default search action
Danica J. Sutherland
Person information
- affiliation: The University of British Columbia, Vancouver, BC, Canada
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j3]Yi Yang, Kamil Adamczewski, Xiaoxiao Li, Danica J. Sutherland, Mijung Park:
Differentially Private Neural Tangent Kernels (DP-NTK) for Privacy-Preserving Data Generation. J. Artif. Intell. Res. 81: 683-700 (2024) - [c34]Wonho Bae, Jing Wang, Danica J. Sutherland:
Exploring Active Learning in Meta-learning: Enhancing Context Set Labeling. ECCV (89) 2024: 279-296 - [c33]Wonho Bae, Junhyug Noh, Danica J. Sutherland:
Generalized Coverage for More Robust Low-Budget Active Learning. ECCV (83) 2024: 318-334 - [c32]Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, Danica J. Sutherland:
Why Do You Grok? A Theoretical Analysis on Grokking Modular Addition. ICML 2024 - [i45]Roman Pogodin, Antonin Schrab, Yazhe Li, Danica J. Sutherland, Arthur Gretton:
Practical Kernel Tests of Conditional Independence. CoRR abs/2402.13196 (2024) - [i44]Yi Ren, Shangmin Guo, Linlu Qiu, Bailin Wang, Danica J. Sutherland:
Language Model Evolution: An Iterated Learning Perspective. CoRR abs/2404.04286 (2024) - [i43]Yi Ren, Danica J. Sutherland:
Learning Dynamics of LLM Finetuning. CoRR abs/2407.10490 (2024) - [i42]Wonho Bae, Junhyug Noh, Danica J. Sutherland:
Generalized Coverage for More Robust Low-Budget Active Learning. CoRR abs/2407.12212 (2024) - [i41]Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, Danica J. Sutherland:
Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition. CoRR abs/2407.12332 (2024) - [i40]Nathaniel Xu, Feng Liu, Danica J. Sutherland:
Learning Deep Kernels for Non-Parametric Independence Testing. CoRR abs/2409.06890 (2024) - [i39]Yi Ren, Danica J. Sutherland:
Understanding Simplicity Bias towards Compositional Mappings via Learning Dynamics. CoRR abs/2409.09626 (2024) - [i38]Hamed Shirzad, Honghao Lin, Ameya Velingker, Balaji Venkatachalam, David P. Woodruff, Danica J. Sutherland:
A Theory for Compressibility of Graph Transformers for Transductive Learning. CoRR abs/2411.13028 (2024) - [i37]Hamed Shirzad, Honghao Lin, Balaji Venkatachalam, Ameya Velingker, David P. Woodruff, Danica J. Sutherland:
Even Sparser Graph Transformers. CoRR abs/2411.16278 (2024) - 2023
- [j2]Frederik Harder, Milad Jalali, Danica J. Sutherland, Mijung Park:
Pre-trained Perceptual Features Improve Differentially Private Image Generation. Trans. Mach. Learn. Res. 2023 (2023) - [c31]Namrata Deka, Danica J. Sutherland:
MMD-B-Fair: Learning Fair Representations with Statistical Testing. AISTATS 2023: 9564-9576 - [c30]Organizers Of QueerInAI, Anaelia Ovalle, Arjun Subramonian, Ashwin Singh, Claas Voelcker, Danica J. Sutherland, Davide Locatelli, Eva Breznik, Filip Klubicka, Hang Yuan, Hetvi Jethwani, Huan Zhang, Jaidev Shriram, Kruno Lehman, Luca Soldaini, Maarten Sap, Marc Peter Deisenroth, Maria Leonor Pacheco, Maria Ryskina, Martin Mundt, Milind Agarwal, Nyx McLean, Pan Xu, Pranav A, Raj Korpan, Ruchira Ray, Sarah Mathew, Sarthak Arora, St John, Tanvi Anand, Vishakha Agrawal, William Agnew, Yanan Long, Zijie J. Wang, Zeerak Talat, Avijit Ghosh, Nathaniel Dennler, Michael Noseworthy, Sharvani Jha, Emi Baylor, Aditya Joshi, Natalia Y. Bilenko, Andrew McNamara, Raphael Gontijo Lopes, Alex Markham, Evyn Dong, Jackie Kay, Manu Saraswat, Nikhil Vytla, Luke Stark:
Queer In AI: A Case Study in Community-Led Participatory AI. FAccT 2023: 1882-1895 - [c29]Roman Pogodin, Namrata Deka, Yazhe Li, Danica J. Sutherland, Victor Veitch, Arthur Gretton:
Efficient Conditionally Invariant Representation Learning. ICLR 2023 - [c28]Yi Ren, Shangmin Guo, Wonho Bae, Danica J. Sutherland:
How to prepare your task head for finetuning. ICLR 2023 - [c27]Mohamad Amin Mohamadi, Wonho Bae, Danica J. Sutherland:
A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel. ICML 2023: 25061-25081 - [c26]Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, Ali Kemal Sinop:
Exphormer: Sparse Transformers for Graphs. ICML 2023: 31613-31632 - [c25]Yi Ren, Samuel Lavoie, Michael Galkin, Danica J. Sutherland, Aaron C. Courville:
Improving Compositional Generalization using Iterated Learning and Simplicial Embeddings. NeurIPS 2023 - [i36]Yi Ren, Shangmin Guo, Wonho Bae, Danica J. Sutherland:
How to prepare your task head for finetuning. CoRR abs/2302.05779 (2023) - [i35]Yilin Yang, Kamil Adamczewski, Danica J. Sutherland, Xiaoxiao Li, Mijung Park:
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation. CoRR abs/2303.01687 (2023) - [i34]Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, Ali Kemal Sinop:
Exphormer: Sparse Transformers for Graphs. CoRR abs/2303.06147 (2023) - [i33]Anaelia Ovalle, Arjun Subramonian, Ashwin Singh, Claas Voelcker, Danica J. Sutherland, Davide Locatelli, Eva Breznik, Filip Klubicka, Hang Yuan, Hetvi Jethwani, Huan Zhang, Jaidev Shriram, Kruno Lehman, Luca Soldaini, Maarten Sap, Marc Peter Deisenroth, Maria Leonor Pacheco, Maria Ryskina, Martin Mundt, Milind Agarwal, Nyx McLean, Pan Xu, Pranav A, Raj Korpan, Ruchira Ray, Sarah Mathew, Sarthak Arora, St John, Tanvi Anand, Vishakha Agrawal, William Agnew, Yanan Long, Zijie J. Wang, Zeerak Talat, Avijit Ghosh, Nathaniel Dennler, Michael Noseworthy, Sharvani Jha, Emi Baylor, Aditya Joshi, Natalia Y. Bilenko, Andrew McNamara, Raphael Gontijo Lopes, Alex Markham, Evyn Dong, Jackie Kay, Manu Saraswat, Nikhil Vytla, Luke Stark:
Queer In AI: A Case Study in Community-Led Participatory AI. CoRR abs/2303.16972 (2023) - [i32]Yi Ren, Samuel Lavoie, Mikhail Galkin, Danica J. Sutherland, Aaron C. Courville:
Improving Compositional Generalization Using Iterated Learning and Simplicial Embeddings. CoRR abs/2310.18777 (2023) - [i31]Wonho Bae, Jing Wang, Danica J. Sutherland:
Exploring Active Learning in Meta-Learning: Enhancing Context Set Labeling. CoRR abs/2311.02879 (2023) - [i30]Wonho Bae, Yi Ren, Mohamed Osama Ahmed, Frederick Tung, Danica J. Sutherland, Gabriel L. Oliveira:
AdaFlood: Adaptive Flood Regularization. CoRR abs/2311.02891 (2023) - 2022
- [c24]Jinhwan Seo, Wonho Bae, Danica J. Sutherland, Junhyug Noh, Daijin Kim:
Object Discovery via Contrastive Learning for Weakly Supervised Object Detection. ECCV (31) 2022: 312-329 - [c23]Yi Ren, Shangmin Guo, Danica J. Sutherland:
Better Supervisory Signals by Observing Learning Paths. ICLR 2022 - [c22]Wonho Bae, Junhyug Noh, Milad Jalali Asadabadi, Danica J. Sutherland:
One Weird Trick to Improve Your Semi-Weakly Supervised Semantic Segmentation Model. IJCAI 2022: 2805-2811 - [c21]Mohamad Amin Mohamadi, Wonho Bae, Danica J. Sutherland:
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels. NeurIPS 2022 - [c20]Hamed Shirzad, Kaveh Hassani, Danica J. Sutherland:
Evaluating Graph Generative Models with Contrastively Learned Features. NeurIPS 2022 - [c19]Lijia Zhou, Frederic Koehler, Pragya Sur, Danica J. Sutherland, Nati Srebro:
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models. NeurIPS 2022 - [i29]Yi Ren, Shangmin Guo, Danica J. Sutherland:
Better Supervisory Signals by Observing Learning Paths. CoRR abs/2203.02485 (2022) - [i28]Wonho Bae, Junhyug Noh, Milad Jalali Asadabadi, Danica J. Sutherland:
One Weird Trick to Improve Your Semi-Weakly Supervised Semantic Segmentation Model. CoRR abs/2205.01233 (2022) - [i27]Frederik Harder, Milad Jalali Asadabadi, Danica J. Sutherland, Mijung Park:
Differentially Private Data Generation Needs Better Features. CoRR abs/2205.12900 (2022) - [i26]Hamed Shirzad, Kaveh Hassani, Danica J. Sutherland:
Evaluating Graph Generative Models with Contrastively Learned Features. CoRR abs/2206.06234 (2022) - [i25]Mohamad Amin Mohamadi, Danica J. Sutherland:
A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel. CoRR abs/2206.12543 (2022) - [i24]Mohamad Amin Mohamadi, Wonho Bae, Danica J. Sutherland:
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels. CoRR abs/2206.12569 (2022) - [i23]Jinhwan Seo, Wonho Bae, Danica J. Sutherland, Junhyug Noh, Daijin Kim:
Object Discovery via Contrastive Learning for Weakly Supervised Object Detection. CoRR abs/2208.07576 (2022) - [i22]Lijia Zhou, Frederic Koehler, Pragya Sur, Danica J. Sutherland, Nathan Srebro:
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models. CoRR abs/2210.12082 (2022) - [i21]Namrata Deka, Danica J. Sutherland:
MMD-B-Fair: Learning Fair Representations with Statistical Testing. CoRR abs/2211.07907 (2022) - [i20]Roman Pogodin, Namrata Deka, Yazhe Li, Danica J. Sutherland, Victor Veitch, Arthur Gretton:
Efficient Conditionally Invariant Representation Learning. CoRR abs/2212.08645 (2022) - 2021
- [j1]Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T. H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, Titouan Vayer:
POT: Python Optimal Transport. J. Mach. Learn. Res. 22: 78:1-78:8 (2021) - [c18]Pritish Kamath, Akilesh Tangella, Danica J. Sutherland, Nathan Srebro:
Does Invariant Risk Minimization Capture Invariance? AISTATS 2021: 4069-4077 - [c17]Feng Liu, Wenkai Xu, Jie Lu, Danica J. Sutherland:
Meta Two-Sample Testing: Learning Kernels for Testing with Limited Data. NeurIPS 2021: 5848-5860 - [c16]Yazhe Li, Roman Pogodin, Danica J. Sutherland, Arthur Gretton:
Self-Supervised Learning with Kernel Dependence Maximization. NeurIPS 2021: 15543-15556 - [c15]Frederic Koehler, Lijia Zhou, Danica J. Sutherland, Nathan Srebro:
Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds and Benign Overfitting. NeurIPS 2021: 20657-20668 - [i19]Pritish Kamath, Akilesh Tangella, Danica J. Sutherland, Nathan Srebro:
Does Invariant Risk Minimization Capture Invariance? CoRR abs/2101.01134 (2021) - [i18]Feng Liu, Wenkai Xu, Jie Lu, Danica J. Sutherland:
Meta Two-Sample Testing: Learning Kernels for Testing with Limited Data. CoRR abs/2106.07636 (2021) - [i17]Yazhe Li, Roman Pogodin, Danica J. Sutherland, Arthur Gretton:
Self-Supervised Learning with Kernel Dependence Maximization. CoRR abs/2106.08320 (2021) - [i16]Frederic Koehler, Lijia Zhou, Danica J. Sutherland, Nathan Srebro:
Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds, and Benign Overfitting. CoRR abs/2106.09276 (2021) - [i15]Lijia Zhou, Frederic Koehler, Danica J. Sutherland, Nathan Srebro:
Optimistic Rates: A Unifying Theory for Interpolation Learning and Regularization in Linear Regression. CoRR abs/2112.04470 (2021) - 2020
- [c14]Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, Danica J. Sutherland:
Learning Deep Kernels for Non-Parametric Two-Sample Tests. ICML 2020: 6316-6326 - [c13]Lijia Zhou, Danica J. Sutherland, Nati Srebro:
On Uniform Convergence and Low-Norm Interpolation Learning. NeurIPS 2020 - [i14]Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, Danica J. Sutherland:
Learning Deep Kernels for Non-Parametric Two-Sample Tests. CoRR abs/2002.09116 (2020) - [i13]Lijia Zhou, Danica J. Sutherland, Nathan Srebro:
On Uniform Convergence and Low-Norm Interpolation Learning. CoRR abs/2006.05942 (2020)
2010 – 2019
- 2019
- [c12]Wenliang Li, Danica J. Sutherland, Heiko Strathmann, Arthur Gretton:
Learning deep kernels for exponential family densities. ICML 2019: 6737-6746 - [i12]Danica J. Sutherland:
Unbiased estimators for the variance of MMD estimators. CoRR abs/1906.02104 (2019) - 2018
- [c11]Danica J. Sutherland, Heiko Strathmann, Michael Arbel, Arthur Gretton:
Efficient and principled score estimation with Nyström kernel exponential families. AISTATS 2018: 652-660 - [c10]Ho Chung Leon Law, Danica J. Sutherland, Dino Sejdinovic, Seth R. Flaxman:
Bayesian Approaches to Distribution Regression. AISTATS 2018: 1167-1176 - [c9]Mikolaj Binkowski, Danica J. Sutherland, Michael Arbel, Arthur Gretton:
Demystifying MMD GANs. ICLR (Poster) 2018 - [c8]Michael Arbel, Danica J. Sutherland, Mikolaj Binkowski, Arthur Gretton:
On gradient regularizers for MMD GANs. NeurIPS 2018: 6701-6711 - [i11]Mikolaj Binkowski, Danica J. Sutherland, Michael Arbel, Arthur Gretton:
Demystifying MMD GANs. CoRR abs/1801.01401 (2018) - [i10]Michael Arbel, Danica J. Sutherland, Mikolaj Binkowski, Arthur Gretton:
On gradient regularizers for MMD GANs. CoRR abs/1805.11565 (2018) - [i9]Wenliang Li, Danica J. Sutherland, Heiko Strathmann, Arthur Gretton:
Learning deep kernels for exponential family densities. CoRR abs/1811.08357 (2018) - 2017
- [c7]Danica J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alexander J. Smola, Arthur Gretton:
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy. ICLR (Poster) 2017 - [i8]Danica J. Sutherland:
Fixing an error in Caponnetto and de Vito (2007). CoRR abs/1702.02982 (2017) - [i7]Ho Chung Leon Law, Danica J. Sutherland, Dino Sejdinovic, Seth R. Flaxman:
Bayesian Distribution Regression. CoRR abs/1705.04293 (2017) - [i6]Danica J. Sutherland, Heiko Strathmann, Michael Arbel, Arthur Gretton:
Efficient and principled score estimation. CoRR abs/1705.08360 (2017) - 2016
- [c6]Danica J. Sutherland, Junier B. Oliva, Barnabás Póczos, Jeff G. Schneider:
Linear-Time Learning on Distributions with Approximate Kernel Embeddings. AAAI 2016: 2073-2079 - [i5]Danica J. Sutherland, Hsiao-Yu Fish Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alexander J. Smola, Arthur Gretton:
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy. CoRR abs/1611.04488 (2016) - 2015
- [c5]Yifei Ma, Danica J. Sutherland, Roman Garnett, Jeff G. Schneider:
Active Pointillistic Pattern Search. AISTATS 2015 - [c4]Danica J. Sutherland, Jeff G. Schneider:
On the Error of Random Fourier Features. UAI 2015: 862-871 - [i4]Danica J. Sutherland, Jeff G. Schneider:
On the Error of Random Fourier Features. CoRR abs/1506.02785 (2015) - [i3]Danica J. Sutherland, Junier B. Oliva, Barnabás Póczos, Jeff G. Schneider:
Linear-time Learning on Distributions with Approximate Kernel Embeddings. CoRR abs/1509.07553 (2015) - [i2]Junier B. Oliva, Danica J. Sutherland, Barnabás Póczos, Jeff G. Schneider:
Deep Mean Maps. CoRR abs/1511.04150 (2015) - 2013
- [c3]Danica J. Sutherland, Barnabás Póczos, Jeff G. Schneider:
Active learning and search on low-rank matrices. KDD 2013: 212-220 - 2012
- [c2]Barnabás Póczos, Liang Xiong, Danica J. Sutherland, Jeff G. Schneider:
Nonparametric kernel estimators for image classification. CVPR 2012: 2989-2996 - [c1]Andrew Stromme, Danica J. Sutherland, Nicholas Felt, Alex Burka, Benjamin Lipton, Rebecca Roelofs, Daniel-Elia Feist-Alexandrov, Steve Dini, Allen Welkie:
Managing User Requests With the Grand Unified Task System (GUTS). LISA 2012: 101-110 - [i1]Barnabás Póczos, Liang Xiong, Danica J. Sutherland, Jeff G. Schneider:
Support Distribution Machines. CoRR abs/1202.0302 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 23:59 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint