default search action
Barnabás Póczos
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j16]Amira Alakhdar, Barnabás Póczos, Newell Washburn:
Diffusion Models in De Novo Drug Design. J. Chem. Inf. Model. 64(19): 7238-7256 (2024) - [i114]Dhananjay Ashok, Barnabás Póczos:
Controllable Text Generation in the Instruction-Tuning Era. CoRR abs/2405.01490 (2024) - [i113]Amira Alakhdar, Barnabás Póczos, Newell Washburn:
Diffusion Models in De Novo Drug Design. CoRR abs/2406.08511 (2024) - [i112]Tongzhou Liao, Barnabás Póczos:
Graph Attention with Random Rewiring. CoRR abs/2407.05649 (2024) - [i111]Yuchen Shen, Barnabás Póczos:
GraphBPE: Molecular Graphs Meet Byte-Pair Encoding. CoRR abs/2407.19039 (2024) - [i110]Euxhen Hasanaj, Barnabás Póczos, Ziv Bar-Joseph:
Recovering Time-Varying Networks From Single-Cell Data. CoRR abs/2410.01853 (2024) - [i109]Alan Hsu, Matthew Ho, Joyce Lin, Carleen Markey, Michelle Ntampaka, Hy Trac, Barnabás Póczos:
Reconstructing Galaxy Cluster Mass Maps using Score-based Generative Modeling. CoRR abs/2410.02857 (2024) - [i108]Yuchen Shen, Chenhao Zhang, Sijie Fu, Chenghui Zhou, Newell Washburn, Barnabás Póczos:
Chemistry-Inspired Diffusion with Non-Differentiable Guidance. CoRR abs/2410.06502 (2024) - 2023
- [c121]Dhananjay Ashok, Atharva Kulkarni, Hai Pham, Barnabás Póczos:
The student becomes the master: Outperforming GPT3 on Scientific Factual Error Correction. EMNLP (Findings) 2023: 6762-6778 - [i107]Dhananjay Ashok, Atharva Kulkarni, Hai Pham, Barnabás Póczos:
The student becomes the master: Matching GPT3 on Scientific Factual Error Correction. CoRR abs/2305.14707 (2023) - [i106]Chenghui Zhou, Barnabás Póczos:
Objective-Agnostic Enhancement of Molecule Properties via Multi-Stage VAE. CoRR abs/2308.13066 (2023) - [i105]Hai Pham, Young Jin Kim, Subhabrata Mukherjee, David P. Woodruff, Barnabás Póczos, Hany Hassan Awadalla:
Task-Based MoE for Multitask Multilingual Machine Translation. CoRR abs/2308.15772 (2023) - 2022
- [i104]Han Nguyen, Hai Pham, Sashank J. Reddi, Barnabás Póczos:
On the Algorithmic Stability and Generalization of Adaptive Optimization Methods. CoRR abs/2211.03970 (2022) - [i103]Chenghui Zhou, Barnabás Póczos:
Improving Molecule Properties Through 2-Stage VAE. CoRR abs/2212.02750 (2022) - 2021
- [c120]George Stoica, Emmanouil Antonios Platanios, Barnabás Póczos:
Re-TACRED: Addressing Shortcomings of the TACRED Dataset. AAAI 2021: 13843-13850 - [c119]Yiwei Lyu, Paul Pu Liang, Hai Pham, Eduard H. Hovy, Barnabás Póczos, Ruslan Salakhutdinov, Louis-Philippe Morency:
StylePTB: A Compositional Benchmark for Fine-grained Controllable Text Style Transfer. NAACL-HLT 2021: 2116-2138 - [c118]Chenghui Zhou, Chun-Liang Li, Barnabás Póczos:
Unsupervised program synthesis for images by sampling without replacement. UAI 2021: 408-418 - [i102]Yiwei Lyu, Paul Pu Liang, Hai Pham, Eduard H. Hovy, Barnabás Póczos, Ruslan Salakhutdinov, Louis-Philippe Morency:
StylePTB: A Compositional Benchmark for Fine-grained Controllable Text Style Transfer. CoRR abs/2104.05196 (2021) - [i101]George Stoica, Emmanouil Antonios Platanios, Barnabás Póczos:
Re-TACRED: Addressing Shortcomings of the TACRED Dataset. CoRR abs/2104.08398 (2021) - [i100]Otilia Stretcu, Emmanouil Antonios Platanios, Tom M. Mitchell, Barnabás Póczos:
Coarse-to-Fine Curriculum Learning. CoRR abs/2106.04072 (2021) - 2020
- [j15]Michael Andrews, Manfred Paulini, Sergei Gleyzer, Barnabás Póczos:
End-to-End Physics Event Classification with CMS Open Data: Applying Image-Based Deep Learning to Detector Data for the Direct Classification of Collision Events at the LHC. Comput. Softw. Big Sci. 4(1) (2020) - [j14]Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R. Collins, Jeff Schneider, Barnabás Póczos, Eric P. Xing:
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly. J. Mach. Learn. Res. 21: 81:1-81:27 (2020) - [c117]George Stoica, Otilia Stretcu, Emmanouil Antonios Platanios, Tom M. Mitchell, Barnabás Póczos:
Contextual Parameter Generation for Knowledge Graph Link Prediction. AAAI 2020: 3000-3008 - [c116]Aman Madaan, Amrith Setlur, Tanmay Parekh, Barnabás Póczos, Graham Neubig, Yiming Yang, Ruslan Salakhutdinov, Alan W. Black, Shrimai Prabhumoye:
Politeness Transfer: A Tag and Generate Approach. ACL 2020: 1869-1881 - [c115]Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabás Póczos, Jeff Schneider, Eric P. Xing:
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations. AISTATS 2020: 3393-3403 - [c114]Zirui Wang, Sanket Vaibhav Mehta, Barnabás Póczos, Jaime G. Carbonell:
Efficient Meta Lifelong-Learning with Limited Memory. EMNLP (1) 2020: 535-548 - [c113]Hai Pham, Amrith Setlur, Saket Dingliwal, Tzu-Hsiang Lin, Barnabás Póczos, Kang Huang, Zhuo Li, Jae Lim, Collin McCormack, Tam Vu:
Robust Handwriting Recognition with Limited and Noisy Data. ICFHR 2020: 301-306 - [c112]Biswajit Paria, Chih-Kuan Yeh, Ian En-Hsu Yen, Ning Xu, Pradeep Ravikumar, Barnabás Póczos:
Minimizing FLOPs to Learn Efficient Sparse Representations. ICLR 2020 - [c111]Zoltán Ádám Milacski, Barnabás Póczos, András Lörincz:
VideoOneNet: Bidirectional Convolutional Recurrent OneNet with Trainable Data Steps for Video Processing. ICML 2020: 6893-6904 - [c110]Amrith Setlur, Barnabás Póczos, Alan W. Black:
Nonlinear ISA with Auxiliary Variables for Learning Speech Representations. INTERSPEECH 2020: 180-184 - [c109]Mariya Toneva, Otilia Stretcu, Barnabás Póczos, Leila Wehbe, Tom M. Mitchell:
Modeling Task Effects on Meaning Representation in the Brain via Zero-Shot MEG Prediction. NeurIPS 2020 - [c108]Ananya Uppal, Shashank Singh, Barnabás Póczos:
Robust Density Estimation under Besov IPM Losses. NeurIPS 2020 - [i99]Adarsh Dave, Jared Mitchell, Kirthevasan Kandasamy, Sven Burke, Biswajit Paria, Barnabás Póczos, Jay Whitacre, Venkatasubramanian Viswanathan:
Autonomous discovery of battery electrolytes with robotic experimentation and machine-learning. CoRR abs/2001.09938 (2020) - [i98]Chenghui Zhou, Chun-Liang Li, Barnabás Póczos:
Unsupervised Program Synthesis for Images using Tree-Structured LSTM. CoRR abs/2001.10119 (2020) - [i97]Ilqar Ramazanli, Barnabás Póczos:
Optimal Adaptive Matrix Completion. CoRR abs/2002.02431 (2020) - [i96]Ilqar Ramazanli, Han Nguyen, Hai Pham, Sashank J. Reddi, Barnabás Póczos:
Adaptive Sampling Distributed Stochastic Variance Reduced Gradient for Heterogeneous Distributed Datasets. CoRR abs/2002.08528 (2020) - [i95]Biswajit Paria, Chih-Kuan Yeh, Ian En-Hsu Yen, Ning Xu, Pradeep Ravikumar, Barnabás Póczos:
Minimizing FLOPs to Learn Efficient Sparse Representations. CoRR abs/2004.05665 (2020) - [i94]Ananya Uppal, Shashank Singh, Barnabás Póczos:
Robust Density Estimation under Besov IPM Losses. CoRR abs/2004.08597 (2020) - [i93]Aman Madaan, Amrith Setlur, Tanmay Parekh, Barnabás Póczos, Graham Neubig, Yiming Yang, Ruslan Salakhutdinov, Alan W. Black, Shrimai Prabhumoye:
Politeness Transfer: A Tag and Generate Approach. CoRR abs/2004.14257 (2020) - [i92]Amrith Setlur, Saket Dingliwal, Barnabás Póczos:
Covariate Distribution Aware Meta-learning. CoRR abs/2007.02523 (2020) - [i91]Amrith Setlur, Barnabás Póczos, Alan W. Black:
Nonlinear ISA with Auxiliary Variables for Learning Speech Representations. CoRR abs/2007.12948 (2020) - [i90]Hai Pham, Amrith Setlur, Saket Dingliwal, Tzu-Hsiang Lin, Barnabás Póczos, Kang Huang, Zhuo Li, Jae Lim, Collin McCormack, Tam Vu:
Robust Handwriting Recognition with Limited and Noisy Data. CoRR abs/2008.08148 (2020) - [i89]Mariya Toneva, Otilia Stretcu, Barnabás Póczos, Leila Wehbe, Tom M. Mitchell:
Modeling Task Effects on Meaning Representation in the Brain via Zero-Shot MEG Prediction. CoRR abs/2009.08424 (2020) - [i88]Zirui Wang, Sanket Vaibhav Mehta, Barnabás Póczos, Jaime G. Carbonell:
Efficient Meta Lifelong-Learning with Limited Memory. CoRR abs/2010.02500 (2020) - [i87]George Stoica, Emmanouil Antonios Platanios, Barnabás Póczos:
Improving Relation Extraction by Leveraging Knowledge Graph Link Prediction. CoRR abs/2012.04812 (2020)
2010 – 2019
- 2019
- [j13]Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff G. Schneider, Barnabás Póczos:
Multi-fidelity Gaussian Process Bandit Optimisation. J. Artif. Intell. Res. 66: 151-196 (2019) - [j12]Shashank Singh, Yang Yang, Barnabás Póczos, Jian Ma:
Predicting enhancer-promoter interaction from genomic sequence with deep neural networks. Quant. Biol. 7(2): 122-137 (2019) - [c107]Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-Philippe Morency, Barnabás Póczos:
Found in Translation: Learning Robust Joint Representations by Cyclic Translations between Modalities. AAAI 2019: 6892-6899 - [c106]Yifan Wu, Barnabás Póczos, Aarti Singh:
Towards Understanding the Generalization Bias of Two Layer Convolutional Linear Classifiers with Gradient Descent. AISTATS 2019: 1070-1078 - [c105]Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos:
Implicit Kernel Learning. AISTATS 2019: 2007-2016 - [c104]Zoltán Ádám Milacski, Barnabás Póczos, András Lorincz:
Differentiable Unrolled Alternating Direction Method of Multipliers for OneNet. BMVC 2019: 140 - [c103]Zirui Wang, Zihang Dai, Barnabás Póczos, Jaime G. Carbonell:
Characterizing and Avoiding Negative Transfer. CVPR 2019: 11293-11302 - [c102]Chun-Liang Li, Tomas Simon, Jason M. Saragih, Barnabás Póczos, Yaser Sheikh:
LBS Autoencoder: Self-Supervised Fitting of Articulated Meshes to Point Clouds. CVPR 2019: 11967-11976 - [c101]Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabás Póczos:
Kernel Change-point Detection with Auxiliary Deep Generative Models. ICLR (Poster) 2019 - [c100]Simon S. Du, Xiyu Zhai, Barnabás Póczos, Aarti Singh:
Gradient Descent Provably Optimizes Over-parameterized Neural Networks. ICLR (Poster) 2019 - [c99]Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabás Póczos, Ruslan Salakhutdinov:
Point Cloud GAN. DGS@ICLR 2019 - [c98]Kirthevasan Kandasamy, Willie Neiswanger, Reed Zhang, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos:
Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments. ICML 2019: 3222-3232 - [c97]Zoltán Ádám Milacski, Barnabás Póczos, András Lörincz:
Group k-Sparse Temporal Convolutional Neural Networks: Unsupervised Pretraining for Video Classification. IJCNN 2019: 1-10 - [c96]Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabás Póczos, Tom M. Mitchell:
Competence-based Curriculum Learning for Neural Machine Translation. NAACL-HLT (1) 2019: 1162-1172 - [c95]Simon S. Du, Kangcheng Hou, Ruslan Salakhutdinov, Barnabás Póczos, Ruosong Wang, Keyulu Xu:
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels. NeurIPS 2019: 5724-5734 - [c94]Emre Yolcu, Barnabás Póczos:
Learning Local Search Heuristics for Boolean Satisfiability. NeurIPS 2019: 7990-8001 - [c93]Ananya Uppal, Shashank Singh, Barnabás Póczos:
Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses. NeurIPS 2019: 9086-9097 - [c92]Biswajit Paria, Kirthevasan Kandasamy, Barnabás Póczos:
A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations. UAI 2019: 766-776 - [i86]Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabás Póczos:
Kernel Change-point Detection with Auxiliary Deep Generative Models. CoRR abs/1901.06077 (2019) - [i85]Willie Neiswanger, Kirthevasan Kandasamy, Barnabás Póczos, Jeff Schneider, Eric P. Xing:
ProBO: a Framework for Using Probabilistic Programming in Bayesian Optimization. CoRR abs/1901.11515 (2019) - [i84]Ananya Uppal, Shashank Singh, Barnabás Póczos:
Nonparametric Density Estimation under Besov IPM Losses. CoRR abs/1902.03511 (2019) - [i83]Michael Andrews, John Alison, Sitong An, Patrick Bryant, Bjorn Burkle, Sergei Gleyzer, Meenakshi Narain, Manfred Paulini, Barnabás Póczos, Emanuele Usai:
End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data. CoRR abs/1902.08276 (2019) - [i82]Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, Barnabás Póczos:
Implicit Kernel Learning. CoRR abs/1902.10214 (2019) - [i81]Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christopher R. Collins, Jeff Schneider, Barnabás Póczos, Eric P. Xing:
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly. CoRR abs/1903.06694 (2019) - [i80]Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabás Póczos, Tom M. Mitchell:
Competence-based Curriculum Learning for Neural Machine Translation. CoRR abs/1903.09848 (2019) - [i79]Chun-Liang Li, Tomas Simon, Jason M. Saragih, Barnabás Póczos, Yaser Sheikh:
LBS Autoencoder: Self-supervised Fitting of Articulated Meshes to Point Clouds. CoRR abs/1904.10037 (2019) - [i78]Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, Keyulu Xu:
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels. CoRR abs/1905.13192 (2019) - [i77]Haiguang Liao, Wentai Zhang, Xuliang Dong, Barnabás Póczos, Kenji Shimada, Levent Burak Kara:
A Deep Reinforcement Learning Approach for Global Routing. CoRR abs/1906.08809 (2019) - [i76]Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabás Póczos, Jeff Schneider, Eric P. Xing:
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations. CoRR abs/1908.01425 (2019) - [i75]Songwei Ge, Austin Dill, Eunsu Kang, Chun-Liang Li, Lingyao Zhang, Manzil Zaheer, Barnabás Póczos:
Developing Creative AI to Generate Sculptural Objects. CoRR abs/1908.07587 (2019) - [i74]Amrith Setlur, Barnabás Póczos:
Better Approximate Inference for Partial Likelihood Models with a Latent Structure. CoRR abs/1910.10211 (2019) - [i73]Kai Hu, Barnabás Póczos:
RotationOut as a Regularization Method for Neural Network. CoRR abs/1911.07427 (2019) - [i72]Joel Ruben Antony Moniz, Eunsu Kang, Barnabás Póczos:
LucidDream: Controlled Temporally-Consistent DeepDream on Videos. CoRR abs/1911.11960 (2019) - [i71]Austin Dill, Songwei Ge, Eunsu Kang, Chun-Liang Li, Barnabás Póczos:
Learned Interpolation for 3D Generation. CoRR abs/1912.10787 (2019) - 2018
- [c91]Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos:
Parallelised Bayesian Optimisation via Thompson Sampling. AISTATS 2018: 133-142 - [c90]Sashank J. Reddi, Manzil Zaheer, Suvrit Sra, Barnabás Póczos, Francis R. Bach, Ruslan Salakhutdinov, Alexander J. Smola:
A Generic Approach for Escaping Saddle points. AISTATS 2018: 1233-1242 - [c89]Shashank Singh, Barnabás Póczos, Jian Ma:
Minimax Reconstruction Risk of Convolutional Sparse Dictionary Learning. AISTATS 2018: 1327-1336 - [c88]Yusha Liu, Chun-Liang Li, Barnabás Póczos:
Classifier Two Sample Test for Video Anomaly Detections. BMVC 2018: 71 - [c87]Simon S. Du, Jason D. Lee, Yuandong Tian, Aarti Singh, Barnabás Póczos:
Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima. ICML 2018: 1338-1347 - [c86]Junier B. Oliva, Avinava Dubey, Manzil Zaheer, Barnabás Póczos, Ruslan Salakhutdinov, Eric P. Xing, Jeff Schneider:
Transformation Autoregressive Networks. ICML 2018: 3895-3904 - [c85]Paloma Sodhi, Hanqi Sun, Barnabás Póczos, David Wettergreen:
Robust Plant Phenotyping via Model-Based Optimization. IROS 2018: 7689-7696 - [c84]Sumedha Singla, Mingming Gong, Siamak Ravanbakhsh, Frank C. Sciurba, Barnabás Póczos, Kayhan N. Batmanghelich:
Subject2Vec: Generative-Discriminative Approach from a Set of Image Patches to a Vector. MICCAI (1) 2018: 502-510 - [c83]Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, Eric P. Xing:
Neural Architecture Search with Bayesian Optimisation and Optimal Transport. NeurIPS 2018: 2020-2029 - [c82]Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, Barnabás Póczos:
Nonparametric Density Estimation under Adversarial Losses. NeurIPS 2018: 10246-10257 - [i70]Yifan Wu, Barnabás Póczos, Aarti Singh:
Towards Understanding the Generalization Bias of Two Layer Convolutional Linear Classifiers with Gradient Descent. CoRR abs/1802.04420 (2018) - [i69]Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, Eric P. Xing:
Neural Architecture Search with Bayesian Optimisation and Optimal Transport. CoRR abs/1802.07191 (2018) - [i68]Shashank Singh, Barnabás Póczos:
Minimax Distribution Estimation in Wasserstein Distance. CoRR abs/1802.08855 (2018) - [i67]Shashank Singh, Bharath K. Sriperumbudur, Barnabás Póczos:
Minimax Estimation of Quadratic Fourier Functionals. CoRR abs/1803.11451 (2018) - [i66]Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, Barnabás Póczos:
Nonparametric Density Estimation under Adversarial Losses. CoRR abs/1805.08836 (2018) - [i65]Yotam Hechtlinger, Barnabás Póczos, Larry A. Wasserman:
Cautious Deep Learning. CoRR abs/1805.09460 (2018) - [i64]Kirthevasan Kandasamy, Willie Neiswanger, Reed Zhang, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos:
Myopic Bayesian Design of Experiments via Posterior Sampling and Probabilistic Programming. CoRR abs/1805.09964 (2018) - [i63]Biswajit Paria, Kirthevasan Kandasamy, Barnabás Póczos:
A Flexible Multi-Objective Bayesian Optimization Approach using Random Scalarizations. CoRR abs/1805.12168 (2018) - [i62]Sumedha Singla, Mingming Gong, Siamak Ravanbakhsh, Frank C. Sciurba, Barnabás Póczos, Kayhan N. Batmanghelich:
Subject2Vec: Generative-Discriminative Approach from a Set of Image Patches to a Vector. CoRR abs/1806.11217 (2018) - [i61]Hai Pham, Thomas Manzini, Paul Pu Liang, Barnabás Póczos:
Seq2Seq2Sentiment: Multimodal Sequence to Sequence Models for Sentiment Analysis. CoRR abs/1807.03915 (2018) - [i60]Michael Andrews, Manfred Paulini, Sergei Gleyzer, Barnabás Póczos:
End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC. CoRR abs/1807.11916 (2018) - [i59]Simon S. Du, Xiyu Zhai, Barnabás Póczos, Aarti Singh:
Gradient Descent Provably Optimizes Over-parameterized Neural Networks. CoRR abs/1810.02054 (2018) - [i58]Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabás Póczos, Ruslan Salakhutdinov:
Point Cloud GAN. CoRR abs/1810.05795 (2018) - [i57]Chun-Liang Li, Eunsu Kang, Songwei Ge, Lingyao Zhang, Austin Dill, Manzil Zaheer, Barnabás Póczos:
Hallucinating Point Cloud into 3D Sculptural Object. CoRR abs/1811.05389 (2018) - [i56]Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, Wei Chen, Barnabás Póczos:
Learning to Predict the Cosmological Structure Formation. CoRR abs/1811.06533 (2018) - [i55]Zirui Wang, Zihang Dai, Barnabás Póczos, Jaime G. Carbonell:
Characterizing and Avoiding Negative Transfer. CoRR abs/1811.09751 (2018) - [i54]Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-Philippe Morency, Barnabás Póczos:
Found in Translation: Learning Robust Joint Representations by Cyclic Translations Between Modalities. CoRR abs/1812.07809 (2018) - 2017
- [j11]Kirthevasan Kandasamy, Jeff G. Schneider, Barnabás Póczos:
Query efficient posterior estimation in scientific experiments via Bayesian active learning. Artif. Intell. 243: 45-56 (2017) - [c81]Siamak Ravanbakhsh, François Lanusse, Rachel Mandelbaum, Jeff G. Schneider, Barnabás Póczos:
Enabling Dark Energy Science with Deep Generative Models of Galaxy Images. AAAI 2017: 1488-1494 - [c80]Srinivasan Vijayarangan, Paloma Sodhi, Prathamesh Kini, James Bourne, Simon S. Du, Hanqi Sun, Barnabás Póczos, Dimitrios Apostolopoulos, David Wettergreen:
High-Throughput Robotic Phenotyping of Energy Sorghum Crops. FSR 2017: 99-113 - [c79]Jen-Hao Rick Chang, Chun-Liang Li, Barnabás Póczos, B. V. K. Vijaya Kumar:
One Network to Solve Them All - Solving Linear Inverse Problems Using Deep Projection Models. ICCV 2017: 5889-5898 - [c78]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Deep Learning with Sets and Point Clouds. ICLR (Workshop) 2017 - [c77]Kirthevasan Kandasamy, Gautam Dasarathy, Jeff G. Schneider, Barnabás Póczos:
Multi-fidelity Bayesian Optimisation with Continuous Approximations. ICML 2017: 1799-1808 - [c76]Junier B. Oliva, Barnabás Póczos, Jeff G. Schneider:
The Statistical Recurrent Unit. ICML 2017: 2671-2680 - [c75]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Equivariance Through Parameter-Sharing. ICML 2017: 2892-2901 - [c74]Shashank Singh, Barnabás Póczos:
Nonparanormal Information Estimation. ICML 2017: 3210-3219 - [c73]Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabás Póczos:
Data-driven Random Fourier Features using Stein Effect. IJCAI 2017: 1497-1503 - [c72]Simon S. Du, Jayanth Koushik, Aarti Singh, Barnabás Póczos:
Hypothesis Transfer Learning via Transformation Functions. NIPS 2017: 574-584 - [c71]Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Aarti Singh, Barnabás Póczos:
Gradient Descent Can Take Exponential Time to Escape Saddle Points. NIPS 2017: 1067-1077 - [c70]Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barnabás Póczos:
MMD GAN: Towards Deeper Understanding of Moment Matching Network. NIPS 2017: 2203-2213 - [c69]Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, Alexander J. Smola:
Deep Sets. NIPS 2017: 3391-3401 - [c68]Xiao Fu, Kejun Huang, Otilia Stretcu, Hyun Ah Song, Evangelos E. Papalexakis, Partha P. Talukdar, Tom M. Mitchell, Nicholas D. Sidiropoulos, Christos Faloutsos, Barnabás Póczos:
BrainZoom: High Resolution Reconstruction from Multi-modal Brain Signals. SDM 2017: 216-227 - [c67]Pengtao Xie, Barnabás Póczos, Eric P. Xing:
Near-Orthogonality Regularization in Kernel Methods. UAI 2017 - [i53]Shashank Singh, Barnabás Póczos:
Nonparanormal Information Estimation. CoRR abs/1702.07803 (2017) - [i52]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Equivariance Through Parameter-Sharing. CoRR abs/1702.08389 (2017) - [i51]Junier B. Oliva, Barnabás Póczos, Jeff G. Schneider:
The Statistical Recurrent Unit. CoRR abs/1703.00381 (2017) - [i50]Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, Alexander J. Smola:
Deep Sets. CoRR abs/1703.06114 (2017) - [i49]Jen-Hao Rick Chang, Chun-Liang Li, Barnabás Póczos, B. V. K. Vijaya Kumar, Aswin C. Sankaranarayanan:
One Network to Solve Them All - Solving Linear Inverse Problems using Deep Projection Models. CoRR abs/1703.09912 (2017) - [i48]Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabás Póczos:
Data-driven Random Fourier Features using Stein Effect. CoRR abs/1705.08525 (2017) - [i47]Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barnabás Póczos:
MMD GAN: Towards Deeper Understanding of Moment Matching Network. CoRR abs/1705.08584 (2017) - [i46]Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff G. Schneider, Barnabás Póczos:
Asynchronous Parallel Bayesian Optimisation via Thompson Sampling. CoRR abs/1705.09236 (2017) - [i45]Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Barnabás Póczos, Aarti Singh:
Gradient Descent Can Take Exponential Time to Escape Saddle Points. CoRR abs/1705.10412 (2017) - [i44]Junier B. Oliva, Kumar Avinava Dubey, Barnabás Póczos, Eric P. Xing, Jeff G. Schneider:
Recurrent Estimation of Distributions. CoRR abs/1705.10750 (2017) - [i43]Shashank Singh, Barnabás Póczos, Jian Ma:
On the Reconstruction Risk of Convolutional Sparse Dictionary Learning. CoRR abs/1708.08587 (2017) - [i42]Sashank J. Reddi, Manzil Zaheer, Suvrit Sra, Barnabás Póczos, Francis R. Bach, Ruslan Salakhutdinov, Alexander J. Smola:
A Generic Approach for Escaping Saddle points. CoRR abs/1709.01434 (2017) - [i41]Siamak Ravanbakhsh, Junier B. Oliva, Sebastian Fromenteau, Layne C. Price, Shirley Ho, Jeff G. Schneider, Barnabás Póczos:
Estimating Cosmological Parameters from the Dark Matter Distribution. CoRR abs/1711.02033 (2017) - [i40]Simon S. Du, Jason D. Lee, Yuandong Tian, Barnabás Póczos, Aarti Singh:
Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima. CoRR abs/1712.00779 (2017) - 2016
- [j10]Zoltán Szabó, Bharath K. Sriperumbudur, Barnabás Póczos, Arthur Gretton:
Learning Theory for Distribution Regression. J. Mach. Learn. Res. 17: 152:1-152:40 (2016) - [j9]Fang-Cheng Yeh, Jean M. Vettel, Aarti Singh, Barnabás Póczos, Scott T. Grafton, Kirk I. Erickson, Wen-Yih Isaac Tseng, Timothy D. Verstynen:
Quantifying Differences and Similarities in Whole-Brain White Matter Architecture Using Local Connectome Fingerprints. PLoS Comput. Biol. 12(11) (2016) - [c66]Danica J. Sutherland, Junier B. Oliva, Barnabás Póczos, Jeff G. Schneider:
Linear-Time Learning on Distributions with Approximate Kernel Embeddings. AAAI 2016: 2073-2079 - [c65]Siamak Ravanbakhsh, Barnabás Póczos, Jeff G. Schneider, Dale Schuurmans, Russell Greiner:
Stochastic Neural Networks with Monotonic Activation Functions. AISTATS 2016: 809-818 - [c64]Chun-Liang Li, Kirthevasan Kandasamy, Barnabás Póczos, Jeff G. Schneider:
High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models. AISTATS 2016: 884-892 - [c63]Junier B. Oliva, Avinava Dubey, Andrew Gordon Wilson, Barnabás Póczos, Jeff G. Schneider, Eric P. Xing:
Bayesian Nonparametric Kernel-Learning. AISTATS 2016: 1078-1086 - [c62]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Stochastic Frank-Wolfe methods for nonconvex optimization. Allerton 2016: 1244-1251 - [c61]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Fast incremental method for smooth nonconvex optimization. CDC 2016: 1971-1977 - [c60]Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Stochastic Variance Reduction for Nonconvex Optimization. ICML 2016: 314-323 - [c59]Siamak Ravanbakhsh, Barnabás Póczos, Russell Greiner:
Boolean Matrix Factorization and Noisy Completion via Message Passing. ICML 2016: 945-954 - [c58]Siamak Ravanbakhsh, Junier B. Oliva, Sebastian Fromenteau, Layne Price, Shirley Ho, Jeff G. Schneider, Barnabás Póczos:
Estimating Cosmological Parameters from the Dark Matter Distribution. ICML 2016: 2407-2416 - [c57]Xuezhi Wang, Junier B. Oliva, Jeff G. Schneider, Barnabás Póczos:
Nonparametric Risk and Stability Analysis for Multi-Task Learning Problems. IJCAI 2016: 2146-2152 - [c56]Abhijeet Tallavajhula, Barnabás Póczos, Alonzo Kelly:
Nonparametric distribution regression applied to sensor modeling. IROS 2016: 619-625 - [c55]Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff G. Schneider, Barnabás Póczos:
Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations. NIPS 2016: 992-1000 - [c54]Shashank Singh, Simon S. Du, Barnabás Póczos:
Efficient Nonparametric Smoothness Estimation. NIPS 2016: 1010-1018 - [c53]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization. NIPS 2016: 1145-1153 - [c52]Kumar Avinava Dubey, Sashank J. Reddi, Sinead A. Williamson, Barnabás Póczos, Alexander J. Smola, Eric P. Xing:
Variance Reduction in Stochastic Gradient Langevin Dynamics. NIPS 2016: 1154-1162 - [c51]Shashank Singh, Barnabás Póczos:
Finite-Sample Analysis of Fixed-k Nearest Neighbor Density Functional Estimators. NIPS 2016: 1217-1225 - [c50]Kirthevasan Kandasamy, Gautam Dasarathy, Barnabás Póczos, Jeff G. Schneider:
The Multi-fidelity Multi-armed Bandit. NIPS 2016: 1777-1785 - [c49]Chun-Liang Li, Barnabás Póczos:
Utilize Old Coordinates: Faster Doubly Stochastic Gradients for Kernel Methods. UAI 2016 - [i39]Siamak Ravanbakhsh, Barnabás Póczos, Jeff G. Schneider, Dale Schuurmans, Russell Greiner:
Stochastic Neural Networks with Monotonic Activation Functions. CoRR abs/1601.00034 (2016) - [i38]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Fast Incremental Method for Nonconvex Optimization. CoRR abs/1603.06159 (2016) - [i37]Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Stochastic Variance Reduction for Nonconvex Optimization. CoRR abs/1603.06160 (2016) - [i36]Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff G. Schneider, Barnabás Póczos:
Multi-fidelity Gaussian Process Bandit Optimisation. CoRR abs/1603.06288 (2016) - [i35]Shashank Singh, Barnabás Póczos:
Analysis of k-Nearest Neighbor Distances with Application to Entropy Estimation. CoRR abs/1603.08578 (2016) - [i34]Shashank Singh, Barnabás Póczos:
Exponential Concentration of a Density Functional Estimator. CoRR abs/1603.08584 (2016) - [i33]Shashank Singh, Barnabás Póczos:
Generalized Exponential Concentration Inequality for Rényi Divergence Estimation. CoRR abs/1603.08589 (2016) - [i32]Shashank Singh, Simon S. Du, Barnabás Póczos:
Efficient Nonparametric Smoothness Estimation. CoRR abs/1605.05785 (2016) - [i31]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization. CoRR abs/1605.06900 (2016) - [i30]Shashank Singh, Barnabás Póczos:
Finite-Sample Analysis of Fixed-k Nearest Neighbor Density Functional Estimators. CoRR abs/1606.01554 (2016) - [i29]Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
Stochastic Frank-Wolfe Methods for Nonconvex Optimization. CoRR abs/1607.08254 (2016) - [i28]Sashank J. Reddi, Jakub Konecný, Peter Richtárik, Barnabás Póczos, Alexander J. Smola:
AIDE: Fast and Communication Efficient Distributed Optimization. CoRR abs/1608.06879 (2016) - [i27]Siamak Ravanbakhsh, François Lanusse, Rachel Mandelbaum, Jeff G. Schneider, Barnabás Póczos:
Enabling Dark Energy Science with Deep Generative Models of Galaxy Images. CoRR abs/1609.05796 (2016) - [i26]Kirthevasan Kandasamy, Gautam Dasarathy, Jeff G. Schneider, Barnabás Póczos:
The Multi-fidelity Multi-armed Bandit. CoRR abs/1610.09726 (2016) - [i25]Chun-Liang Li, Siamak Ravanbakhsh, Barnabás Póczos:
Annealing Gaussian into ReLU: a New Sampling Strategy for Leaky-ReLU RBM. CoRR abs/1611.03879 (2016) - [i24]Siamak Ravanbakhsh, Jeff G. Schneider, Barnabás Póczos:
Deep Learning with Sets and Point Clouds. CoRR abs/1611.04500 (2016) - [i23]Simon Shaolei Du, Jayanth Koushik, Aarti Singh, Barnabás Póczos:
Transformation Function Based Methods for Model Shift. CoRR abs/1612.01020 (2016) - 2015
- [j8]In-Soo Jung, Mario Berges, James H. Garrett Jr., Barnabás Póczos:
Exploration and evaluation of AR, MPCA and KL anomaly detection techniques to embankment dam piezometer data. Adv. Eng. Informatics 29(4): 902-917 (2015) - [c48]Sashank Jakkam Reddi, Barnabás Póczos, Alexander J. Smola:
Doubly Robust Covariate Shift Correction. AAAI 2015: 2949-2955 - [c47]Aaditya Ramdas, Sashank Jakkam Reddi, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
On the Decreasing Power of Kernel and Distance Based Nonparametric Hypothesis Tests in High Dimensions. AAAI 2015: 3571-3577 - [c46]Zoltán Szabó, Arthur Gretton, Barnabás Póczos, Bharath K. Sriperumbudur:
Two-stage sampled learning theory on distributions. AISTATS 2015 - [c45]Akshay Krishnamurthy, Kirthevasan Kandasamy, Barnabás Póczos, Larry A. Wasserman:
On Estimating L22 Divergence. AISTATS 2015 - [c44]Junier B. Oliva, Willie Neiswanger, Barnabás Póczos, Eric P. Xing, Hy Trac, Shirley Ho, Jeff G. Schneider:
Fast Function to Function Regression. AISTATS 2015 - [c43]Sashank J. Reddi, Aaditya Ramdas, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
On the High Dimensional Power of a Linear-Time Two Sample Test under Mean-shift Alternatives. AISTATS 2015 - [c42]Kirthevasan Kandasamy, Jeff G. Schneider, Barnabás Póczos:
High Dimensional Bayesian Optimisation and Bandits via Additive Models. ICML 2015: 295-304 - [c41]Kirthevasan Kandasamy, Jeff G. Schneider, Barnabás Póczos:
Bayesian Active Learning for Posterior Estimation - IJCAI-15 Distinguished Paper. IJCAI 2015: 3605-3611 - [c40]Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabás Póczos, Larry A. Wasserman, James M. Robins:
Nonparametric von Mises Estimators for Entropies, Divergences and Mutual Informations. NIPS 2015: 397-405 - [c39]Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants. NIPS 2015: 2647-2655 - [c38]Sashank J. Reddi, Barnabás Póczos, Alexander J. Smola:
Communication Efficient Coresets for Empirical Loss Minimization. UAI 2015: 752-761 - [i22]Kirthevasan Kandasamy, Jeff G. Schneider, Barnabás Póczos:
High Dimensional Bayesian Optimisation and Bandits via Additive Models. CoRR abs/1503.01673 (2015) - [i21]Aaditya Ramdas, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
An Analysis of Active Learning With Uniform Feature Noise. CoRR abs/1505.04215 (2015) - [i20]Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, Alexander J. Smola:
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants. CoRR abs/1506.06840 (2015) - [i19]Aaditya Ramdas, Sashank J. Reddi, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
Adaptivity and Computation-Statistics Tradeoffs for Kernel and Distance based High Dimensional Two Sample Testing. CoRR abs/1508.00655 (2015) - [i18]Danica J. Sutherland, Junier B. Oliva, Barnabás Póczos, Jeff G. Schneider:
Linear-time Learning on Distributions with Approximate Kernel Embeddings. CoRR abs/1509.07553 (2015) - [i17]Junier B. Oliva, Danica J. Sutherland, Barnabás Póczos, Jeff G. Schneider:
Deep Mean Maps. CoRR abs/1511.04150 (2015) - 2014
- [c37]Junier B. Oliva, Willie Neiswanger, Barnabás Póczos, Jeff G. Schneider, Eric P. Xing:
Fast Distribution To Real Regression. AISTATS 2014: 706-714 - [c36]Junier B. Oliva, Barnabás Póczos, Timothy D. Verstynen, Aarti Singh, Jeff G. Schneider, Fang-Cheng Yeh, Wen-Yih Isaac Tseng:
FuSSO: Functional Shrinkage and Selection Operator. AISTATS 2014: 715-723 - [c35]Aaditya Ramdas, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
An Analysis of Active Learning with Uniform Feature Noise. AISTATS 2014: 805-813 - [c34]Shashank Singh, Barnabás Póczos:
Generalized Exponential Concentration Inequality for Renyi Divergence Estimation. ICML 2014: 333-341 - [c33]Akshay Krishnamurthy, Kirthevasan Kandasamy, Barnabás Póczos, Larry A. Wasserman:
Nonparametric Estimation of Renyi Divergence and Friends. ICML 2014: 919-927 - [c32]Shashank Singh, Barnabás Póczos:
Exponential Concentration of a Density Functional Estimator. NIPS 2014: 3032-3040 - [c31]Sashank J. Reddi, Barnabás Póczos:
k-NN Regression on Functional Data with Incomplete Observations. UAI 2014: 692-701 - [i16]Zoltán Szabó, Arthur Gretton, Barnabás Póczos, Bharath K. Sriperumbudur:
Consistent, Two-Stage Sampled Distribution Regression via Mean Embedding. CoRR abs/1402.1754 (2014) - [i15]Sashank J. Reddi, Aaditya Ramdas, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
Kernel MMD, the Median Heuristic and Distance Correlation in High Dimensions. CoRR abs/1406.2083 (2014) - [i14]Junier B. Oliva, Willie Neiswanger, Barnabás Póczos, Eric P. Xing, Jeff G. Schneider:
Fast Function to Function Regression. CoRR abs/1410.7414 (2014) - [i13]Zoltán Szabó, Arthur Gretton, Barnabás Póczos, Bharath K. Sriperumbudur:
Learning Theory for Distribution Regression. CoRR abs/1411.2066 (2014) - [i12]Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabás Póczos, Larry A. Wasserman, James M. Robins:
Influence Functions for Machine Learning: Nonparametric Estimators for Entropies, Divergences and Mutual Informations. CoRR abs/1411.4342 (2014) - [i11]Aaditya Ramdas, Sashank J. Reddi, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
On the High-dimensional Power of Linear-time Kernel Two-Sample Testing under Mean-difference Alternatives. CoRR abs/1411.6314 (2014) - 2013
- [c30]Barnabás Póczos, Aarti Singh, Alessandro Rinaldo, Larry A. Wasserman:
Distribution-Free Distribution Regression. AISTATS 2013: 507-515 - [c29]Liang Xiong, Barnabás Póczos, Jeff G. Schneider:
Efficient Learning on Point Sets. ICDM 2013: 847-856 - [c28]Junier B. Oliva, Barnabás Póczos, Jeff G. Schneider:
Distribution to Distribution Regression. ICML (3) 2013: 1049-1057 - [c27]Sashank J. Reddi, Barnabás Póczos:
Scale Invariant Conditional Dependence Measures. ICML (3) 2013: 1355-1363 - [c26]Danica J. Sutherland, Barnabás Póczos, Jeff G. Schneider:
Active learning and search on low-rank matrices. KDD 2013: 212-220 - [i10]Barnabás Póczos, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
Distribution-Free Distribution Regression. CoRR abs/1302.0082 (2013) - [i9]Junier B. Oliva, Barnabás Póczos, Timothy D. Verstynen, Aarti Singh, Jeff G. Schneider, Fang-Cheng Yeh, Wen-Yih Isaac Tseng:
FuSSO: Functional Shrinkage and Selection Operator. CoRR abs/1311.2234 (2013) - [i8]Junier B. Oliva, Willie Neiswanger, Barnabás Póczos, Jeff G. Schneider, Eric P. Xing:
Fast Distribution To Real Regression. CoRR abs/1311.2236 (2013) - 2012
- [j7]Zoltán Szabó, Barnabás Póczos, András Lörincz:
Separation theorem for independent subspace analysis and its consequences. Pattern Recognit. 45(4): 1782-1791 (2012) - [c25]Barnabás Póczos, Liang Xiong, Danica J. Sutherland, Jeff G. Schneider:
Nonparametric kernel estimators for image classification. CVPR 2012: 2989-2996 - [c24]Zoltán Szabó, Barnabás Póczos, András Lörincz:
Collaborative Filtering via Group-Structured Dictionary Learning. LVA/ICA 2012: 247-254 - [c23]Barnabás Póczos, Zoubin Ghahramani, Jeff G. Schneider:
Copula-based Kernel Dependency Measures. ICML 2012 - [c22]Barnabás Póczos, Jeff G. Schneider:
Nonparametric Estimation of Conditional Information and Divergences. AISTATS 2012: 914-923 - [i7]Zoltán Szabó, Barnabás Póczos, András Lörincz:
Collaborative Filtering via Group-Structured Dictionary Learning. CoRR abs/1201.0341 (2012) - [i6]Barnabás Póczos, Liang Xiong, Danica J. Sutherland, Jeff G. Schneider:
Support Distribution Machines. CoRR abs/1202.0302 (2012) - [i5]Barnabás Póczos, Liang Xiong, Jeff G. Schneider:
Nonparametric Divergence Estimation with Applications to Machine Learning on Distributions. CoRR abs/1202.3758 (2012) - [i4]Barnabás Póczos, Zoubin Ghahramani, Jeff G. Schneider:
Copula-based Kernel Dependency Measures. CoRR abs/1206.4682 (2012) - 2011
- [c21]Zoltán Szabó, Barnabás Póczos, András Lörincz:
Online group-structured dictionary learning. CVPR 2011: 2865-2872 - [c20]Barnabás Póczos, Zoltán Szabó, Jeff G. Schneider:
Nonparametric divergence estimators for independent subspace analysis. EUSIPCO 2011: 1718-1722 - [c19]Zoltán Szabó, Barnabás Póczos:
Nonparametric independent process analysis. EUSIPCO 2011: 1849-1853 - [c18]Liang Xiong, Barnabás Póczos, Jeff G. Schneider:
Group Anomaly Detection using Flexible Genre Models. NIPS 2011: 1071-1079 - [c17]Barnabás Póczos, Liang Xiong, Jeff G. Schneider:
Nonparametric Divergence Estimation with Applications to Machine Learning on Distributions. UAI 2011: 599-608 - [c16]Barnabás Póczos, Jeff G. Schneider:
On the Estimation of alpha-Divergences. AISTATS 2011: 609-617 - [c15]Liang Xiong, Barnabás Póczos, Jeff G. Schneider, Andrew J. Connolly, Jake VanderPlas:
Hierarchical Probabilistic Models for Group Anomaly Detection. AISTATS 2011: 789-797 - 2010
- [j6]Zoltán Szabó, Barnabás Póczos, András Lörincz:
Auto-regressive independent process analysis without combinatorial efforts. Pattern Anal. Appl. 13(1): 1-13 (2010) - [c14]Siamak (Moshen) Ravanbakhsh, Barnabás Póczos, Russell Greiner:
A Cross-Entropy Method that Optimizes Partially Decomposable Problems: A New Way to Interpret NMR Spectra. AAAI 2010: 1280-1286 - [c13]Liuyang Li, Barnabás Póczos, Csaba Szepesvári, Russell Greiner:
Budgeted Distribution Learning of Belief Net Parameters. ICML 2010: 879-886 - [c12]Dávid Pál, Barnabás Póczos, Csaba Szepesvári:
Estimation of Renyi Entropy and Mutual Information Based on Generalized Nearest-Neighbor Graphs. NIPS 2010: 1849-1857 - [c11]Barnabás Póczos, Sergey Kirshner, Csaba Szepesvári:
REGO: Rank-based Estimation of Renyi Information using Euclidean Graph Optimization. AISTATS 2010: 605-612 - [i3]Dávid Pál, Barnabás Póczos, Csaba Szepesvári:
Estimation of Rényi Entropy and Mutual Information Based on Generalized Nearest-Neighbor Graphs. CoRR abs/1003.1954 (2010)
2000 – 2009
- 2009
- [j5]Barnabás Póczos, András Lörincz:
Identification of Recurrent Neural Networks by Bayesian Interrogation Techniques. J. Mach. Learn. Res. 10: 515-554 (2009) - [c10]Barnabás Póczos, Yasin Abbasi-Yadkori, Csaba Szepesvári, Russell Greiner, Nathan R. Sturtevant:
Learning when to stop thinking and do something! ICML 2009: 825-832 - 2008
- [c9]Sergey Kirshner, Barnabás Póczos:
ICA and ISA using Schweizer-Wolff measure of dependence. ICML 2008: 464-471 - [i2]Barnabás Póczos, András Lörincz:
D-optimal Bayesian Interrogation for Parameter and Noise Identification of Recurrent Neural Networks. CoRR abs/0801.1883 (2008) - 2007
- [j4]Zoltán Szabó, Barnabás Póczos, András Lörincz:
Undercomplete Blind Subspace Deconvolution. J. Mach. Learn. Res. 8: 1063-1095 (2007) - [c8]Zoltán Szabó, Barnabás Póczos, András Lörincz:
Undercomplete Blind Subspace Deconvolution Via Linear Prediction. ECML 2007: 740-747 - [c7]Barnabás Póczos, Zoltán Szabó, Melinda Kiszlinger, András Lörincz:
Independent Process Analysis Without a Priori Dimensional Information. ICA 2007: 252-259 - [c6]Zoltán Szabó, Barnabás Póczos, Gábor Szirtes, András Lörincz:
Post Nonlinear Independent Subspace Analysis. ICANN (1) 2007: 677-686 - 2006
- [j3]Barnabás Póczos, András Lörincz:
Non-combinatorial estimation of independent autoregressive sources. Neurocomputing 69(16-18): 2416-2419 (2006) - [c5]Zoltán Szabó, Barnabás Póczos, András Lörincz:
Cross-Entropy Optimization for Independent Process Analysis. ICA 2006: 909-916 - 2005
- [j2]Gábor Szirtes, Barnabás Póczos, András Lörincz:
Neural Kalman filter. Neurocomputing 65-66: 349-355 (2005) - [c4]Barnabás Póczos, Bálint Takács, András Lörincz:
Independent Subspace Analysis on Innovations. ECML 2005: 698-706 - [c3]Barnabás Póczos, András Lörincz:
Independent Subspace Analysis Using k-Nearest Neighborhood Distances. ICANN (2) 2005: 163-168 - [c2]Barnabás Póczos, András Lörincz:
Independent subspace analysis using geodesic spanning trees. ICML 2005: 673-680 - 2003
- [j1]András Lörincz, Barnabás Póczos:
Cost Component Analysis. Int. J. Neural Syst. 13(3): 183-192 (2003) - [i1]Barnabás Póczos, András Lörincz:
Kalman-filtering using local interactions. CoRR cs.AI/0302039 (2003) - 2002
- [c1]Botond Szatmáry, Barnabás Póczos, Julian Eggert, Edgar Körner, András Lörincz:
Non-negative matrix factorization extended by sparse code shrinkage and weight sparsification non-negative matrix factorization algorithms. ECAI 2002: 503-507
Coauthor Index
aka: Simon Shaolei Du
aka: András Lorincz
aka: Emmanouil Antonios Platanios
aka: Siamak (Moshen) Ravanbakhsh
aka: Sashank Jakkam Reddi
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:09 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint