default search action
Jianbin Fang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j29]Jianbin Fang, Jidong Zhai, Zheng Wang:
Editorial for the special issue on programming models and system software for High-Performance Computing (HPC) environments. CCF Trans. High Perform. Comput. 6(3): 241-242 (2024) - [j28]Mouzhi Yang, Peng Zhang, Jianbin Fang, Weifeng Liu, Chun Huang:
thSORT: an efficient parallel sorting algorithm on multi-core DSPs. CCF Trans. High Perform. Comput. 6(5): 503-518 (2024) - [j27]Tao Tang, Kai Lu, Lin Peng, Yingbo Cui, Jianbin Fang, Chun Huang, Ruibo Wang, Canqun Yang, Yifei Guo:
SNCL: a supernode OpenCL implementation for hybrid computing arrays. J. Supercomput. 80(7): 9471-9493 (2024) - [j26]Weiling Yang, Jianbin Fang, Dezun Dong, Xing Su, Zheng Wang:
Optimizing Full-Spectrum Matrix Multiplications on ARMv8 Multi-Core CPUs. IEEE Trans. Parallel Distributed Syst. 35(3): 439-454 (2024) - [c47]Fugeng Zhu, Xinxin Qi, Peng Zhang, Jianbin Fang, Tao Tang, Yonggang Che, Kainan Yu, Jing Xie, Chun Huang, Jie Ren:
Optimizing Stencil Computation on Multi-core DSPs. ICPP 2024: 679-690 - [c46]Deshun Bi, Shengguo Li, Dezun Dong, Peng Zhang, Jianbin Fang:
Optimizing SpMV on Heterogeneous Multi-Core DSPs through Improved Locality and Vectorization. ICPP 2024: 1145-1155 - [c45]Kainan Yu, Xinxin Qi, Peng Zhang, Jianbin Fang, Dezun Dong, Ruibo Wang, Tao Tang, Chun Huang, Yonggang Che, Zheng Wang:
Optimizing General Matrix Multiplications on Modern Multi-core DSPs. IPDPS 2024: 964-975 - [c44]Haozhong Qiu, Chuanfu Xu, Jianbin Fang, Liang Deng, Jian Zhang, Qingsong Wang, Yue Ding, Zhe Dai, Yonggang Che, Shizhao Chen, Jie Liu:
Towards Scalable Unstructured Mesh Computations on Shared Memory Many-Cores. PPoPP 2024: 109-119 - [c43]Xinbiao Gan, Guang Wu, Shenghao Qiu, Feng Xiong, Jiaqi Si, Jianbin Fang, Dezun Dong, Chunye Gong, Tiejun Li, Zheng Wang:
GraphCube: Interconnection Hierarchy-aware Graph Processing. PPoPP 2024: 160-174 - [c42]Haozhong Qiu, Chuanfu Xu, Jianbin Fang, Jian Zhang, Liang Deng, Yue Ding, Qingsong Wang, Shizhao Chen, Yonggang Che, Jie Liu:
A Conflict-aware Divide-and-Conquer Algorithm for Symmetric Sparse Matrix-Vector Multiplication. SC 2024: 48 - 2023
- [j25]Wanrong Gao, Jianbin Fang, Chun Huang, Chuanfu Xu, Zheng Wang:
wrBench: Comparing Cache Architectures and Coherency Protocols on ARMv8 Many-Core Systems. J. Comput. Sci. Technol. 38(6): 1323-1338 (2023) - [j24]Jianbin Fang, Peng Zhang, Chun Huang, Tao Tang, Kai Lu, Ruibo Wang, Zheng Wang:
Programming bare-metal accelerators with heterogeneous threading models: a case study of Matrix-3000. Frontiers Inf. Technol. Electron. Eng. 24(4): 509-520 (2023) - [c41]Zhangyu Liu, Cheng Zhang, Huijun Wu, Jianbin Fang, Lin Peng, Guixin Ye, Zhanyong Tang:
Optimizing HPC I/O Performance with Regression Analysis and Ensemble Learning. CLUSTER 2023: 234-246 - [c40]Jintao Peng, Jianbin Fang, Jie Liu, Min Xie, Yi Dai, Bo Yang, Shengguo Li, Zheng Wang:
Optimizing MPI Collectives on Shared Memory Multi-Cores. SC 2023: 34:1-34:15 - [c39]Pengyu Wang, Weiling Yang, Jianbin Fang, Dezun Dong, Chun Huang, Peng Zhang, Tao Tang, Zheng Wang:
Optimizing Direct Convolutions on ARM Multi-Cores. SC 2023: 70:1-70:13 - 2022
- [j23]Kai Lu, Yaohua Wang, Yang Guo, Chun Huang, Sheng Liu, Ruibo Wang, Jianbin Fang, Tao Tang, Zhaoyun Chen, Biwei Liu, Zhong Liu, Yuanwu Lei, Haiyan Sun:
MT-3000: a heterogeneous multi-zone processor for HPC. CCF Trans. High Perform. Comput. 4(2): 150-164 (2022) - [j22]Donglin Chen, Xiang Gao, Chuanfu Xu, Siqi Wang, Shizhao Chen, Jianbin Fang, Zheng Wang:
FlowDNN: a physics-informed deep neural network for fast and accurate flow prediction. Frontiers Inf. Technol. Electron. Eng. 23(2): 207-219 (2022) - [c38]Wei Jiang, Bo Wang, Sheng Ma, Xiang Hou, Libo Huang, Yi Dai, Jianbin Fang:
PipeFB: An Optimized Pipeline Parallelism Scheme to Reduce the Peak Memory Usage. ICA3PP 2022: 590-604 - [i11]Jianbin Fang, Peng Zhang, Chun Huang, Tao Tang, Kai Lu, Ruibo Wang, Zheng Wang:
Programming Bare-Metal Accelerators with Heterogeneous Threading Models: A Case Study of Matrix-3000. CoRR abs/2210.12230 (2022) - 2021
- [j21]Jianbin Fang, Xiangke Liao, Chun Huang, Dezun Dong:
Performance Evaluation of Memory-Centric ARMv8 Many-Core Architectures: A Case Study with Phytium 2000+. J. Comput. Sci. Technol. 36(1): 33-43 (2021) - [j20]Jing Chen, Jianbin Fang, Weifeng Liu, Canqun Yang:
BALS: Blocked Alternating Least Squares for Parallel Sparse Matrix Factorization on GPUs. IEEE Trans. Parallel Distributed Syst. 32(9): 2291-2302 (2021) - [c37]Wanrong Gao, Jianbin Fang, Chun Huang, Chuanfu Xu, Zheng Wang:
Optimizing Barrier Synchronization on ARMv8 Many-Core Architectures. CLUSTER 2021: 542-552 - [c36]Pengyu Wang, Wanrong Gao, Jianbin Fang, Chun Huang, Zheng Wang:
Characterizing OpenMP Synchronization Implementations on ARMv8 Multi-Cores. HPCC/DSS/SmartCity/DependSys 2021: 669-676 - [c35]Weiling Yang, Jianbin Fang, Dezun Dong:
Characterizing Small-Scale Matrix Multiplications on ARMv8-based Many-Core Architectures. IPDPS 2021: 101-110 - [c34]Weiling Yang, Jianbin Fang, Dezun Dong, Xing Su, Zheng Wang:
LIBSHALOM: optimizing small and irregular-shaped matrix multiplications on ARMv8 multi-cores. SC 2021: 72 - 2020
- [j19]Jianbin Fang, Chun Huang, Tao Tang, Zheng Wang:
Parallel programming models for heterogeneous many-cores: a comprehensive survey. CCF Trans. High Perform. Comput. 2(4): 382-400 (2020) - [j18]Jing Chen, Jianbin Fang, Weifeng Liu, Tao Tang, Canqun Yang:
clMF: A fine-grained and portable alternating least squares algorithm for parallel matrix factorization. Future Gener. Comput. Syst. 108: 1192-1205 (2020) - [j17]Donglin Chen, Jianbin Fang, Chuanfu Xu, Shizhao Chen, Zheng Wang:
Characterizing Scalability of Sparse Matrix-Vector Multiplications on Phytium FT-2000+. Int. J. Parallel Program. 48(1): 80-97 (2020) - [j16]Zhaoyun Chen, Wei Quan, Mei Wen, Jianbin Fang, Jie Yu, Chunyuan Zhang, Lei Luo:
Deep Learning Research and Development Platform: Characterizing and Scheduling with QoS Guarantees on GPU Clusters. IEEE Trans. Parallel Distributed Syst. 31(1): 34-50 (2020) - [j15]Peng Zhang, Jianbin Fang, Canqun Yang, Chun Huang, Tao Tang, Zheng Wang:
Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures. IEEE Trans. Parallel Distributed Syst. 31(8): 1878-1896 (2020) - [c33]Guixin Ye, Zhanyong Tang, Huanting Wang, Dingyi Fang, Jianbin Fang, Songfang Huang, Zheng Wang:
Deep Program Structure Modeling Through Multi-Relational Graph-based Learning. PACT 2020: 111-123 - [c32]Wanrong Gao, Jianbin Fang, Chuanfu Xu, Chun Huang:
Dissecting the Phytium 2000+ Memory Hierarchy via Microbenchmarking. ACA 2020: 150-162 - [c31]Donglin Chen, Xiang Gao, Chuanfu Xu, Shizhao Chen, Jianbin Fang, Zhenghua Wang, Zheng Wang:
FlowGAN: A Conditional Generative Adversarial Network for Flow Prediction in Various Conditions. ICTAI 2020: 315-322 - [c30]Xiaosong Yu, Huihui Ma, Zhengyu Qu, Jianbin Fang, Weifeng Liu:
NUMA-Aware Optimization of Sparse Matrix-Vector Multiplication on ARMv8-Based Many-Core Architectures. NPC 2020: 231-242 - [i10]Peng Zhang, Jianbin Fang, Canqun Yang, Chun Huang, Tao Tang, Zheng Wang:
Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures: A Machine Learning Based Approach. CoRR abs/2003.04294 (2020) - [i9]Jianbin Fang, Chun Huang, Tao Tang, Zheng Wang:
Parallel Programming Models for Heterogeneous Many-Cores : A Survey. CoRR abs/2005.04094 (2020)
2010 – 2019
- 2019
- [j14]Donglin Chen, Jianbin Fang, Shizhao Chen, Chuanfu Xu, Zheng Wang:
Optimizing Sparse Matrix-Vector Multiplications on an ARMv8-based Many-Core Architecture. Int. J. Parallel Program. 47(3): 418-432 (2019) - [j13]Cheng Chen, Yunfei Du, Ke Zuo, Jianbin Fang, Canqun Yang:
Toward fault-tolerant hybrid programming over large-scale heterogeneous clusters via checkpointing/restart optimization. J. Supercomput. 75(8): 4226-4247 (2019) - [c29]Wenxu Zheng, Jianbin Fang, Chen Juan, Feihao Wu, Xiaodong Pan, Hao Wang, Xiaole Sun, Yuan Yuan, Min Xie, Chun Huang, Tao Tang, Zheng Wang:
Auto-Tuning MPI Collective Operations on Large-Scale Parallel Systems. HPCC/SmartCity/DSS 2019: 670-677 - [i8]Donglin Chen, Jianbin Fang, Chuanfu Xu, Shizhao Chen, Zheng Wang:
Characterizing Scalability of Sparse Matrix-Vector Multiplications on Phytium FT-2000+ Many-cores. CoRR abs/1911.08779 (2019) - 2018
- [j12]Xiangke Liao, Kai Lu, Canqun Yang, Jin-wen Li, Yuan Yuan, Ming-che Lai, Libo Huang, Pingjing Lu, Jianbin Fang, Jing Ren, Jie Shen:
Moving from exascale to zettascale computing: challenges and techniques. Frontiers Inf. Technol. Electron. Eng. 19(10): 1236-1244 (2018) - [j11]Minquan Fang, Jianbin Fang, Weimin Zhang, Haifang Zhou, Jianxing Liao, Yuangang Wang:
Benchmarking the GPU memory at the warp level. Parallel Comput. 71: 23-41 (2018) - [j10]Xuhao Chen, Cheng Chen, Jie Shen, Jianbin Fang, Tao Tang, Canqun Yang, Zhiying Wang:
Orchestrating parallel detection of strongly connected components on GPUs. Parallel Comput. 78: 101-114 (2018) - [c28]Peng Zhang, Tao Tang, Jianbin Fang, Chun Huang, Canqun Yang, Zheng Wang:
MOCL: an efficient openCL implementation for the matrix-2000 architecture. CF 2018: 26-35 - [c27]Jie Ren, Xiaoming Wang, Jianbin Fang, Yansong Feng, Dongxiao Zhu, Zhunchen Luo, Jie Zheng, Zheng Wang:
Proteus: network-aware web browsing on heterogeneous mobile systems. CoNEXT 2018: 379-392 - [c26]Shizhao Chen, Jianbin Fang, Donglin Chen, Chuanfu Xu, Zheng Wang:
Adaptive Optimization of Sparse Matrix-Vector Multiplication on Emerging Many-Core Architectures. HPCC/SmartCity/DSS 2018: 649-658 - [c25]Peng Zhang, Jianbin Fang, Tao Tang, Canqun Yang, Zheng Wang:
Auto-tuning Streamed Applications on Intel Xeon Phi. IPDPS 2018: 515-525 - [c24]Qing Qin, Jie Ren, Jialong Yu, Hai Wang, Ling Gao, Jie Zheng, Yansong Feng, Jianbin Fang, Zheng Wang:
To Compress, or Not to Compress: Characterizing Deep Learning Model Compression for Embedded Inference. ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018: 729-736 - [i7]Peng Zhang, Jianbin Fang, Tao Tang, Canqun Yang, Zheng Wang:
Tuning Streamed Applications on Intel Xeon Phi: A Machine Learning Based Approach. CoRR abs/1802.02760 (2018) - [i6]Shizhao Chen, Jianbin Fang, Donglin Chen, Chuanfu Xu, Zheng Wang:
Optimizing Sparse Matrix-Vector Multiplication on Emerging Many-Core Architectures. CoRR abs/1805.11938 (2018) - [i5]Qing Qin, Jie Ren, Jialong Yu, Ling Gao, Hai Wang, Jie Zheng, Yansong Feng, Jianbin Fang, Zheng Wang:
To Compress, or Not to Compress: Characterizing Deep Learning Model Compression for Embedded Inference. CoRR abs/1810.08899 (2018) - 2017
- [j9]Cheng Chen, Jianbin Fang, Tao Tang, Canqun Yang:
LU factorization on heterogeneous systems: an energy-efficient approach towards high performance. Computing 99(8): 791-811 (2017) - [j8]Xuhao Chen, Pingfan Li, Jianbin Fang, Tao Tang, Zhiying Wang, Canqun Yang:
Efficient and high-quality sparse graph coloring on GPUs. Concurr. Comput. Pract. Exp. 29(10) (2017) - [j7]Jing Chen, Jianbin Fang, Tao Tang, Canqun Yang:
多核/众核平台上推荐算法的实现与性能评估 (Implementation and Performance Evaluation of Recommender Algorithms Based on Multi-/Many-core Platforms). 计算机科学 44(10): 71-74 (2017) - [c23]Xi Yang, Jianbin Fang, Jing Chen, Chengkun Wu, Tao Tang, Kai Lu:
High Performance Coordinate Descent Matrix Factorization for Recommender Systems. Conf. Computing Frontiers 2017: 117-126 - [c22]Jing Chen, Jianbin Fang, Weifeng Liu, Tao Tang, Xuhao Chen, Canqun Yang:
Efficient and Portable ALS Matrix Factorization for Recommender Systems. IPDPS Workshops 2017: 409-418 - [c21]Jianbin Fang, Peng Zhang, Tao Tang, Chun Huang, Canqun Yang:
Implementing and Evaluating OpenCL on an ARMv8 Multi-Core CPU. ISPA/IUCC 2017: 860-867 - [c20]Pingfan Li, Xuhao Chen, Jie Shen, Jianbin Fang, Tao Tang, Canqun Yang:
High Performance Detection of Strongly Connected Components in Sparse Graphs on GPUs. PMAM@PPoPP 2017: 48-57 - 2016
- [j6]Jianbin Fang, Peng Zhang, Zhaokui Li, Tao Tang, Xuhao Chen, Cheng Chen, Canqun Yang:
Evaluating Multiple Streams on Heterogeneous Platforms. Parallel Process. Lett. 26(4): 1640002:1-1640002:18 (2016) - [c19]Canqun Yang, Cheng Chen, Tao Tang, Xuhao Chen, Jianbin Fang, Jingling Xue:
An Energy-Efficient Implementation of LU Factorization on Heterogeneous Systems. ICPADS 2016: 971-979 - [c18]Pingfan Li, Xuhao Chen, Zhe Quan, Jianbin Fang, Huayou Su, Tao Tang, Canqun Yang:
High Performance Parallel Graph Coloring on GPGPUs. IPDPS Workshops 2016: 845-854 - [c17]Zhaokui Li, Jianbin Fang, Tao Tang, Xuhao Chen, Cheng Chen, Canqun Yang:
Evaluating the Performance Impact of Multiple Streams on the MIC-Based Heterogeneous Platform. IPDPS Workshops 2016: 1341-1350 - [c16]Liang Deng, Jianbin Fang, Fang Wang, Hanli Bai:
Evaluating Multi-core and Many-Core Architectures through Accelerating an Alternating Direction Implicit CFD Solver. ISPDC 2016: 1-10 - [c15]Zhaokui Li, Jianbin Fang, Tao Tang, Xuhao Chen, Canqun Yang:
Streaming Applications on Heterogeneous Platforms. NPC 2016: 116-129 - [i4]Zhaokui Li, Jianbin Fang, Tao Tang, Xuhao Chen, Cheng Chen, Canqun Yang:
Evaluating the Performance Impact of Multiple Streams on the MIC-based Heterogeneous Platform. CoRR abs/1603.08619 (2016) - [i3]Zhaokui Li, Jianbin Fang, Tao Tang, Xuhao Chen, Canqun Yang:
Streaming Applications on Heterogeneous Platforms. CoRR abs/1608.03044 (2016) - 2015
- [j5]Yonggang Che, Chuanfu Xu, Jianbin Fang, Yongxian Wang, Zhenghua Wang:
Realistic Performance Characterization of CFD Applications on Intel Many Integrated Core Architecture. Comput. J. 58(12): 3279-3294 (2015) - [j4]Jianbin Fang, Ana Lucia Varbanescu, Xiangke Liao, Henk J. Sips:
Evaluating vector data type usage in OpenCL kernels. Concurr. Comput. Pract. Exp. 27(17): 4586-4602 (2015) - [c14]Minquan Fang, Yi Yu, Weimin Zhang, Heng Wu, Mingzhu Deng, Jianbin Fang:
High Performance Computing of Fast Independent Component Analysis for Hyperspectral Image Dimensionality Reduction on MIC-Based Clusters. ICPP Workshops 2015: 138-145 - [i2]Robert Andrawis, José David Bermeo, James Charles, Jianbin Fang, Jim Fonseca, Yu He, Gerhard Klimeck, Zhengping Jiang, Tillmann Kubis, Daniel F. Mejia, Daniel Lemus, Michael Povolotskyi, Santiago Alonso Pérez-Rubiano, Prasad Sarangapani, Lang Zeng:
NEMO5: Achieving High-end Internode Communication for Performance Projection Beyond Moore's Law. CoRR abs/1510.04686 (2015) - 2014
- [b1]Jianbin Fang:
Towards a Systematic Exploration of the Optimization Space for Many-Core Processors. Delft University of Technology, Netherlands, 2014 - [j3]Chuanfu Xu, Xiaogang Deng, Lilun Zhang, Jianbin Fang, Guangxue Wang, Yi Jiang, Wei Cao, Yonggang Che, Yongxian Wang, Zhenghua Wang, Wei Liu, Xinghua Cheng:
Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer. J. Comput. Phys. 278: 275-297 (2014) - [j2]Jianbin Fang, Henk J. Sips, Ana Lucia Varbanescu:
Aristotle: A performance impact indicator for the OpenCL kernels using local memory. Sci. Program. 22(3): 239-257 (2014) - [c13]Jianbin Fang, Henk J. Sips, Pekka Jääskeläinen, Ana Lucia Varbanescu:
Grover: Looking for Performance Improvement by Disabling Local Memory Usage in OpenCL Kernels. ICPP 2014: 162-171 - [c12]Chuanfu Xu, Lilun Zhang, Xiaogang Deng, Jianbin Fang, Guangxue Wang, Wei Cao, Yonggang Che, Yongxian Wang, Wei Liu:
Balancing CPU-GPU Collaborative High-Order CFD Simulations on the Tianhe-1A Supercomputer. IPDPS 2014: 725-734 - [c11]Jianbin Fang, Ana Lucia Varbanescu, Baldomero Imbernon, José M. Cecilia, Horacio Emilio Pérez Sánchez:
Parallel Computation of Non-Bonded Interactions in Drug Discovery: Nvidia GPUs vs. Intel Xeon Phi. IWBBIO 2014: 579-588 - [c10]Jianbin Fang, Henk J. Sips, Lilun Zhang, Chuanfu Xu, Yonggang Che, Ana Lucia Varbanescu:
Test-driving Intel Xeon Phi. ICPE 2014: 137-148 - 2013
- [j1]Jie Shen, Jianbin Fang, Henk J. Sips, Ana Lucia Varbanescu:
An application-centric evaluation of OpenCL on multi-core CPUs. Parallel Comput. 39(12): 834-850 (2013) - [c9]Jianbin Fang, Ana Lucia Varbanescu, Henk J. Sips:
Sesame: A User-Transparent Optimizing Framework for Many-Core Processors. CCGRID 2013: 70-73 - [c8]Jie Shen, Jianbin Fang, Henk J. Sips, Ana Lucia Varbanescu:
Performance Traps in OpenCL for CPUs. PDP 2013: 38-45 - [c7]Jianbin Fang, Ana Lucia Varbanescu, Jie Shen, Henk J. Sips:
ELMO: A User-Friendly API to Enable Local Memory in OpenCL Kernels. PDP 2013: 375-383 - [c6]Chuanfu Xu, Xiaogang Deng, Lilun Zhang, Yi Jiang, Wei Cao, Jianbin Fang, Yonggang Che, Yongxian Wang, Wei Liu:
Parallelizing a High-Order CFD Software for 3D, Multi-block, Structural Grids on the TianHe-1A Supercomputer. ISC 2013: 26-39 - [i1]Jianbin Fang, Ana Lucia Varbanescu, Henk J. Sips, Lilun Zhang, Yonggang Che, Chuanfu Xu:
An Empirical Study of Intel Xeon Phi. CoRR abs/1310.5842 (2013) - 2012
- [c5]Jianbin Fang, Ana Lucia Varbanescu, Jie Shen, Henk J. Sips, Gorkem Saygili, Laurens van der Maaten:
Accelerating Cost Aggregation for Real-Time Stereo Matching. ICPADS 2012: 472-481 - [c4]Jie Shen, Jianbin Fang, Henk J. Sips, Ana Lucia Varbanescu:
Performance Gaps between OpenMP and OpenCL for Multi-core CPUs. ICPP Workshops 2012: 116-125 - 2011
- [c3]Jianbin Fang, Ana Lucia Varbanescu, Henk J. Sips:
An Auto-tuning Solution to Data Streams Clustering in OpenCL. CSE 2011: 587-594 - [c2]Jianbin Fang, Ana Lucia Varbanescu, Henk J. Sips:
A Comprehensive Performance Comparison of CUDA and OpenCL. ICPP 2011: 216-225 - 2010
- [c1]Chuanfu Xu, Yonggang Che, Jianbin Fang, Zhenghua Wang:
Optimizing Adaptive Synchronization in Parallel Simulators for Large-scale Parallel Systems and Applications. CIT 2010: 131-138
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-26 01:51 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint