro Yamanishi:
Relating drug-protein interaction network with drug side effects. Bioinform. 28(18): 522-528 (2012) - [j3]Yoshihiro Yamanishi, Edouard Pauwels, Masaaki Kotera:
Drug Side-Effect Prediction Based on the Integration of Chemical and Biological Spaces. J. Chem. Inf. Model. 52(12): 3284-3292 (2012) - 2011
- [j2]Edouard Pauwels, Véronique Stoven, Yoshihiro Yamanishi:
Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinform. 12: 169 (2011) - [j1]Yoshihiro Yamanishi, Edouard Pauwels, Hiroto Saigo, Véronique Stoven:
Extracting Sets of Chemical Substructures and Protein Domains Governing Drug-Target Interactions. J. Chem. Inf. Model. 51(5): 1183-1194 (2011)
Coauthor Index
aka: Jean-Bernard Lasserre
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 21:42 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint