default search action
Francisco Martínez-Álvarez
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j63]M. J. Jiménez-Navarro, María Martínez-Ballesteros, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés:
Explaining deep learning models for ozone pollution prediction via embedded feature selection. Appl. Soft Comput. 157: 111504 (2024) - [j62]Rubén Pérez-Chacón, Gualberto Asencio-Cortés, Alicia Troncoso Lora, Francisco Martínez-Álvarez:
Pattern sequence-based algorithm for multivariate big data time series forecasting: Application to electricity consumption. Future Gener. Comput. Syst. 154: 397-412 (2024) - [j61]Francisco Martínez-Álvarez, Rudolf Scitovski, Cristina Rubio-Escudero, Antonio Morales-Esteban:
Emerging trends in big data analytics and natural disasters. Comput. Geosci. 182: 105465 (2024) - 2023
- [j60]A. R. Troncoso-García, Isabel Brito, Alicia Troncoso, Francisco Martínez-Álvarez:
Explainable hybrid deep learning and Coronavirus Optimization Algorithm for improving evapotranspiration forecasting. Comput. Electron. Agric. 215: 108387 (2023) - [j59]Laura Melgar-García, Francisco Martínez-Álvarez, Dieu Tien Bui, Alicia Troncoso:
A novel semantic segmentation approach based on U-Net, WU-Net, and U-Net++ deep learning for predicting areas sensitive to pluvial flood at tropical area. Int. J. Digit. Earth 16(1): 3661-3679 (2023) - [j58]Dalil Hadjout, Abderrazak Sebaa, José F. Torres, Francisco Martínez-Álvarez:
Electricity consumption forecasting with outliers handling based on clustering and deep learning with application to the Algerian market. Expert Syst. Appl. 227: 120123 (2023) - [j57]A. R. Troncoso-García, María Martínez-Ballesteros, Francisco Martínez-Álvarez, Alicia Troncoso:
A new approach based on association rules to add explainability to time series forecasting models. Inf. Fusion 94: 169-180 (2023) - [j56]M. J. Jiménez-Navarro, María Martínez-Ballesteros, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés:
PHILNet: A novel efficient approach for time series forecasting using deep learning. Inf. Sci. 632: 815-832 (2023) - [j55]Manuel Jesús Jiménez-Navarro, María Martínez-Ballesteros, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés:
A new deep learning architecture with inductive bias balance for transformer oil temperature forecasting. J. Big Data 10(1): 80 (2023) - [j54]Andrés Manuel Chacón-Maldonado, Gualberto Asencio-Cortés, Francisco Martínez-Álvarez, Alicia Troncoso:
FS-Studio: An extensive and efficient feature selection experimentation tool for Weka Explorer. SoftwareX 23: 101401 (2023) - [j53]Antonio M. Fernández-Gómez, David Gutiérrez-Avilés, Alicia Troncoso, Francisco Martínez-Álvarez:
A new Apache Spark-based framework for big data streaming forecasting in IoT networks. J. Supercomput. 79(10): 11078-11100 (2023) - 2022
- [j52]Kien-Trinh Thi Bui, José F. Torres, David Gutiérrez-Avilés, Viet-Ha Nhu, Dieu Tien Bui, Francisco Martínez-Álvarez:
Deformation forecasting of a hydropower dam by hybridizing a long short-term memory deep learning network with the coronavirus optimization algorithm. Comput. Aided Civ. Infrastructure Eng. 37(11): 1368-1386 (2022) - [j51]Francisco Martínez-Álvarez, Alicia Troncoso Lora, Héctor Quintián, Emilio Corchado:
Special issue SOCO 2019: New trends in soft computing and its application in industrial and environmental problems. Neurocomputing 470: 278-279 (2022) - [j50]Laura Melgar-García, David Gutiérrez-Avilés, Maria Teresa Godinho, Rita Espada, Isabel Sofia Brito, Francisco Martínez-Álvarez, Alicia Troncoso, Cristina Rubio-Escudero:
A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture. Neurocomputing 500: 268-278 (2022) - [j49]Miguel Angel Molina-Cabanillas, M. J. Jiménez-Navarro, Ricardo Arjona, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés:
DIAFAN-TL: An instance weighting-based transfer learning algorithm with application to phenology forecasting. Knowl. Based Syst. 254: 109644 (2022) - [j48]José F. Torres, Francisco Martínez-Álvarez, Alicia Troncoso:
A deep LSTM network for the Spanish electricity consumption forecasting. Neural Comput. Appl. 34(13): 10533-10545 (2022) - 2021
- [j47]Aythami Morales, Francisco Martínez-Álvarez, Russell L. Woods:
Saccade Landing Point Prediction Based on Fine-Grained Learning Method. IEEE Access 9: 52474-52484 (2021) - [j46]José F. Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martínez-Álvarez, Alicia Troncoso:
Deep Learning for Time Series Forecasting: A Survey. Big Data 9(1): 3-21 (2021) - [j45]Antonio Morales-Esteban, Francisco Martínez-Álvarez, Sanja Scitovski, Rudolf Scitovski:
Mahalanobis clustering for the determination of incidence-magnitude seismic parameters for the Iberian Peninsula and the Republic of Croatia. Comput. Geosci. 156: 104873 (2021) - 2020
- [j44]Francisco Martínez-Álvarez, Pedro J. Zufiria, Luis José Yebra:
Port-Hamiltonian Modeling of Multiphysics Systems and Object-Oriented Implementation With the Modelica Language. IEEE Access 8: 105980-105996 (2020) - [j43]Antonio M. Fernández, David Gutiérrez-Avilés, Alicia Troncoso Lora, Francisco Martínez-Álvarez:
Automated Deployment of a Spark Cluster with Machine Learning Algorithm Integration. Big Data Res. 19-20: 100135 (2020) - [j42]Francisco Martínez-Álvarez, Gualberto Asencio-Cortés, José F. Torres, David Gutiérrez-Avilés, Laura Melgar-García, Rubén Pérez-Chacón, Cristina Rubio-Escudero, José C. Riquelme, Alicia Troncoso Lora:
Coronavirus Optimization Algorithm: A Bioinspired Metaheuristic Based on the COVID-19 Propagation Model. Big Data 8(4): 308-322 (2020) - [j41]Guillermo Santamaría Bonfil, María-Blanca Ibáñez-Espiga, Miguel Pérez-Ramírez, Gustavo Arroyo-Figueroa, Francisco Martínez-Álvarez:
Learning analytics for student modeling in virtual reality training systems: Lineworkers case. Comput. Educ. 151: 103871 (2020) - [j40]Rubén Pérez-Chacón, Gualberto Asencio-Cortés, Francisco Martínez-Álvarez, Alicia Troncoso Lora:
Big data time series forecasting based on pattern sequence similarity and its application to the electricity demand. Inf. Sci. 540: 160-174 (2020) - [j39]Francisco Martínez-Álvarez, Dieu Tien Bui:
Advanced Machine Learning and Big Data Analytics in Remote Sensing for Natural Hazards Management. Remote. Sens. 12(2): 301 (2020) - [j38]Fateme Moslehi, Abdorrahman Haeri, Francisco Martínez-Álvarez:
A novel hybrid GA-PSO framework for mining quantitative association rules. Soft Comput. 24(6): 4645-4666 (2020) - 2019
- [j37]Catalina Gomez-Quiles, Gualberto Asencio-Cortés, Adolfo Gastalver-Rubio, Francisco Martínez-Álvarez, Alicia Troncoso, Joan Manresa, José C. Riquelme, Jesús Manuel Riquelme-Santos:
A Novel Ensemble Method for Electric Vehicle Power Consumption Forecasting: Application to the Spanish System. IEEE Access 7: 120840-120856 (2019) - [j36]José F. Torres, Alicia Troncoso, Irena Koprinska, Zheng Wang, Francisco Martínez-Álvarez:
Big data solar power forecasting based on deep learning and multiple data sources. Expert Syst. J. Knowl. Eng. 36(4) (2019) - [j35]Francisco Martínez-Álvarez, A. Morales-Esteban:
Big data and natural disasters: New approaches for spatial and temporal massive data analysis. Comput. Geosci. 129: 38-39 (2019) - [j34]Francisco Martínez-Álvarez, Alicia Troncoso, Héctor Quintián, Emilio Corchado:
Special issue on Hybrid Artificial Intelligence Systems from HAIS 2016 Conference. Neurocomputing 353: 1-2 (2019) - [j33]Ricardo L. Talavera-Llames, Rubén Pérez-Chacón, Alicia Troncoso, Francisco Martínez-Álvarez:
MV-kWNN: A novel multivariate and multi-output weighted nearest neighbours algorithm for big data time series forecasting. Neurocomputing 353: 56-73 (2019) - [j32]Antonio Galicia, Ricardo L. Talavera-Llames, Alicia Troncoso Lora, Irena Koprinska, Francisco Martínez-Álvarez:
Multi-step forecasting for big data time series based on ensemble learning. Knowl. Based Syst. 163: 830-841 (2019) - 2018
- [j31]José L. Amaro-Mellado, Antonio Morales-Esteban, Francisco Martínez-Álvarez:
Mapping of seismic parameters of the Iberian Peninsula by means of a geographic information system. Central Eur. J. Oper. Res. 26(3): 739-758 (2018) - [j30]Álvaro Gómez-Losada, Gualberto Asencio-Cortés, Francisco Martínez-Álvarez, José C. Riquelme:
A novel approach to forecast urban surface-level ozone considering heterogeneous locations and limited information. Environ. Model. Softw. 110: 52-61 (2018) - [j29]Emilio Florido, Gualberto Asencio-Cortés, José Luis Aznarte, Cristina Rubio-Escudero, Francisco Martínez-Álvarez:
A novel tree-based algorithm to discover seismic patterns in earthquake catalogs. Comput. Geosci. 115: 96-104 (2018) - [j28]Gualberto Asencio-Cortés, Antonio Morales-Esteban, Xueyi Shang, Francisco Martínez-Álvarez:
Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure. Comput. Geosci. 115: 198-210 (2018) - [j27]José F. Torres, Antonio Galicia, Alicia Troncoso Lora, Francisco Martínez-Álvarez:
A scalable approach based on deep learning for big data time series forecasting. Integr. Comput. Aided Eng. 25(4): 335-348 (2018) - [j26]Antonio Galicia, José F. Torres, Francisco Martínez-Álvarez, Alicia Troncoso Lora:
A novel spark-based multi-step forecasting algorithm for big data time series. Inf. Sci. 467: 800-818 (2018) - [j25]Ricardo L. Talavera-Llames, Rubén Pérez-Chacón, Alicia Troncoso Lora, Francisco Martínez-Álvarez:
Big data time series forecasting based on nearest neighbours distributed computing with Spark. Knowl. Based Syst. 161: 12-25 (2018) - [j24]Neeraj Bokde, Marcus W. Beck, Francisco Martínez-Álvarez, Kishore Kulat:
A novel imputation methodology for time series based on pattern sequence forecasting. Pattern Recognit. Lett. 116: 88-96 (2018) - 2017
- [j23]Francisco Martínez-Álvarez, Alicia Troncoso, Jorge Reyes, María Martínez-Ballesteros, José C. Riquelme:
Applications of Computational Intelligence in Time Series. Comput. Intell. Neurosci. 2017: 9361749:1-9361749:2 (2017) - [j22]Gualberto Asencio-Cortés, Sanja Scitovski, Rudolf Scitovski, Francisco Martínez-Álvarez:
Temporal analysis of croatian seismogenic zones to improve earthquake magnitude prediction. Earth Sci. Informatics 10(3): 303-320 (2017) - [j21]Gualberto Asencio-Cortés, Francisco Martínez-Álvarez, A. Morales-Esteban, Jorge Reyes, Alicia Troncoso Lora:
Using principal component analysis to improve earthquake magnitude prediction in Japan. Log. J. IGPL 25(6): 949-966 (2017) - [j20]Gualberto Asencio-Cortés, Francisco Martínez-Álvarez, Alicia Troncoso Lora, A. Morales-Esteban:
Medium-large earthquake magnitude prediction in Tokyo with artificial neural networks. Neural Comput. Appl. 28(5): 1043-1055 (2017) - [j19]Neeraj Bokde, Gualberto Asencio-Cortés, Francisco Martínez-Álvarez, Kishore Kulat:
PSF: Introduction to R Package for Pattern Sequence Based Forecasting Algorithm. R J. 9(1): 324 (2017) - 2016
- [j18]María Martínez-Ballesteros, Alicia Troncoso, Francisco Martínez-Álvarez, José C. Riquelme:
Obtaining optimal quality measures for quantitative association rules. Neurocomputing 176: 36-47 (2016) - [j17]María Martínez-Ballesteros, Alicia Troncoso Lora, Francisco Martínez-Álvarez, José C. Riquelme:
Improving a multi-objective evolutionary algorithm to discover quantitative association rules. Knowl. Inf. Syst. 49(2): 481-509 (2016) - [j16]Gualberto Asencio-Cortés, Francisco Martínez-Álvarez, A. Morales-Esteban, Jorge Reyes:
A sensitivity study of seismicity indicators in supervised learning to improve earthquake prediction. Knowl. Based Syst. 101: 15-30 (2016) - [j15]Gualberto Asencio-Cortés, Emilio Florido, Alicia Troncoso, Francisco Martínez-Álvarez:
A novel methodology to predict urban traffic congestion with ensemble learning. Soft Comput. 20(11): 4205-4216 (2016) - 2015
- [j14]Francisco Martínez-Álvarez, David Gutiérrez-Avilés, Antonio Morales-Esteban, Jorge Reyes, José L. Amaro-Mellado, Cristina Rubio-Escudero:
A Novel Method for Seismogenic Zoning Based on Triclustering: Application to the Iberian Peninsula. Entropy 17(7): 5000-5021 (2015) - [j13]Emilio Florido, Francisco Martínez-Álvarez, Antonio Morales-Esteban, Jorge Reyes, José Luis Aznarte-Mellado:
Detecting precursory patterns to enhance earthquake prediction in Chile. Comput. Geosci. 76: 112-120 (2015) - [j12]Jorge García-Gutiérrez, Francisco Martínez-Álvarez, Alicia Troncoso Lora, José C. Riquelme:
A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables. Neurocomputing 167: 24-31 (2015) - 2014
- [j11]Antonio Morales-Esteban, Francisco Martínez-Álvarez, Sanja Scitovski, Rudolf Scitovski:
A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning. Comput. Geosci. 73: 132-141 (2014) - [j10]María Martínez-Ballesteros, Francisco Martínez-Álvarez, Alicia Troncoso Lora, José C. Riquelme:
Selecting the best measures to discover quantitative association rules. Neurocomputing 126: 3-14 (2014) - [j9]David Gutiérrez-Avilés, Cristina Rubio-Escudero, Francisco Martínez-Álvarez, José C. Riquelme:
TriGen: A genetic algorithm to mine triclusters in temporal gene expression data. Neurocomputing 132: 42-53 (2014) - 2013
- [j8]Jorge Reyes, A. Morales-Esteban, Francisco Martínez-Álvarez:
Neural networks to predict earthquakes in Chile. Appl. Soft Comput. 13(2): 1314-1328 (2013) - [j7]Francisco Martínez-Álvarez, Jorge Reyes, A. Morales-Esteban, Cristina Rubio-Escudero:
Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula. Knowl. Based Syst. 50: 198-210 (2013) - 2011
- [j6]Francisco Martínez-Álvarez:
Clustering preprocessing to improve time series forecasting. AI Commun. 24(1): 97-98 (2011) - [j5]Francisco Martínez-Álvarez, Alicia Troncoso Lora, José C. Riquelme, Jesús S. Aguilar-Ruiz:
Discovery of motifs to forecast outlier occurrence in time series. Pattern Recognit. Lett. 32(12): 1652-1665 (2011) - [j4]María Martínez-Ballesteros, Francisco Martínez-Álvarez, Alicia Troncoso Lora, José C. Riquelme:
An evolutionary algorithm to discover quantitative association rules in multidimensional time series. Soft Comput. 15(10): 2065-2084 (2011) - [j3]Francisco Martínez-Álvarez, Alicia Troncoso Lora, José C. Riquelme, Jesús S. Aguilar-Ruiz:
Energy Time Series Forecasting Based on Pattern Sequence Similarity. IEEE Trans. Knowl. Data Eng. 23(8): 1230-1243 (2011) - 2010
- [j2]A. Morales-Esteban, Francisco Martínez-Álvarez, Alicia Troncoso Lora, J. L. Justo, Cristina Rubio-Escudero:
Pattern recognition to forecast seismic time series. Expert Syst. Appl. 37(12): 8333-8342 (2010) - [j1]María Martínez-Ballesteros, Alicia Troncoso Lora, Francisco Martínez-Álvarez, José C. Riquelme:
Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution. Integr. Comput. Aided Eng. 17(3): 227-242 (2010)
Conference and Workshop Papers
- 2024
- [c59]Angela del Robledo Troncoso-García, Manuel Jesús Jiménez-Navarro, Francisco Martínez-Álvarez, Alicia Troncoso:
Ground-Level Ozone Forecasting Using Explainable Machine Learning. CAEPIA 2024: 71-80 - [c58]Francesc Rodríguez-Díaz, José Francisco Torres, David Gutiérrez-Avilés, Alicia Troncoso, Francisco Martínez-Álvarez:
An Experimental Comparison of Qiskit and Pennylane for Hybrid Quantum-Classical Support Vector Machines. CAEPIA 2024: 121-130 - [c57]David Gutiérrez-Avilés, José F. Torres, Francisco Martínez-Álvarez, Jairo Cugliari:
An evolutionary triclustering approach to discover electricity consumption patterns in France. SAC 2024: 386-394 - 2023
- [c56]E. Tefera, María Martínez-Ballesteros, Alicia Troncoso, Francisco Martínez-Álvarez:
A New Hybrid CNN-LSTM for Wind Power Forecasting in Ethiopia. HAIS 2023: 207-218 - [c55]José F. Torres, S. Valencia, Francisco Martínez-Álvarez, N. Hoyos:
Predicting Wildfires in the Caribbean Using Multi-source Satellite Data and Deep Learning. IWANN (2) 2023: 3-14 - [c54]M. J. Jiménez-Navarro, María Martínez-Ballesteros, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés:
Embedded Temporal Feature Selection for Time Series Forecasting Using Deep Learning. IWANN (2) 2023: 15-26 - [c53]A. R. Troncoso-García, María Martínez-Ballesteros, Francisco Martínez-Álvarez, Alicia Troncoso Lora:
Deep Learning-Based Approach for Sleep Apnea Detection Using Physiological Signals. IWANN (1) 2023: 626-637 - [c52]Angela Troncoso-García, Alicia Troncoso Lora, Francisco Martínez-Álvarez, María Martínez-Ballesteros:
Evolutionary computation to explain deep learning models for time series forecasting. SAC 2023: 433-436 - [c51]Manuel Jesús Jiménez-Navarro, María Martínez-Ballesteros, Isabel Sofia Brito, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés:
A bioinspired ensemble approach for multi-horizon reference evapotranspiration forecasting in Portugal. SAC 2023: 441-448 - [c50]Andrés Manuel Chacón-Maldonado, A. R. Troncoso-García, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés, Alicia Troncoso:
Olive Oil Fly Population Pest Forecasting Using Explainable Deep Learning. SOCO (2) 2023: 121-131 - [c49]M. J. Jiménez-Navarro, María Martínez-Ballesteros, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés:
Explaining Learned Patterns in Deep Learning by Association Rules Mining. SOCO (2) 2023: 132-141 - [c48]Pablo Casas-Gómez, Francisco Martínez-Álvarez, Alicia Troncoso, Juan Carlos Linares:
Machine Learning Approaches for Predicting Tree Growth Trends Based on Basal Area Increment. SOCO (1) 2023: 229-238 - 2022
- [c47]Andrés Manuel Chacón-Maldonado, Miguel Angel Molina-Cabanillas, Alicia Troncoso, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés:
Olive Phenology Forecasting Using Information Fusion-Based Imbalanced Preprocessing and Automated Deep Learning. HAIS 2022: 274-285 - [c46]A. R. Troncoso-García, María Martínez-Ballesteros, Francisco Martínez-Álvarez, Alicia Troncoso:
Explainable machine learning for sleep apnea prediction. KES 2022: 2930-2939 - [c45]C. Segarra-Martín, María Martínez-Ballesteros, Alicia Troncoso, Francisco Martínez-Álvarez:
A novel approach to discover numerical association based on the coronavirus optimization algorithm. SAC 2022: 1148-1151 - [c44]Juan Alberto Gallardo-Gómez, Federico Divina, Alicia Troncoso, Francisco Martínez-Álvarez:
Explainable Artificial Intelligence for the Electric Vehicle Load Demand Forecasting Problem. SOCO 2022: 413-422 - [c43]Ejigu T. Habtermariam, Kula Kekeba, Alicia Troncoso, Francisco Martínez-Álvarez:
A Cluster-Based Deep Learning Model for Energy Consumption Forecasting in Ethiopia. SOCO 2022: 423-432 - [c42]Manuel Jesús Jiménez-Navarro, María Martínez-Ballesteros, Isabel Sofia Sousa Brito, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés:
Feature-Aware Drop Layer (FADL): A Nonparametric Neural Network Layer for Feature Selection. SOCO 2022: 557-566 - 2021
- [c41]José F. Torres, M. J. Jiménez-Navarro, Francisco Martínez-Álvarez, Alicia Troncoso:
Electricity Consumption Time Series Forecasting Using Temporal Convolutional Networks. CAEPIA 2021: 216-225 - [c40]M. Á. Molina, M. J. Jiménez-Navarro, Francisco Martínez-Álvarez, Gualberto Asencio-Cortés:
A Model-Based Deep Transfer Learning Algorithm for Phenology Forecasting Using Satellite Imagery. HAIS 2021: 511-523 - [c39]A. Melara, José F. Torres, Alicia Troncoso, Francisco Martínez-Álvarez:
Electricity Generation Forecasting in Concentrating Solar-Thermal Power Plants with Ensemble Learning. SOCO 2021: 665-674 - [c38]M. J. Jiménez-Navarro, Francisco Martínez-Álvarez, Alicia Troncoso, Gualberto Asencio-Cortés:
HLNet: A Novel Hierarchical Deep Neural Network for Time Series Forecasting. SOCO 2021: 717-727 - [c37]Dalil Hadjout, José F. Torres, Abderrazak Sebaa, Francisco Martínez-Álvarez:
Medium-Term Electricity Consumption Forecasting in Algeria Based on Clustering, Deep Learning and Bayesian Optimization Methods. SOCO 2021: 739-748 - 2020
- [c36]Oihana Mitxelena-Hoyos, José Lázaro Amaro-Mellado, Francisco Martínez-Álvarez:
Use of IT in Project-Based Learning Applied to the Subject Surveying in Civil Engineering. ICEUTE 2020: 428-437 - [c35]Pedro Lara-Benítez, Manuel Carranza-García, Francisco Martínez-Álvarez, José C. Riquelme:
On the Performance of Deep Learning Models for Time Series Classification in Streaming. SOCO 2020: 144-154 - [c34]Laura Melgar-García, Maria Teresa Godinho, Rita Espada, David Gutiérrez-Avilés, Isabel Sofia Brito, Francisco Martínez-Álvarez, Alicia Troncoso, Cristina Rubio-Escudero:
Discovering Spatio-Temporal Patterns in Precision Agriculture Based on Triclustering. SOCO 2020: 226-236 - [c33]Miguel Ángel Molina, Gualberto Asencio-Cortés, José C. Riquelme, Francisco Martínez-Álvarez:
A Preliminary Study on Deep Transfer Learning Applied to Image Classification for Small Datasets. SOCO 2020: 741-750 - 2019
- [c32]Miguel García-Torres, David Becerra-Alonso, Francisco Antonio Gómez Vela, Federico Divina, Isabel López-Cobo, Francisco Martínez-Álvarez:
Analysis of Student Achievement Scores: A Machine Learning Approach. CISIS-ICEUTE 2019: 275-284 - [c31]José Lázaro Amaro-Mellado, Daniel Antón, Macarena Pérez-Suárez, Francisco Martínez-Álvarez:
Game-Based Student Response System Applied to a Multidisciplinary Teaching Context. CISIS-ICEUTE 2019: 329-339 - [c30]Cristina Rubio-Escudero, Francisco Martínez-Álvarez, E. Atencia-Gil, Alicia Troncoso:
Implementation of an Internal Quality Assurance System at Pablo de Olavide University of Seville: Improving Computer Science Students Skills. CISIS-ICEUTE 2019: 340-348 - [c29]José F. Torres, David Gutiérrez-Avilés, Alicia Troncoso, Francisco Martínez-Álvarez:
Random Hyper-parameter Search-Based Deep Neural Network for Power Consumption Forecasting. IWANN (1) 2019: 259-269 - [c28]Antonio M. Fernández, David Gutiérrez-Avilés, Alicia Troncoso, Francisco Martínez-Álvarez:
Real-Time Big Data Analytics in Smart Cities from LoRa-Based IoT Networks. SOCO 2019: 91-100 - 2018
- [c27]David Gutiérrez-Avilés, J. A. Fábregas, J. Tejedor, Francisco Martínez-Álvarez, Alicia Troncoso, A. Arcos, José C. Riquelme:
SmartFD: A Real Big Data Application for Electrical Fraud Detection. HAIS 2018: 120-130 - [c26]Zheng Wang, Irena Koprinska, Alicia Troncoso, Francisco Martínez-Álvarez:
Static and Dynamic Ensembles of Neural Networks for Solar Power Forecasting. IJCNN 2018: 1-8 - [c25]José F. Torres, Alicia Troncoso, Irena Koprinska, Zheng Wang, Francisco Martínez-Álvarez:
Deep Learning for Big Data Time Series Forecasting Applied to Solar Power. SOCO-CISIS-ICEUTE 2018: 123-133 - [c24]Cristina Rubio-Escudero, Gualberto Asencio-Cortés, Francisco Martínez-Álvarez, Alicia Troncoso, José C. Riquelme:
Impact of Auto-evaluation Tests as Part of the Continuous Evaluation in Programming Courses. SOCO-CISIS-ICEUTE 2018: 553-561 - 2017
- [c23]Antonio Galicia, José F. Torres, Francisco Martínez-Álvarez, Alicia Troncoso:
Scalable Forecasting Techniques Applied to Big Electricity Time Series. IWANN (2) 2017: 165-175 - [c22]José F. Torres, Antonio M. Fernández, Alicia Troncoso Lora, Francisco Martínez-Álvarez:
Deep Learning-Based Approach for Time Series Forecasting with Application to Electricity Load. IWINAC (2) 2017: 203-212 - 2016
- [c21]Antonio M. Fernández, José F. Torres, Alicia Troncoso, Francisco Martínez-Álvarez:
Automated Spark Clusters Deployment for Big Data with Standalone Applications Integration. CAEPIA 2016: 150-159 - [c20]Rubén Pérez-Chacón, Ricardo L. Talavera-Llames, Francisco Martínez-Álvarez, Alicia Troncoso Lora:
Finding Electric Energy Consumption Patterns in Big Time Series Data. DCAI 2016: 231-238 - [c19]Khawaja M. Asim, Adnan Idris, Francisco Martínez-Álvarez, Talat Iqbal:
Short Term Earthquake Prediction in Hindukush Region Using Tree Based Ensemble Learning. FIT 2016: 365-370 - [c18]Ricardo L. Talavera-Llames, Rubén Pérez-Chacón, María Martínez-Ballesteros, Alicia Troncoso, Francisco Martínez-Álvarez:
A Nearest Neighbours-Based Algorithm for Big Time Series Data Forecasting. HAIS 2016: 174-185 - [c17]Fawad Hassan, Naeem Iqbal, Francisco Martínez-Álvarez, Khawaja M. Asim:
Passivity Based Control of Cyber Physical Systems Under Zero-Dynamics Attack. HAIS 2016: 634-646 - 2015
- [c16]Gualberto Asencio-Cortés, Francisco Martínez-Álvarez, Antonio Morales-Esteban, Jorge Reyes, Alicia Troncoso Lora:
Improving Earthquake Prediction with Principal Component Analysis: Application to Chile. HAIS 2015: 393-404 - [c15]Emilio Florido, O. Castaño, Alicia Troncoso, Francisco Martínez-Álvarez:
Data Mining for Predicting Traffic Congestion and Its Application to Spanish Data. SOCO 2015: 341-351 - 2013
- [c14]María Martínez-Ballesteros, Francisco Martínez-Álvarez, Alicia Troncoso Lora, José C. Riquelme:
ra A Sensitivity Analysis for Quality Measures of Quantitative Association Rules. HAIS 2013: 578-587 - [c13]Irena Koprinska, Mashud Rana, Alicia Troncoso Lora, Francisco Martínez-Álvarez:
Combining pattern sequence similarity with neural networks for forecasting electricity demand time series. IJCNN 2013: 1-8 - [c12]Jorge García-Gutiérrez, Francisco Martínez-Álvarez, Alicia Troncoso Lora, José C. Riquelme:
A Comparative Study of Machine Learning Regression Methods on LiDAR Data: A Case Study. SOCO-CISIS-ICEUTE 2013: 249-258 - 2011
- [c11]Francisco Gómez-Vela, Francisco Martínez-Álvarez, Carlos D. Barranco, Norberto Díaz-Díaz, Domingo S. Rodríguez-Baena, Jesús S. Aguilar-Ruiz:
Pattern Recognition in Biological Time Series. CAEPIA 2011: 164-172 - [c10]Francisco Martínez-Álvarez, Alicia Troncoso Lora, A. Morales-Esteban, José C. Riquelme:
Computational Intelligence Techniques for Predicting Earthquakes. HAIS (2) 2011: 287-294 - [c9]María Martínez-Ballesteros, Cristina Rubio-Escudero, José C. Riquelme, Francisco Martínez-Álvarez:
Mining Quantitative Association Rules in Microarray Data using Evolutive Algorithms. ICAART (1) 2011: 574-577 - [c8]Cristina Rubio-Escudero, Francisco Martínez-Álvarez, María Martínez-Ballesteros, José C. Riquelme:
On the use of algorithms to discover motifs in DNA sequences. ISDA 2011: 1074-1079 - 2010
- [c7]Jorge García-Gutiérrez, Francisco Martínez-Álvarez, José C. Riquelme:
Using Remote Data Mining on LIDAR and Imagery Fusion Data to Develop Land Cover Maps. IEA/AIE (1) 2010: 378-387 - 2009
- [c6]Francisco Martínez-Álvarez, Alicia Troncoso Lora, José C. Riquelme:
Improving Time Series Forecasting by Discovering Frequent Episodes in Sequences. IDA 2009: 357-368 - [c5]María Martínez-Ballesteros, Francisco Martínez-Álvarez, Alicia Troncoso Lora, José C. Riquelme:
Quantitative Association Rules Applied to Climatological Time Series Forecasting. IDEAL 2009: 284-291 - 2008
- [c4]Cristina Rubio-Escudero, Francisco Martínez-Álvarez, Rocío Romero-Záliz, Igor Zwir:
Classification of Gene Expression Profiles: Comparison of K-means and Expectation Maximization Algorithms. HIS 2008: 831-836 - [c3]Francisco Martínez-Álvarez, Alicia Troncoso Lora, José C. Riquelme, Jesús S. Aguilar-Ruiz:
LBF: A Labeled-Based Forecasting Algorithm and Its Application to Electricity Price Time Series. ICDM 2008: 453-461 - 2007
- [c2]Francisco Martínez-Álvarez, Alicia Troncoso Lora, José Cristóbal Riquelme Santos, Jesús S. Aguilar-Ruiz:
Detection of Microcalcifications in Mammographies Based on Linear Pixel Prediction and Support-Vector Machines. CBMS 2007: 141-146 - [c1]Francisco Martínez-Álvarez, Alicia Troncoso Lora, José Cristóbal Riquelme Santos, Jesús Manuel Riquelme-Santos:
Partitioning-Clustering Techniques Applied to the Electricity Price Time Series. IDEAL 2007: 990-999
Editorship
- 2025
- [e12]Héctor Quintián, Emilio Corchado, Alicia Troncoso Lora, Hilde Pérez García, Esteban Jove-Pérez, José Luís Calvo-Rolle, Francisco Javier Martínez de Pisón, Pablo García Bringas, Francisco Martínez-Álvarez, Álvaro Herrero, Paolo Fosci:
Hybrid Artificial Intelligent Systems - 19th International Conference, HAIS 2024, Salamanca, Spain, October 9-11, 2024, Proceedings, Part I. Lecture Notes in Computer Science 14857, Springer 2025, ISBN 978-3-031-74182-1 [contents] - [e11]Héctor Quintián, Emilio Corchado, Alicia Troncoso Lora, Hilde Pérez García, Esteban Jove-Pérez, José Luís Calvo-Rolle, Francisco Javier Martínez de Pisón, Pablo García Bringas, Francisco Martínez-Álvarez, Álvaro Herrero, Paolo Fosci:
Hybrid Artificial Intelligent Systems - 19th International Conference, HAIS 2024, Salamanca, Spain, October 9-11, 2024, Proceedings, Part II. Lecture Notes in Computer Science 14858, Springer 2025, ISBN 978-3-031-74185-2 [contents] - 2023
- [e10]Pablo García Bringas, Hilde Pérez García, Francisco Javier Martínez de Pisón, José Ramón Villar Flecha, Alicia Troncoso Lora, Enrique A. de la Cal, Álvaro Herrero, Francisco Martínez-Álvarez, Giuseppe Psaila, Héctor Quintián, Emilio Corchado:
International Joint Conference 15th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2022) 13th International Conference on EUropean Transnational Education (ICEUTE 2022) - Proceedings, Salamanca, Spain, 5-7 September. Lecture Notes in Networks and Systems 532, Springer 2023, ISBN 978-3-031-18408-6 [contents] - [e9]Pablo García Bringas, Hilde Pérez García, Francisco Javier Martínez de Pisón, Francisco Martínez-Álvarez, Alicia Troncoso Lora, Álvaro Herrero, José Luís Calvo-Rolle, Héctor Quintián, Emilio Corchado:
International Joint Conference 16th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2023) 14th International Conference on EUropean Transnational Education (ICEUTE 2023) - Proceedings, Salamanca, Spain, 5-7 September, 2023. Lecture Notes in Networks and Systems 748, Springer 2023, ISBN 978-3-031-42518-9 [contents] - [e8]Pablo García Bringas, Hilde Pérez García, Francisco Javier Martínez de Pisón, Francisco Martínez-Álvarez, Alicia Troncoso Lora, Álvaro Herrero, José Luís Calvo-Rolle, Héctor Quintián, Emilio Corchado:
Hybrid Artificial Intelligent Systems - 18th International Conference, HAIS 2023, Salamanca, Spain, September 5-7, 2023, Proceedings. Lecture Notes in Computer Science 14001, Springer 2023, ISBN 978-3-031-40724-6 [contents] - [e7]Pablo García Bringas, Hilde Pérez García, Francisco Javier Martínez de Pisón, José Ramón Villar Flecha, Alicia Troncoso Lora, Enrique A. de la Cal, Álvaro Herrero, Francisco Martínez-Álvarez, Giuseppe Psaila, Héctor Quintián, Emilio S. Corchado Rodríguez:
17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022) - Salamanca, Spain, September 5-7, 2022, Proceedings. Lecture Notes in Networks and Systems 531, Springer 2023, ISBN 978-3-031-18049-1 [contents] - [e6]Pablo García Bringas, Hilde Pérez García, Francisco Javier Martínez de Pisón, Francisco Martínez-Álvarez, Alicia Troncoso Lora, Álvaro Herrero, José Luís Calvo-Rolle, Héctor Quintián, Emilio Corchado:
18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023) - Salamanca, Spain, September 5-7, 2023, Proceedings, Volume 1. Lecture Notes in Networks and Systems 749, Springer 2023, ISBN 978-3-031-42528-8 [contents] - [e5]Pablo García Bringas, Hilde Pérez García, Francisco Javier Martínez de Pisón, Francisco Martínez-Álvarez, Alicia Troncoso Lora, Álvaro Herrero, José Luís Calvo-Rolle, Héctor Quintián, Emilio Corchado:
18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023) - Salamanca, Spain, September 5-7, 2023, Proceedings, Volume 2. Lecture Notes in Networks and Systems 750, Springer 2023, ISBN 978-3-031-42535-6 [contents] - 2022
- [e4]Pablo García Bringas, Hilde Pérez García, Francisco Javier Martínez de Pisón, José Ramón Villar Flecha, Alicia Troncoso Lora, Enrique A. de la Cal, Álvaro Herrero, Francisco Martínez-Álvarez, Giuseppe Psaila, Héctor Quintián, Emilio Corchado:
Hybrid Artificial Intelligent Systems - 17th International Conference, HAIS 2022, Salamanca, Spain, September 5-7, 2022, Proceedings. Lecture Notes in Computer Science 13469, Springer 2022, ISBN 978-3-031-15470-6 [contents] - 2020
- [e3]Francisco Martínez-Álvarez, Alicia Troncoso Lora, José António Sáez Muñoz, Héctor Quintián, Emilio Corchado:
International Joint Conference: 12th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2019) and 10th International Conference on EUropean Transnational Education (ICEUTE 2019) - Seville, Spain, May 13-15, 2019, Proceedings. Advances in Intelligent Systems and Computing 951, Springer 2020, ISBN 978-3-030-20004-6 [contents] - [e2]Francisco Martínez-Álvarez, Alicia Troncoso Lora, José António Sáez Muñoz, Héctor Quintián, Emilio Corchado:
14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019) - Seville, Spain, May 13-15, 2019, Proceedings. Advances in Intelligent Systems and Computing 950, Springer 2020, ISBN 978-3-030-20054-1 [contents] - 2016
- [e1]Francisco Martínez-Álvarez, Alicia Troncoso, Héctor Quintián, Emilio Corchado:
Hybrid Artificial Intelligent Systems - 11th International Conference, HAIS 2016, Seville, Spain, April 18-20, 2016, Proceedings. Lecture Notes in Computer Science 9648, Springer 2016, ISBN 978-3-319-32033-5 [contents]
Informal and Other Publications
- 2020
- [i2]Pedro Lara-Benítez, Manuel Carranza-García, Francisco Martínez-Álvarez, José C. Riquelme:
On the performance of deep learning models for time series classification in streaming. CoRR abs/2003.02544 (2020) - [i1]Francisco Martínez-Álvarez, Gualberto Asencio-Cortés, José F. Torres, David Gutiérrez-Avilés, Laura Melgar-García, Rubén Pérez-Chacón, Cristina Rubio-Escudero, José C. Riquelme, Alicia Troncoso:
Coronavirus Optimization Algorithm: A bioinspired metaheuristic based on the COVID-19 propagation model. CoRR abs/2003.13633 (2020)
Coauthor Index
aka: Francisco Javier Martínez de Pisón
aka: Emilio S. Corchado Rodríguez
aka: Manuel Jesús Jiménez-Navarro
aka: Alicia Troncoso
aka: A. Morales-Esteban
aka: José C. Riquelme
aka: José Francisco Torres
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-18 20:32 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint